|
| 1 | +# Copyright (c) 2017: Miles Lubin and contributors |
| 2 | +# Copyright (c) 2017: Google Inc. |
| 3 | +# |
| 4 | +# Use of this source code is governed by an MIT-style license that can be found |
| 5 | +# in the LICENSE.md file or at https://opensource.org/licenses/MIT. |
| 6 | + |
| 7 | +""" |
| 8 | + HermitianToSymmetricPSDBridge{T,F,G} <: Bridges.Constraint.AbstractBridge |
| 9 | +
|
| 10 | +`HermitianToSymmetricPSDBridge` implements the following reformulation: |
| 11 | +
|
| 12 | + * Hermitian positive semidefinite `n x n` complex matrix to a symmetric |
| 13 | + positive semidefinite `2n x 2n` real matrix. |
| 14 | +
|
| 15 | +See also [`MOI.Bridges.Variable.HermitianToSymmetricPSDBridge`](@ref). |
| 16 | +
|
| 17 | +## Source node |
| 18 | +
|
| 19 | +`HermitianToSymmetricPSDBridge` supports: |
| 20 | +
|
| 21 | + * `G` in [`MOI.HermitianPositiveSemidefiniteConeTriangle`](@ref) |
| 22 | +
|
| 23 | +## Target node |
| 24 | +
|
| 25 | +`HermitianToSymmetricPSDBridge` creates: |
| 26 | +
|
| 27 | + * `F` in [`MOI.PositiveSemidefiniteConeTriangle`](@ref) |
| 28 | +
|
| 29 | +## Reformulation |
| 30 | +
|
| 31 | +The reformulation is best described by example. |
| 32 | +
|
| 33 | +The Hermitian matrix: |
| 34 | +```math |
| 35 | +\\begin{bmatrix} |
| 36 | + x_{11} & x_{12} + y_{12}im & x_{13} + y_{13}im\\\\ |
| 37 | + x_{12} - y_{12}im & x_{22} & x_{23} + y_{23}im\\\\ |
| 38 | + x_{13} - y_{13}im & x_{23} - y_{23}im & x_{33} |
| 39 | +\\end{bmatrix} |
| 40 | +``` |
| 41 | +is positive semidefinite if and only if the symmetric matrix: |
| 42 | +```math |
| 43 | +\\begin{bmatrix} |
| 44 | + x_{11} & x_{12} & x_{13} & 0 & y_{12} & y_{13} \\\\ |
| 45 | + & x_{22} & x_{23} & -y_{12} & 0 & y_{23} \\\\ |
| 46 | + & & x_{33} & -y_{13} & -y_{23} & 0 \\\\ |
| 47 | + & & & x_{11} & x_{12} & x_{13} \\\\ |
| 48 | + & & & & x_{22} & x_{23} \\\\ |
| 49 | + & & & & & x_{33} |
| 50 | +\\end{bmatrix} |
| 51 | +``` |
| 52 | +is positive semidefinite. |
| 53 | +
|
| 54 | +The bridge achieves this reformulation by constraining the above matrix to |
| 55 | +belong to the `MOI.PositiveSemidefiniteConeTriangle(6)`. |
| 56 | +""" |
| 57 | +struct HermitianToSymmetricPSDBridge{T,F,G} <: SetMapBridge{ |
| 58 | + T, |
| 59 | + MOI.PositiveSemidefiniteConeTriangle, |
| 60 | + MOI.HermitianPositiveSemidefiniteConeTriangle, |
| 61 | + F, |
| 62 | + G, |
| 63 | +} |
| 64 | + constraint::MOI.ConstraintIndex{F,MOI.PositiveSemidefiniteConeTriangle} |
| 65 | +end |
| 66 | + |
| 67 | +const HermitianToSymmetricPSD{T,OT<:MOI.ModelLike} = |
| 68 | + SingleBridgeOptimizer{HermitianToSymmetricPSDBridge{T},OT} |
| 69 | + |
| 70 | +function _promote_minus_vcat(::Type{T}, ::Type{G}) where {T,G} |
| 71 | + S = MOI.Utilities.scalar_type(G) |
| 72 | + M = MOI.Utilities.promote_operation(-, T, S) |
| 73 | + F = MOI.Utilities.promote_operation(vcat, T, S, M, T) |
| 74 | + return F |
| 75 | +end |
| 76 | + |
| 77 | +function concrete_bridge_type( |
| 78 | + ::Type{<:HermitianToSymmetricPSDBridge{T}}, |
| 79 | + G::Type{<:MOI.AbstractVectorFunction}, |
| 80 | + ::Type{MOI.HermitianPositiveSemidefiniteConeTriangle}, |
| 81 | +) where {T} |
| 82 | + F = _promote_minus_vcat(T, G) |
| 83 | + return HermitianToSymmetricPSDBridge{T,F,G} |
| 84 | +end |
| 85 | + |
| 86 | +function MOI.Bridges.map_set( |
| 87 | + ::Type{<:HermitianToSymmetricPSDBridge}, |
| 88 | + set::MOI.HermitianPositiveSemidefiniteConeTriangle, |
| 89 | +) |
| 90 | + return MOI.PositiveSemidefiniteConeTriangle(2set.side_dimension) |
| 91 | +end |
| 92 | + |
| 93 | +function MOI.Bridges.inverse_map_set( |
| 94 | + ::Type{<:HermitianToSymmetricPSDBridge}, |
| 95 | + set::MOI.PositiveSemidefiniteConeTriangle, |
| 96 | +) |
| 97 | + dim = set.side_dimension |
| 98 | + @assert iseven(dim) |
| 99 | + return MOI.HermitianPositiveSemidefiniteConeTriangle(div(dim, 2)) |
| 100 | +end |
| 101 | + |
| 102 | +function MOI.Bridges.map_function( |
| 103 | + ::Type{<:HermitianToSymmetricPSDBridge{T}}, |
| 104 | + func, |
| 105 | +) where {T} |
| 106 | + complex_scalars = MOI.Utilities.eachscalar(func) |
| 107 | + S = MOI.Utilities.scalar_type(_promote_minus_vcat(T, typeof(func))) |
| 108 | + complex_dim = length(complex_scalars) |
| 109 | + complex_set = MOI.Utilities.set_with_dimension( |
| 110 | + MOI.HermitianPositiveSemidefiniteConeTriangle, |
| 111 | + complex_dim, |
| 112 | + ) |
| 113 | + n = complex_set.side_dimension |
| 114 | + real_set = MOI.PositiveSemidefiniteConeTriangle(2n) |
| 115 | + real_dim = MOI.dimension(real_set) |
| 116 | + real_scalars = Vector{S}(undef, real_dim) |
| 117 | + complex_index = 0 |
| 118 | + half_real_set = MOI.PositiveSemidefiniteConeTriangle(n) |
| 119 | + half_real_dim = MOI.dimension(half_real_set) |
| 120 | + real_index_1 = 0 |
| 121 | + real_index_2 = half_real_dim + n |
| 122 | + for j in 1:n |
| 123 | + for i in 1:j |
| 124 | + complex_index += 1 |
| 125 | + real_index_1 += 1 |
| 126 | + real_scalars[real_index_1] = complex_scalars[complex_index] |
| 127 | + real_index_2 += 1 |
| 128 | + real_scalars[real_index_2] = complex_scalars[complex_index] |
| 129 | + if i == j |
| 130 | + real_index_2 += n |
| 131 | + end |
| 132 | + end |
| 133 | + end |
| 134 | + real_index_1 = half_real_dim |
| 135 | + real_index_2 = real_dim - n + 1 |
| 136 | + for j in 1:n |
| 137 | + for i in 1:(j-1) |
| 138 | + complex_index += 1 |
| 139 | + real_index_1 += 1 |
| 140 | + real_scalars[real_index_1] = complex_scalars[complex_index] |
| 141 | + real_index_2 -= 1 |
| 142 | + real_scalars[real_index_2] = |
| 143 | + MOI.Utilities.operate(-, T, complex_scalars[complex_index]) |
| 144 | + end |
| 145 | + real_scalars[real_index_1+1] = zero(S) |
| 146 | + real_index_1 += n + 1 |
| 147 | + real_index_2 -= 2 * (n - j) + 1 |
| 148 | + end |
| 149 | + @assert length(complex_scalars) == complex_index |
| 150 | + return MOI.Utilities.vectorize(real_scalars) |
| 151 | +end |
| 152 | + |
| 153 | +function MOI.Bridges.inverse_map_function( |
| 154 | + BT::Type{<:HermitianToSymmetricPSDBridge}, |
| 155 | + func, |
| 156 | +) |
| 157 | + real_scalars = MOI.Utilities.eachscalar(func) |
| 158 | + real_set = MOI.Utilities.set_with_dimension( |
| 159 | + MOI.PositiveSemidefiniteConeTriangle, |
| 160 | + length(real_scalars), |
| 161 | + ) |
| 162 | + @assert iseven(real_set.side_dimension) |
| 163 | + n = div(real_set.side_dimension, 2) |
| 164 | + complex_set = MOI.HermitianPositiveSemidefiniteConeTriangle(n) |
| 165 | + complex_scalars = |
| 166 | + Vector{eltype(real_scalars)}(undef, MOI.dimension(complex_set)) |
| 167 | + real_index = 0 |
| 168 | + complex_index = 0 |
| 169 | + for j in 1:n |
| 170 | + for i in 1:j |
| 171 | + complex_index += 1 |
| 172 | + real_index += 1 |
| 173 | + complex_scalars[complex_index] = real_scalars[real_index] |
| 174 | + end |
| 175 | + end |
| 176 | + for j in 1:n |
| 177 | + for i in 1:(j-1) |
| 178 | + complex_index += 1 |
| 179 | + real_index += 1 |
| 180 | + complex_scalars[complex_index] = real_scalars[real_index] |
| 181 | + end |
| 182 | + real_index += n + 1 |
| 183 | + end |
| 184 | + @assert length(complex_scalars) == complex_index |
| 185 | + return MOI.Utilities.vectorize(complex_scalars) |
| 186 | +end |
| 187 | + |
| 188 | +function MOI.Bridges.adjoint_map_function( |
| 189 | + BT::Type{<:HermitianToSymmetricPSDBridge}, |
| 190 | + func, |
| 191 | +) |
| 192 | + real_scalars = MOI.Utilities.eachscalar(func) |
| 193 | + real_dim = length(real_scalars) |
| 194 | + real_set = MOI.Utilities.set_with_dimension( |
| 195 | + MOI.PositiveSemidefiniteConeTriangle, |
| 196 | + real_dim, |
| 197 | + ) |
| 198 | + @assert iseven(real_set.side_dimension) |
| 199 | + n = div(real_set.side_dimension, 2) |
| 200 | + complex_set = MOI.HermitianPositiveSemidefiniteConeTriangle(n) |
| 201 | + complex_scalars = |
| 202 | + Vector{eltype(real_scalars)}(undef, MOI.dimension(complex_set)) |
| 203 | + complex_index = 0 |
| 204 | + half_real_set = MOI.PositiveSemidefiniteConeTriangle(n) |
| 205 | + half_real_dim = MOI.dimension(half_real_set) |
| 206 | + real_index_1 = 0 |
| 207 | + real_index_2 = half_real_dim + n |
| 208 | + for j in 1:n |
| 209 | + for i in 1:j |
| 210 | + complex_index += 1 |
| 211 | + real_index_1 += 1 |
| 212 | + real_index_2 += 1 |
| 213 | + complex_scalars[complex_index] = |
| 214 | + real_scalars[real_index_1] + real_scalars[real_index_2] |
| 215 | + if i == j |
| 216 | + real_index_2 += n |
| 217 | + end |
| 218 | + end |
| 219 | + end |
| 220 | + real_index_1 = half_real_dim |
| 221 | + real_index_2 = real_dim - n + 1 |
| 222 | + for j in 1:n |
| 223 | + for i in 1:(j-1) |
| 224 | + complex_index += 1 |
| 225 | + real_index_1 += 1 |
| 226 | + real_index_2 -= 1 |
| 227 | + complex_scalars[complex_index] = |
| 228 | + real_scalars[real_index_1] - real_scalars[real_index_2] |
| 229 | + end |
| 230 | + real_index_1 += n + 1 |
| 231 | + real_index_2 -= 2 * (n - j) + 1 |
| 232 | + end |
| 233 | + @assert length(complex_scalars) == complex_index |
| 234 | + return MOI.Utilities.vectorize(complex_scalars) |
| 235 | +end |
| 236 | + |
| 237 | +# FIXME |
| 238 | +# It's not so clear how to do this one since the adjoint is not invertible |
| 239 | +# and it's not obvious how to generate a PSD matrix in the preimage. |
| 240 | +# The following heuristic may not be the best: |
| 241 | +function MOI.Bridges.inverse_adjoint_map_function( |
| 242 | + BT::Type{<:HermitianToSymmetricPSDBridge{T}}, |
| 243 | + func, |
| 244 | +) where {T} |
| 245 | + complex_scalars = MOI.Utilities.eachscalar(func) |
| 246 | + S = MOI.Utilities.scalar_type(_promote_minus_vcat(T, typeof(func))) |
| 247 | + complex_dim = length(complex_scalars) |
| 248 | + complex_set = MOI.Utilities.set_with_dimension( |
| 249 | + MOI.HermitianPositiveSemidefiniteConeTriangle, |
| 250 | + complex_dim, |
| 251 | + ) |
| 252 | + n = complex_set.side_dimension |
| 253 | + real_set = MOI.PositiveSemidefiniteConeTriangle(2n) |
| 254 | + real_dim = MOI.dimension(real_set) |
| 255 | + real_scalars = Vector{S}(undef, real_dim) |
| 256 | + complex_index = 0 |
| 257 | + half_real_set = MOI.PositiveSemidefiniteConeTriangle(n) |
| 258 | + half_real_dim = MOI.dimension(half_real_set) |
| 259 | + real_index_1 = 0 |
| 260 | + real_index_2 = half_real_dim + n |
| 261 | + for j in 1:n |
| 262 | + for i in 1:j |
| 263 | + complex_index += 1 |
| 264 | + real_index_1 += 1 |
| 265 | + real_scalars[real_index_1] = complex_scalars[complex_index] / 2 |
| 266 | + real_index_2 += 1 |
| 267 | + real_scalars[real_index_2] = complex_scalars[complex_index] / 2 |
| 268 | + if i == j |
| 269 | + real_index_2 += n |
| 270 | + end |
| 271 | + end |
| 272 | + end |
| 273 | + real_index_1 = half_real_dim |
| 274 | + real_index_2 = real_dim - n + 1 |
| 275 | + for j in 1:n |
| 276 | + for i in 1:(j-1) |
| 277 | + complex_index += 1 |
| 278 | + real_index_1 += 1 |
| 279 | + real_scalars[real_index_1] = complex_scalars[complex_index] |
| 280 | + real_index_2 -= 1 |
| 281 | + real_scalars[real_index_2] = zero(S) |
| 282 | + end |
| 283 | + real_scalars[real_index_1+1] = zero(S) |
| 284 | + real_index_1 += n + 1 |
| 285 | + real_index_2 -= 2 * (n - j) + 1 |
| 286 | + end |
| 287 | + @assert length(complex_scalars) == complex_index |
| 288 | + return MOI.Utilities.vectorize(real_scalars) |
| 289 | +end |
0 commit comments