|
37 | 37 | },
|
38 | 38 | {
|
39 | 39 | "cell_type": "code",
|
40 |
| - "execution_count": 58, |
| 40 | + "execution_count": 65, |
41 | 41 | "metadata": {},
|
42 | 42 | "outputs": [
|
43 | 43 | {
|
|
53 | 53 | "output_type": "stream",
|
54 | 54 | "text": [
|
55 | 55 | "Performing stepwise search to minimize aic\n",
|
56 |
| - " ARIMA(1,1,1)(1,1,1)[12] : AIC=inf, Time=1.82 sec\n", |
| 56 | + " ARIMA(1,1,1)(1,1,1)[12] : AIC=inf, Time=1.83 sec\n", |
57 | 57 | " ARIMA(0,1,0)(0,1,0)[12] : AIC=3802.747, Time=0.04 sec\n",
|
58 |
| - " ARIMA(1,1,0)(1,1,0)[12] : AIC=3597.813, Time=0.15 sec\n", |
59 |
| - " ARIMA(0,1,1)(0,1,1)[12] : AIC=inf, Time=0.99 sec\n", |
60 |
| - " ARIMA(1,1,0)(0,1,0)[12] : AIC=3804.105, Time=0.04 sec\n", |
61 |
| - " ARIMA(1,1,0)(2,1,0)[12] : AIC=3525.586, Time=0.34 sec\n", |
62 |
| - " ARIMA(1,1,0)(2,1,1)[12] : AIC=inf, Time=2.90 sec\n", |
63 |
| - " ARIMA(1,1,0)(1,1,1)[12] : AIC=inf, Time=1.09 sec\n", |
64 |
| - " ARIMA(0,1,0)(2,1,0)[12] : AIC=3523.686, Time=0.26 sec\n", |
65 |
| - " ARIMA(0,1,0)(1,1,0)[12] : AIC=3596.070, Time=0.08 sec\n", |
66 |
| - " ARIMA(0,1,0)(2,1,1)[12] : AIC=inf, Time=2.63 sec\n", |
67 |
| - " ARIMA(0,1,0)(1,1,1)[12] : AIC=inf, Time=0.80 sec\n", |
68 |
| - " ARIMA(0,1,1)(2,1,0)[12] : AIC=3525.569, Time=0.34 sec\n", |
69 |
| - " ARIMA(1,1,1)(2,1,0)[12] : AIC=3526.799, Time=0.70 sec\n", |
70 |
| - " ARIMA(0,1,0)(2,1,0)[12] intercept : AIC=3525.686, Time=0.76 sec\n", |
| 58 | + " ARIMA(1,1,0)(1,1,0)[12] : AIC=3597.813, Time=0.17 sec\n", |
| 59 | + " ARIMA(0,1,1)(0,1,1)[12] : AIC=inf, Time=1.05 sec\n", |
| 60 | + " ARIMA(1,1,0)(0,1,0)[12] : AIC=3804.105, Time=0.05 sec\n", |
| 61 | + " ARIMA(1,1,0)(2,1,0)[12] : AIC=3525.586, Time=0.35 sec\n", |
| 62 | + " ARIMA(1,1,0)(2,1,1)[12] : AIC=inf, Time=2.89 sec\n", |
| 63 | + " ARIMA(1,1,0)(1,1,1)[12] : AIC=inf, Time=1.08 sec\n", |
| 64 | + " ARIMA(0,1,0)(2,1,0)[12] : AIC=3523.686, Time=0.29 sec\n", |
| 65 | + " ARIMA(0,1,0)(1,1,0)[12] : AIC=3596.070, Time=0.12 sec\n", |
| 66 | + " ARIMA(0,1,0)(2,1,1)[12] : AIC=inf, Time=2.68 sec\n", |
| 67 | + " ARIMA(0,1,0)(1,1,1)[12] : AIC=inf, Time=0.81 sec\n", |
| 68 | + " ARIMA(0,1,1)(2,1,0)[12] : AIC=3525.569, Time=0.42 sec\n", |
| 69 | + " ARIMA(1,1,1)(2,1,0)[12] : AIC=3526.799, Time=0.73 sec\n", |
| 70 | + " ARIMA(0,1,0)(2,1,0)[12] intercept : AIC=3525.686, Time=0.82 sec\n", |
71 | 71 | "\n",
|
72 | 72 | "Best model: ARIMA(0,1,0)(2,1,0)[12] \n",
|
73 |
| - "Total fit time: 12.965 seconds\n", |
| 73 | + "Total fit time: 13.348 seconds\n", |
74 | 74 | " SARIMAX Results \n",
|
75 | 75 | "==========================================================================================\n",
|
76 | 76 | "Dep. Variable: y No. Observations: 697\n",
|
77 | 77 | "Model: SARIMAX(0, 1, 0)x(2, 1, 0, 12) Log Likelihood -1758.843\n",
|
78 | 78 | "Date: Sun, 07 Jul 2024 AIC 3523.686\n",
|
79 |
| - "Time: 00:01:08 BIC 3537.270\n", |
| 79 | + "Time: 00:23:29 BIC 3537.270\n", |
80 | 80 | "Sample: 0 HQIC 3528.942\n",
|
81 | 81 | " - 697 \n",
|
82 | 82 | "Covariance Type: opg \n",
|
|
116 | 116 | "Dep. Variable: AAPL No. Observations: 697\n",
|
117 | 117 | "Model: SARIMAX(0, 1, 0)x(2, 1, 0, 12) Log Likelihood -1385.522\n",
|
118 | 118 | "Date: Sun, 07 Jul 2024 AIC 2779.044\n",
|
119 |
| - "Time: 00:01:09 BIC 2797.156\n", |
| 119 | + "Time: 00:23:31 BIC 2797.156\n", |
120 | 120 | "Sample: 0 HQIC 2786.053\n",
|
121 | 121 | " - 697 \n",
|
122 | 122 | "Covariance Type: opg \n",
|
|
182 | 182 | },
|
183 | 183 | {
|
184 | 184 | "cell_type": "code",
|
185 |
| - "execution_count": 59, |
| 185 | + "execution_count": 66, |
186 | 186 | "metadata": {},
|
187 | 187 | "outputs": [
|
188 | 188 | {
|
|
209 | 209 | "name": "stdout",
|
210 | 210 | "output_type": "stream",
|
211 | 211 | "text": [
|
212 |
| - "Mean Squared Error: 1235.4974952613672\n", |
213 |
| - "Mean Absolute Error: 28.192420087703255\n", |
214 |
| - "Root Mean Squared Error: 35.14964431201783\n", |
| 212 | + "Mean Squared Error: 1235.4975\n", |
| 213 | + "Mean Absolute Error: 28.1924\n", |
| 214 | + "Root Mean Squared Error: 35.1496\n", |
215 | 215 | " SARIMAX Results \n",
|
216 | 216 | "==========================================================================================\n",
|
217 | 217 | "Dep. Variable: AAPL No. Observations: 697\n",
|
218 | 218 | "Model: SARIMAX(0, 1, 0)x(2, 1, 0, 12) Log Likelihood -1385.522\n",
|
219 | 219 | "Date: Sun, 07 Jul 2024 AIC 2779.044\n",
|
220 |
| - "Time: 00:01:09 BIC 2797.156\n", |
| 220 | + "Time: 00:23:31 BIC 2797.156\n", |
221 | 221 | "Sample: 0 HQIC 2786.053\n",
|
222 | 222 | " - 697 \n",
|
223 | 223 | "Covariance Type: opg \n",
|
|
263 | 263 | "mse = mean_squared_error(test['AAPL'], forecast.predicted_mean)\n",
|
264 | 264 | "mae = mean_absolute_error(test['AAPL'], forecast.predicted_mean)\n",
|
265 | 265 | "rmse = np.sqrt(mse)\n",
|
266 |
| - "print(f'Mean Squared Error: {mse}')\n", |
267 |
| - "print(f'Mean Absolute Error: {mae}')\n", |
268 |
| - "print(f'Root Mean Squared Error: {rmse}')\n", |
| 266 | + "print(f'Mean Squared Error: {mse:.4f}')\n", |
| 267 | + "print(f'Mean Absolute Error: {mae:.4f}')\n", |
| 268 | + "print(f'Root Mean Squared Error: {rmse:.4f}')\n", |
269 | 269 | "\n",
|
270 | 270 | "# Check the impact of the exogenous variable\n",
|
271 | 271 | "print(results.summary())"
|
|
289 | 289 | },
|
290 | 290 | {
|
291 | 291 | "cell_type": "code",
|
292 |
| - "execution_count": 60, |
| 292 | + "execution_count": 71, |
293 | 293 | "metadata": {},
|
294 | 294 | "outputs": [
|
295 | 295 | {
|
|
403 | 403 | },
|
404 | 404 | {
|
405 | 405 | "cell_type": "code",
|
406 |
| - "execution_count": 61, |
| 406 | + "execution_count": 78, |
407 | 407 | "metadata": {},
|
408 | 408 | "outputs": [
|
409 | 409 | {
|
|
420 | 420 | "name": "stdout",
|
421 | 421 | "output_type": "stream",
|
422 | 422 | "text": [
|
423 |
| - "Mean Squared Error: 72.54815308159101\n", |
424 |
| - "Mean Absolute Error: 5.992999880063084\n", |
425 |
| - "Root Mean Squared Error: 8.517520359916436\n" |
| 423 | + "Mean Squared Error: 72.5482\n", |
| 424 | + "Mean Absolute Error: 5.9930\n", |
| 425 | + "Root Mean Squared Error: 8.5175\n" |
426 | 426 | ]
|
427 | 427 | }
|
428 | 428 | ],
|
|
453 | 453 | "mse = mean_squared_error(test['AAPL'], forecasts)\n",
|
454 | 454 | "mae = mean_absolute_error(test['AAPL'], forecasts)\n",
|
455 | 455 | "rmse = np.sqrt(mse)\n",
|
456 |
| - "print(f'Mean Squared Error: {mse}')\n", |
457 |
| - "print(f'Mean Absolute Error: {mae}')\n", |
458 |
| - "print(f'Root Mean Squared Error: {rmse}')" |
| 456 | + "print(f'Mean Squared Error: {mse:.4f}')\n", |
| 457 | + "print(f'Mean Absolute Error: {mae:.4f}')\n", |
| 458 | + "print(f'Root Mean Squared Error: {rmse:.4f}')" |
459 | 459 | ]
|
460 | 460 | },
|
461 | 461 | {
|
|
0 commit comments