Skip to content

Commit 4a40380

Browse files
Added TRT config for inference (#1907)
### Description Added TRT config for MAISI and the extension of the inference script to handle extra config file. Note: autoencoder.decoder currently cannot be exported to TRT (crashes during engine generation). It does not seem to take a big part of the whole run anyway. --------- Signed-off-by: Boris Fomitchev <bfomitchev@nvidia.com> Co-authored-by: Yiheng Wang <68361391+yiheng-wang-nv@users.noreply.github.com>
1 parent f1de38f commit 4a40380

File tree

4 files changed

+61
-6
lines changed

4 files changed

+61
-6
lines changed

generation/maisi/README.md

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -172,6 +172,16 @@ python -m scripts.inference -c ./configs/config_maisi.json -i ./configs/config_i
172172

173173
Please refer to [maisi_inference_tutorial.ipynb](maisi_inference_tutorial.ipynb) for the tutorial for MAISI model inference.
174174

175+
176+
#### Accelerated Inference with TensorRT:
177+
To run the inference script with TensorRT acceleration, please run:
178+
```bash
179+
export MONAI_DATA_DIRECTORY=<dir_you_will_download_data>
180+
python -m scripts.inference -c ./configs/config_maisi.json -i ./configs/config_infer.json -e ./configs/environment.json -x ./configs/config_trt.json --random-seed 0
181+
```
182+
Extra config file, [./configs/config_trt.json](./configs/config_trt.json) is using `trt_compile()` utility from MONAI to convert select modules to TensorRT by overriding their definitions from [./configs/config_infer.json](./configs/config_infer.json).
183+
184+
175185
#### Quality Check:
176186
We have implemented a quality check function for the generated CT images. The main idea behind this function is to ensure that the Hounsfield units (HU) intensity for each organ in the CT images remains within a defined range. For each training image used in the Diffusion network, we computed the median value for a few major organs. Then we summarize the statistics of these median values and save it to [./configs/image_median_statistics.json](./configs/image_median_statistics.json). During inference, for each generated image, we compute the median HU values for the major organs and check whether they fall within the normal range.
177187

generation/maisi/configs/config_infer.json

Lines changed: 6 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -18,5 +18,10 @@
1818
2.0
1919
],
2020
"autoencoder_sliding_window_infer_size": [48,48,48],
21-
"autoencoder_sliding_window_infer_overlap": 0.25
21+
"autoencoder_sliding_window_infer_overlap": 0.25,
22+
"controlnet": "$@controlnet_def",
23+
"diffusion_unet": "$@diffusion_unet_def",
24+
"autoencoder": "$@autoencoder_def",
25+
"mask_generation_autoencoder": "$@mask_generation_autoencoder_def",
26+
"mask_generation_diffusion": "$@mask_generation_diffusion_def"
2227
}
Lines changed: 24 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,24 @@
1+
{
2+
"+imports": [
3+
"$from monai.networks import trt_compile"
4+
],
5+
"c_trt_args": {
6+
"export_args": {
7+
"dynamo": "$False",
8+
"report": "$True"
9+
},
10+
"output_lists": [
11+
[
12+
-1
13+
],
14+
[
15+
]
16+
]
17+
},
18+
"device": "cuda",
19+
"controlnet": "$trt_compile(@controlnet_def.to(@device), @trained_controlnet_path, @c_trt_args)",
20+
"diffusion_unet": "$trt_compile(@diffusion_unet_def.to(@device), @trained_diffusion_path)",
21+
"autoencoder": "$trt_compile(@autoencoder_def.to(@device), @trained_autoencoder_path, submodule='decoder')",
22+
"mask_generation_autoencoder": "$trt_compile(@mask_generation_autoencoder_def.to(@device), @trained_mask_generation_autoencoder_path, submodule='decoder')",
23+
"mask_generation_diffusion": "$trt_compile(@mask_generation_diffusion_def.to(@device), @trained_mask_generation_diffusion_path)"
24+
}

generation/maisi/scripts/inference.py

Lines changed: 21 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -48,6 +48,12 @@ def main():
4848
default="./configs/config_infer.json",
4949
help="config json file that stores inference hyper-parameters",
5050
)
51+
parser.add_argument(
52+
"-x",
53+
"--extra-config-file",
54+
default=None,
55+
help="config json file that stores inference extra parameters",
56+
)
5157
parser.add_argument(
5258
"-s",
5359
"--random-seed",
@@ -140,6 +146,16 @@ def main():
140146
setattr(args, k, v)
141147
print(f"{k}: {v}")
142148

149+
#
150+
# ## Read in optional extra configuration setting - typically acceleration options (TRT)
151+
#
152+
#
153+
if args.extra_config_file is not None:
154+
extra_config_dict = json.load(open(args.extra_config_file, "r"))
155+
for k, v in extra_config_dict.items():
156+
setattr(args, k, v)
157+
print(f"{k}: {v}")
158+
143159
check_input(
144160
args.body_region,
145161
args.anatomy_list,
@@ -158,25 +174,25 @@ def main():
158174

159175
device = torch.device("cuda")
160176

161-
autoencoder = define_instance(args, "autoencoder_def").to(device)
177+
autoencoder = define_instance(args, "autoencoder").to(device)
162178
checkpoint_autoencoder = torch.load(args.trained_autoencoder_path)
163179
autoencoder.load_state_dict(checkpoint_autoencoder)
164180

165-
diffusion_unet = define_instance(args, "diffusion_unet_def").to(device)
181+
diffusion_unet = define_instance(args, "diffusion_unet").to(device)
166182
checkpoint_diffusion_unet = torch.load(args.trained_diffusion_path)
167183
diffusion_unet.load_state_dict(checkpoint_diffusion_unet["unet_state_dict"], strict=True)
168184
scale_factor = checkpoint_diffusion_unet["scale_factor"].to(device)
169185

170-
controlnet = define_instance(args, "controlnet_def").to(device)
186+
controlnet = define_instance(args, "controlnet").to(device)
171187
checkpoint_controlnet = torch.load(args.trained_controlnet_path)
172188
monai.networks.utils.copy_model_state(controlnet, diffusion_unet.state_dict())
173189
controlnet.load_state_dict(checkpoint_controlnet["controlnet_state_dict"], strict=True)
174190

175-
mask_generation_autoencoder = define_instance(args, "mask_generation_autoencoder_def").to(device)
191+
mask_generation_autoencoder = define_instance(args, "mask_generation_autoencoder").to(device)
176192
checkpoint_mask_generation_autoencoder = torch.load(args.trained_mask_generation_autoencoder_path)
177193
mask_generation_autoencoder.load_state_dict(checkpoint_mask_generation_autoencoder)
178194

179-
mask_generation_diffusion_unet = define_instance(args, "mask_generation_diffusion_def").to(device)
195+
mask_generation_diffusion_unet = define_instance(args, "mask_generation_diffusion").to(device)
180196
checkpoint_mask_generation_diffusion_unet = torch.load(args.trained_mask_generation_diffusion_path)
181197
mask_generation_diffusion_unet.load_state_dict(checkpoint_mask_generation_diffusion_unet["unet_state_dict"])
182198
mask_generation_scale_factor = checkpoint_mask_generation_diffusion_unet["scale_factor"]

0 commit comments

Comments
 (0)