Skip to content

Update to readme: GPU support #98

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Oct 14, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
57 changes: 25 additions & 32 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@

# Machine Learning Benchmarks
# Machine Learning Benchmarks <!-- omit in toc -->

[![Build Status](https://dev.azure.com/daal/scikit-learn_bench/_apis/build/status/IntelPython.scikit-learn_bench?branchName=master)](https://dev.azure.com/daal/scikit-learn_bench/_build/latest?definitionId=8&branchName=master)

Expand All @@ -10,7 +10,7 @@ and algorithms. It currently supports the [scikit-learn](https://scikit-learn.or
and [XGBoost](https://github.com/dmlc/xgboost) frameworks for commonly used
[machine learning algorithms](#supported-algorithms).

## Follow us on Medium
## Follow us on Medium <!-- omit in toc -->

We publish blogs on Medium, so [follow us](https://medium.com/intel-analytics-software/tagged/machine-learning) to learn tips and tricks for more efficient data analysis. Here are our latest blogs:

Expand All @@ -28,13 +28,13 @@ We publish blogs on Medium, so [follow us](https://medium.com/intel-analytics-so
- [Accelerate K-Means Clustering](https://medium.com/intel-analytics-software/accelerate-k-means-clustering-6385088788a1)
- [Fast Gradient Boosting Tree Inference](https://medium.com/intel-analytics-software/fast-gradient-boosting-tree-inference-for-intel-xeon-processors-35756f174f55)

## Table of content
## Table of content <!-- omit in toc -->

- [How to create conda environment for benchmarking](#how-to-create-conda-environment-for-benchmarking)
- [Running Python benchmarks with runner script](#running-python-benchmarks-with-runner-script)
- [Benchmark supported algorithms](#benchmark-supported-algorithms)
- [Intel(R) Extension for Scikit-learn* support](#intelr-extension-for-scikit-learn-support)
- [Algorithms parameters](#algorithms-parameters)
- [Scikit-learn benchmakrs](#scikit-learn-benchmakrs)
- [Algorithm parameters](#algorithm-parameters)

## How to create conda environment for benchmarking

Expand Down Expand Up @@ -100,37 +100,30 @@ The configuration of benchmarks allows you to select the frameworks to run, sele

## Benchmark supported algorithms

| algorithm | benchmark name | sklearn | daal4py | cuml | xgboost |
|---|---|---|---|---|---|
|**[DBSCAN](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html)**|dbscan|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
|**[RandomForestClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html)**|df_clfs|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
|**[RandomForestRegressor](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html)**|df_regr|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
|**[pairwise_distances](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html)**|distances|:white_check_mark:|:white_check_mark:|:x:|:x:|
|**[KMeans](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html)**|kmeans|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
|**[KNeighborsClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html)**|knn_clsf|:white_check_mark:|:x:|:white_check_mark:|:x:|
|**[LinearRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html)**|linear|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
|**[LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html)**|log_reg|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
|**[PCA](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html)**|pca|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
|**[Ridge](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html)**|ridge|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
|**[SVM](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html)**|svm|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
|**[train_test_split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html)**|train_test_split|:white_check_mark:|:x:|:white_check_mark:|:x:|
|**[GradientBoostingClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html)**|gbt|:x:|:x:|:x:|:white_check_mark:|
|**[GradientBoostingRegressor](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html)**|gbt|:x:|:x:|:x:|:white_check_mark:|

## Intel(R) Extension for Scikit-learn support
| algorithm | benchmark name | sklearn (CPU) | sklearn (GPU) | daal4py | cuml | xgboost |
|---|---|---|---|---|---|---|
|**[DBSCAN](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html)**|dbscan|:white_check_mark:|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
|**[RandomForestClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html)**|df_clfs|:white_check_mark:|:x:|:white_check_mark:|:white_check_mark:|:x:|
|**[RandomForestRegressor](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html)**|df_regr|:white_check_mark:|:x:|:white_check_mark:|:white_check_mark:|:x:|
|**[pairwise_distances](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html)**|distances|:white_check_mark:|:x:|:white_check_mark:|:x:|:x:|
|**[KMeans](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html)**|kmeans|:white_check_mark:|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
|**[KNeighborsClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html)**|knn_clsf|:white_check_mark:|:x:|:x:|:white_check_mark:|:x:|
|**[LinearRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html)**|linear|:white_check_mark:|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
|**[LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html)**|log_reg|:white_check_mark:|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
|**[PCA](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html)**|pca|:white_check_mark:|:x:|:white_check_mark:|:white_check_mark:|:x:|
|**[Ridge](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html)**|ridge|:white_check_mark:|:x:|:white_check_mark:|:white_check_mark:|:x:|
|**[SVM](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html)**|svm|:white_check_mark:|:x:|:white_check_mark:|:white_check_mark:|:x:|
|**[train_test_split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html)**|train_test_split|:white_check_mark:|:x:|:x:|:white_check_mark:|:x:|
|**[GradientBoostingClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html)**|gbt|:x:|:x:|:x:|:x:|:white_check_mark:|
|**[GradientBoostingRegressor](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html)**|gbt|:x:|:x:|:x:|:x:|:white_check_mark:|

### Scikit-learn benchmakrs

When you run scikit-learn benchmarks on CPU, [Intel(R) Extension for Scikit-learn](https://github.com/intel/scikit-learn-intelex) is used by default. Use the ``--no-intel-optimized`` option to run the benchmarks without the extension.

The following benchmarks have a GPU support:
For the algorithms with both CPU and GPU support, you may use the same [configuration file](https://github.com/IntelPython/scikit-learn_bench/blob/master/configs/skl_xpu_config.json) to run the scikit-learn benchmarks on CPU and GPU.

- dbscan
- kmeans
- linear
- log_reg

You may use the [configuration file for these benchmarks](https://github.com/IntelPython/scikit-learn_bench/blob/master/configs/skl_xpu_config.json) to run them on both CPU and GPU.

## Algorithms parameters
## Algorithm parameters

You can launch benchmarks for each algorithm separately.
To do this, go to the directory with the benchmark:
Expand Down