diff --git a/docs/tutorials/introductory/sample_plots.md b/docs/tutorials/introductory/sample_plots.md
index 436daf2..9e2e3cd 100644
--- a/docs/tutorials/introductory/sample_plots.md
+++ b/docs/tutorials/introductory/sample_plots.md
@@ -2,15 +2,12 @@
sidebarDepth: 3
sidebar: auto
---
+# 使用Matplotlib绘制简单图形
+在此会提供很多图例以及绘制他们的代码.
-# Sample plots in Matplotlib
+## 折线图(line plot)
-Here you'll find a host of example plots with the code that
-generated them.
-
-## Line Plot
-
-Here's how to create a line plot with text labels using
+创建带有文本标签的折线图
[``plot()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot).
@@ -18,28 +15,27 @@ Here's how to create a line plot with text labels using
- Simple Plot
+ 简单绘图
-## Multiple subplots in one figure
+## 一个图(figure)中含多个子图(subplots)
-Multiple axes (i.e. subplots) are created with the
-[``subplot()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplot.html#matplotlib.pyplot.subplot) function:
+多子图使用
+[``subplot()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplot.html#matplotlib.pyplot.subplot) 函数创建:
- Subplot
+ 子图
-## Images
+## 图像显示(image)
-Matplotlib can display images (assuming equally spaced
-horizontal dimensions) using the [``imshow()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.imshow.html#matplotlib.pyplot.imshow) function.
+可以使用 [``imshow()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.imshow.html#matplotlib.pyplot.imshow) 函数来显示图像.
@@ -47,15 +43,12 @@ horizontal dimensions) using the [``imshow()``](https://matplotlib.org/api/_as_g
-**Example of using [``imshow()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.imshow.html#matplotlib.pyplot.imshow) to display a CT scan**
+**上图为使用[``imshow()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.imshow.html#matplotlib.pyplot.imshow)展示的CT图**
-## Contouring and pseudocolor
+## 热力图(pcolormesh)与等高线(contour)
-The [``pcolormesh()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.pcolormesh.html#matplotlib.pyplot.pcolormesh) function can make a colored
-representation of a two-dimensional array, even if the horizontal dimensions
-are unevenly spaced. The
-[``contour()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.contour.html#matplotlib.pyplot.contour) function is another way to represent
-the same data:
+ 函数[``pcolormesh()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.pcolormesh.html#matplotlib.pyplot.pcolormesh) 可以使用色彩来描绘横坐标间隔一致或不一致的二维向量。
+ 函数[``contour()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.contour.html#matplotlib.pyplot.contour)与其类似:
@@ -63,164 +56,137 @@ the same data:
-**Example comparing [``pcolormesh()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.pcolormesh.html#matplotlib.pyplot.pcolormesh) and [``contour()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.contour.html#matplotlib.pyplot.contour) for plotting two-dimensional data**
+**[``pcolormesh()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.pcolormesh.html#matplotlib.pyplot.pcolormesh) 与[``contour()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.contour.html#matplotlib.pyplot.contour)的比较**
-## Histograms
+## 直方图(Histogram)
-The [``hist()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html#matplotlib.pyplot.hist) function automatically generates
-histograms and returns the bin counts or probabilities:
+函数 [``hist()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html#matplotlib.pyplot.hist) 自动生成直方图,并且返回每bin的数目或概率:
- Histogram Features
+ 直方图
-## Paths
+## 折线轨迹(Paths)
-You can add arbitrary paths in Matplotlib using the
-[``matplotlib.path``](https://matplotlib.org/api/path_api.html#module-matplotlib.path) module:
+matplotlib中用于折线处理的类主要是[``matplotlib.path``](https://matplotlib.org/api/path_api.html#module-matplotlib.path) ,几乎所有矢量绘图都在绘图管道(drawing pipeline)中使用了折线,虽然无法绘制path实例本身,但也可以使其可视化:
- Path Patch
+ 轨迹绘制
-## Three-dimensional plotting
+## 绘制三维图表
-The mplot3d toolkit (see [Getting started](https://matplotlib.org//toolkits/mplot3d.html#toolkit-mplot3d-tutorial) and
-[3D plotting](https://matplotlib.org/gallery/index.html#mplot3d-examples-index)) has support for simple 3d graphs
-including surface, wireframe, scatter, and bar charts.
+matpltlib三维工具箱(The mplot3d toolkit)能够支持简单的三维图表,其中包括曲面图,线框图,散点图与条形图。 (详见 [Getting started](https://matplotlib.org//toolkits/mplot3d.html#toolkit-mplot3d-tutorial) 与[3D plotting](https://matplotlib.org/gallery/index.html#mplot3d-examples-index))
- Surface3d
+ 3维曲面
-Thanks to John Porter, Jonathon Taylor, Reinier Heeres, and Ben Root for
-the ``mplot3d`` toolkit. This toolkit is included with all standard Matplotlib
-installs.
+感谢John Porter, Jonathon Taylor, Reinier Heeres, 与 Ben Root 对
+``mplot3d``所做出的贡献 . 该工具箱在所有完整版的matpltlib中均已包含,无需再次安装.
-## Streamplot
+## 流量图(Streamplot)
-The [``streamplot()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.streamplot.html#matplotlib.pyplot.streamplot) function plots the streamlines of
-a vector field. In addition to simply plotting the streamlines, it allows you
-to map the colors and/or line widths of streamlines to a separate parameter,
-such as the speed or local intensity of the vector field.
+函数[``streamplot()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.streamplot.html#matplotlib.pyplot.streamplot)绘制向量场的流量图. 除了简单的绘制流线外, 它还允许您将流线的颜色和(或)线宽映射到单独的参数,例如矢量场的速度或局部强度。
- Streamplot with various plotting options.
+ 流量图的各种类型.
-This feature complements the [``quiver()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.quiver.html#matplotlib.pyplot.quiver) function for
-plotting vector fields. Thanks to Tom Flannaghan and Tony Yu for adding the
-streamplot function.
+感谢Tom Flannaghan 与 Tony Yu 为[``quiver()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.quiver.html#matplotlib.pyplot.quiver) 提供了绘制向量场的功能.
-## Ellipses
+## 椭圆(Ellipses)
-In support of the [Phoenix](http://www.jpl.nasa.gov/news/phoenix/main.php)
-mission to Mars (which used Matplotlib to display ground tracking of
-spacecraft), Michael Droettboom built on work by Charlie Moad to provide
-an extremely accurate 8-spline approximation to elliptical arcs (see
-[``Arc``](https://matplotlib.org/api/_as_gen/matplotlib.patches.Arc.html#matplotlib.patches.Arc)), which are insensitive to zoom level.
+迈克尔·德罗特布姆(Michael Droettboom)以查理·莫阿德(Charlie Moad)的作品为基础,为椭圆弧提供了极其精确的八次贝塞尔样条近似(eight cubic Bezier splines)(详见[``Arc``](https://matplotlib.org/api/_as_gen/matplotlib.patches.Arc.html#matplotlib.patches.Arc)), 这种椭圆弧其对缩放级别不敏感.
- Ellipse Demo
+ 椭圆展示
-## Bar charts
+## 条形图(Bar charts)
-Use the [``bar()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.bar.html#matplotlib.pyplot.bar) function to make bar charts, which
-includes customizations such as error bars:
+使用 [``bar()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.bar.html#matplotlib.pyplot.bar) 函数来创建一个条形图, 其中包括自定义设置,例如错误栏:
- Barchart Demo
+ 条形图展示
-You can also create stacked bars
+你也可以创建多分类累计柱状图(stacked bars)
([bar_stacked.py](https://matplotlib.org/gallery/lines_bars_and_markers/bar_stacked.html)),
-or horizontal bar charts
+或是水平条状态(horizontal bar charts)
([barh.py](https://matplotlib.org/gallery/lines_bars_and_markers/barh.html)).
-## Pie charts
+## 饼图(Pie charts)
-The [``pie()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.pie.html#matplotlib.pyplot.pie) function allows you to create pie
-charts. Optional features include auto-labeling the percentage of area,
-exploding one or more wedges from the center of the pie, and a shadow effect.
-Take a close look at the attached code, which generates this figure in just
-a few lines of code.
+函数[``pie()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.pie.html#matplotlib.pyplot.pie) 可以创建一个饼图.可选功能包括自动标记面积百分比,从饼图中心爆炸一个或多个楔形以及阴影效果,只需几行代码即可生成此图形。
- Pie Features
+ 饼图展示
-## Tables
-
-The [``table()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.table.html#matplotlib.pyplot.table) function adds a text table
-to an axes.
+## 表格(Tables)
+函数[``table()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.table.html#matplotlib.pyplot.table) 添加表格到坐标轴上。
- Table Demo
+ 表格展示
-## Scatter plots
+## 散点图(Scatter plots)
-The [``scatter()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html#matplotlib.pyplot.scatter) function makes a scatter plot
-with (optional) size and color arguments. This example plots changes
-in Google's stock price, with marker sizes reflecting the
-trading volume and colors varying with time. Here, the
-alpha attribute is used to make semitransparent circle markers.
+函数 [``scatter()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html#matplotlib.pyplot.scatter)用于绘制可设置大小及颜色的散点图,本示例绘制了Google股票价格的变化图,散点大小反映了交易量,颜色随时间变化,函数中的alpha为透明度。
- Scatter Demo2
+ 散点图展示
-## GUI widgets
+## 图形界面控件(GUI widgets)
-Matplotlib has basic GUI widgets that are independent of the graphical
-user interface you are using, allowing you to write cross GUI figures
-and widgets. See [``matplotlib.widgets``](https://matplotlib.org/api/widgets_api.html#module-matplotlib.widgets) and the
+Matplotlib提供了一些基本的独立于用户所使用的交互界面的GUI控件, 供用户跨GUI绘图. 详见 [``matplotlib.widgets``](https://matplotlib.org/api/widgets_api.html#module-matplotlib.widgets) 与
[widget examples](https://matplotlib.org/gallery/index.html).
@@ -228,138 +194,123 @@ and widgets. See [``matplotlib.widgets``](https://matplotlib.org/api/widgets_api
- Slider and radio-button GUI.
+ 滑动条与播放旋钮.
-## Filled curves
+## 色彩填充(Filled curves)
-The [``fill()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.fill.html#matplotlib.pyplot.fill) function lets you
-plot filled curves and polygons:
+函数 [``fill()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.fill.html#matplotlib.pyplot.fill) 可以让你填充曲线与多边形:
- Fill
+ 填充
-Thanks to Andrew Straw for adding this function.
+感谢 Andrew Straw 添加了这个函数.
-## Date handling
+## 时间处理(Date handling)
-You can plot timeseries data with major and minor ticks and custom
-tick formatters for both.
+你可以绘制可设置主次刻度的时间序列。
- Date
+ 时间序列
-See [``matplotlib.ticker``](https://matplotlib.org/api/ticker_api.html#module-matplotlib.ticker) and [``matplotlib.dates``](https://matplotlib.org/api/dates_api.html#module-matplotlib.dates) for details and usage.
+详见 [``matplotlib.ticker``](https://matplotlib.org/api/ticker_api.html#module-matplotlib.ticker) and [``matplotlib.dates``](https://matplotlib.org/api/dates_api.html#module-matplotlib.dates).
-## Log plots
+## 对数图(Log plots)
-The [``semilogx()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.semilogx.html#matplotlib.pyplot.semilogx),
-[``semilogy()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.semilogy.html#matplotlib.pyplot.semilogy) and
-[``loglog()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.loglog.html#matplotlib.pyplot.loglog) functions simplify the creation of
-logarithmic plots.
+函数 [``semilogx()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.semilogx.html#matplotlib.pyplot.semilogx),
+[``semilogy()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.semilogy.html#matplotlib.pyplot.semilogy) 与
+[``loglog()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.loglog.html#matplotlib.pyplot.loglog) 简化了对数图的创建。
- Log Demo
+ 对数图展示
-Thanks to Andrew Straw, Darren Dale and Gregory Lielens for contributions
-log-scaling infrastructure.
+感谢 Andrew Straw, Darren Dale 与 Gregory Lielens 对log-scaling infrastructure的贡献.
-## Polar plots
+## 极坐标图(Polar plots)
-The [``polar()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.polar.html#matplotlib.pyplot.polar) function generates polar plots.
+函数 [``polar()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.polar.html#matplotlib.pyplot.polar) 可生成极坐标图.
- Polar Demo
+ 极坐标图展示
-## Legends
+## 图例(Legends)
-The [``legend()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.legend.html#matplotlib.pyplot.legend) function automatically
-generates figure legends, with MATLAB-compatible legend-placement
-functions.
+函数 [``legend()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.legend.html#matplotlib.pyplot.legend) 使用了MATLAB-compatible legend-placement自动生成图例
- Legend
+ 图例
-Thanks to Charles Twardy for input on the legend function.
+感谢 Charles Twardy 添加 legend 函数.
-## TeX-notation for text objects
+## 文本对象的TeX表示法(TeX-notation for text objects)
-Below is a sampling of the many TeX expressions now supported by Matplotlib's
-internal mathtext engine. The mathtext module provides TeX style mathematical
-expressions using [FreeType](https://www.freetype.org/)
-and the DejaVu, BaKoMa computer modern, or [STIX](http://www.stixfonts.org)
-fonts. See the [``matplotlib.mathtext``](https://matplotlib.org/api/mathtext_api.html#module-matplotlib.mathtext) module for additional details.
+下面是Matplotlib的mathtext引擎当前支持的TeX表达式的示例。它使用了[FreeType](https://www.freetype.org/)与DejaVu, BaKoMa computer modern, 以及 [STIX](http://www.stixfonts.org),详见 [``matplotlib.mathtext``](https://matplotlib.org/api/mathtext_api.html#module-matplotlib.mathtext).
- Mathtext Examples
+ Mathtext示例
-Matplotlib's mathtext infrastructure is an independent implementation and
-does not require TeX or any external packages installed on your computer. See
-the tutorial at [Writing mathematical expressions](https://matplotlib.org//text/mathtext.html).
+Matplotlib的mathtext架构的实现是独立的,不依赖于 TeX 以及其他需要安装到电脑的包. 教程详见 [Writing mathematical expressions](https://matplotlib.org//text/mathtext.html).
-## Native TeX rendering
+## 原生TeX渲染(Native TeX rendering)
-Although Matplotlib's internal math rendering engine is quite
-powerful, sometimes you need TeX. Matplotlib supports external TeX
-rendering of strings with the *usetex* option.
+尽管Matplotlib原生的渲染引擎已非常强大,但有时你还可能需要TeX. Matplotlib可通过 *usetex*选项支持第三方TeX字符渲染。
- Tex Demo
+ TeX 展示
-## EEG GUI
+## 脑电图图形界面(EEG GUI)
-You can embed Matplotlib into pygtk, wx, Tk, or Qt applications.
-Here is a screenshot of an EEG viewer called [pbrain](https://github.com/nipy/pbrain).
+你可以将Matplotlib的界面插入到pygtk, wx, Tk, Qt,PyQt中去.以下是EEG界面[pbrain](https://github.com/nipy/pbrain)的截图。

-The lower axes uses [``specgram()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.specgram.html#matplotlib.pyplot.specgram)
-to plot the spectrogram of one of the EEG channels.
+最下方的图像是使用 [``specgram()``](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.specgram.html#matplotlib.pyplot.specgram)
+绘制的脑电图的一个通道的频谱图。
-For examples of how to embed Matplotlib in different toolkits, see:
+以下是将Matplotlib插入到不同界面的方式:
- [Embedding in GTK3](https://matplotlib.org/gallery/user_interfaces/embedding_in_gtk3_sgskip.html)
- [Embedding in wx #2](https://matplotlib.org/gallery/user_interfaces/embedding_in_wx2_sgskip.html)
@@ -367,9 +318,9 @@ For examples of how to embed Matplotlib in different toolkits, see:
- [Embedding in Qt](https://matplotlib.org/gallery/user_interfaces/embedding_in_qt_sgskip.html)
- [Embedding in Tk](https://matplotlib.org/gallery/user_interfaces/embedding_in_tk_sgskip.html)
-## XKCD-style sketch plots
+## XKCD风格草图绘制(XKCD-style sketch plots)
-Just for fun, Matplotlib supports plotting in the style of ``xkcd``.
+Matplotlib 支持名为 ``xkcd``的风格,不过这图没啥用,只能用来玩玩
@@ -380,10 +331,9 @@ Just for fun, Matplotlib supports plotting in the style of ``xkcd``.
-## Subplot example
+## 子图实例(Subplot example)
-Many plot types can be combined in one figure to create
-powerful and flexible representations of data.
+可以将不同的图组合到一个图中,以创建功能强大且灵活的数据表示形式。
@@ -405,7 +355,7 @@ axs[1, 1].hist2d(data[0], data[1])
plt.show()
```
-## Download
+## 下载(Download)
- [Download Python source code: sample_plots.py](https://matplotlib.org/_downloads/6b0f2d1b3dc8d0e75eaa96feb738e947/sample_plots.py)
- [Download Jupyter notebook: sample_plots.ipynb](https://matplotlib.org/_downloads/dcfd63fc031d50e9c085f5dc4aa458b1/sample_plots.ipynb)