|
| 1 | +#include <stddef.h> |
| 2 | + |
| 3 | +typedef struct __tpool_future *tpool_future_t; |
| 4 | +typedef struct __threadpool *tpool_t; |
| 5 | + |
| 6 | +/** |
| 7 | + * Create a thread pool containing specified number of threads. |
| 8 | + * If successful, the thread pool is returned. Otherwise, it |
| 9 | + * returns NULL. |
| 10 | + */ |
| 11 | +tpool_t tpool_create(size_t count); |
| 12 | + |
| 13 | +/** |
| 14 | + * Schedules the specific function to be executed. |
| 15 | + * If successful, a future object representing the execution of |
| 16 | + * the task is returned. Otherwise, it returns NULL. |
| 17 | + */ |
| 18 | +tpool_future_t tpool_apply(tpool_t pool, void *(*func)(void *), void *arg); |
| 19 | + |
| 20 | +/** |
| 21 | + * Wait for all pending tasks to complete before destroying the thread pool. |
| 22 | + */ |
| 23 | +int tpool_join(tpool_t pool); |
| 24 | + |
| 25 | +/** |
| 26 | + * Return the result when it becomes available. |
| 27 | + * If @seconds is non-zero and the result does not arrive within specified time, |
| 28 | + * NULL is returned. Each tpool_future_get() resets the timeout status on |
| 29 | + * @future. |
| 30 | + */ |
| 31 | +void *tpool_future_get(tpool_future_t future, unsigned int seconds); |
| 32 | + |
| 33 | +/** |
| 34 | + * Destroy the future object and free resources once it is no longer used. |
| 35 | + * It is an error to refer to a destroyed future object. Note that destroying |
| 36 | + * a future object does not prevent a pending task from being executed. |
| 37 | + */ |
| 38 | +int tpool_future_destroy(tpool_future_t future); |
| 39 | + |
| 40 | +#include <errno.h> |
| 41 | +#include <pthread.h> |
| 42 | +#include <stdlib.h> |
| 43 | +#include <time.h> |
| 44 | + |
| 45 | +enum __future_flags { |
| 46 | + __FUTURE_RUNNING = 01, |
| 47 | + __FUTURE_FINISHED = 02, |
| 48 | + __FUTURE_TIMEOUT = 04, |
| 49 | + __FUTURE_CANCELLED = 010, |
| 50 | + __FUTURE_DESTROYED = 020, |
| 51 | +}; |
| 52 | + |
| 53 | +typedef struct __threadtask { |
| 54 | + void *(*func)(void *); |
| 55 | + void *arg; |
| 56 | + struct __tpool_future *future; |
| 57 | + struct __threadtask *next; |
| 58 | +} threadtask_t; |
| 59 | + |
| 60 | +typedef struct __jobqueue { |
| 61 | + threadtask_t *head, *tail; |
| 62 | + pthread_cond_t cond_nonempty; |
| 63 | + pthread_mutex_t rwlock; |
| 64 | +} jobqueue_t; |
| 65 | + |
| 66 | +struct __tpool_future { |
| 67 | + int flag; |
| 68 | + void *result; |
| 69 | + pthread_mutex_t mutex; |
| 70 | + pthread_cond_t cond_finished; |
| 71 | +}; |
| 72 | + |
| 73 | +struct __threadpool { |
| 74 | + size_t count; |
| 75 | + pthread_t *workers; |
| 76 | + jobqueue_t *jobqueue; |
| 77 | +}; |
| 78 | + |
| 79 | +static struct __tpool_future *tpool_future_create(void) |
| 80 | +{ |
| 81 | + struct __tpool_future *future = malloc(sizeof(struct __tpool_future)); |
| 82 | + if (future) { |
| 83 | + future->flag = 0; |
| 84 | + future->result = NULL; |
| 85 | + pthread_mutex_init(&future->mutex, NULL); |
| 86 | + pthread_condattr_t attr; |
| 87 | + pthread_condattr_init(&attr); |
| 88 | + pthread_cond_init(&future->cond_finished, &attr); |
| 89 | + pthread_condattr_destroy(&attr); |
| 90 | + } |
| 91 | + return future; |
| 92 | +} |
| 93 | + |
| 94 | +int tpool_future_destroy(struct __tpool_future *future) |
| 95 | +{ |
| 96 | + if (future) { |
| 97 | + pthread_mutex_lock(&future->mutex); |
| 98 | + if (future->flag & __FUTURE_FINISHED || |
| 99 | + future->flag & __FUTURE_CANCELLED) { |
| 100 | + pthread_mutex_unlock(&future->mutex); |
| 101 | + pthread_mutex_destroy(&future->mutex); |
| 102 | + pthread_cond_destroy(&future->cond_finished); |
| 103 | + free(future); |
| 104 | + } else { |
| 105 | + future->flag |= __FUTURE_DESTROYED; |
| 106 | + pthread_mutex_unlock(&future->mutex); |
| 107 | + } |
| 108 | + } |
| 109 | + return 0; |
| 110 | +} |
| 111 | + |
| 112 | +void *tpool_future_get(struct __tpool_future *future, unsigned int seconds) |
| 113 | +{ |
| 114 | + pthread_mutex_lock(&future->mutex); |
| 115 | + /* turn off the timeout bit set previously */ |
| 116 | + future->flag &= ~__FUTURE_TIMEOUT; |
| 117 | + while ((future->flag & __FUTURE_FINISHED) == 0) { |
| 118 | + if (seconds) { |
| 119 | + struct timespec expire_time; |
| 120 | + clock_gettime(CLOCK_MONOTONIC, &expire_time); |
| 121 | + expire_time.tv_sec += seconds; |
| 122 | + int status = pthread_cond_timedwait(&future->cond_finished, |
| 123 | + &future->mutex, &expire_time); |
| 124 | + if (status == ETIMEDOUT) { |
| 125 | + future->flag |= __FUTURE_TIMEOUT; |
| 126 | + pthread_mutex_unlock(&future->mutex); |
| 127 | + return NULL; |
| 128 | + } |
| 129 | + } else |
| 130 | + pthread_cond_wait(&future->cond_finished, &future->mutex); |
| 131 | + } |
| 132 | + |
| 133 | + pthread_mutex_unlock(&future->mutex); |
| 134 | + return future->result; |
| 135 | +} |
| 136 | + |
| 137 | +static jobqueue_t *jobqueue_create(void) |
| 138 | +{ |
| 139 | + jobqueue_t *jobqueue = malloc(sizeof(jobqueue_t)); |
| 140 | + if (jobqueue) { |
| 141 | + jobqueue->head = jobqueue->tail = NULL; |
| 142 | + pthread_cond_init(&jobqueue->cond_nonempty, NULL); |
| 143 | + pthread_mutex_init(&jobqueue->rwlock, NULL); |
| 144 | + } |
| 145 | + return jobqueue; |
| 146 | +} |
| 147 | + |
| 148 | +static void jobqueue_destroy(jobqueue_t *jobqueue) |
| 149 | +{ |
| 150 | + threadtask_t *tmp = jobqueue->head; |
| 151 | + while (tmp) { |
| 152 | + jobqueue->head = jobqueue->head->next; |
| 153 | + pthread_mutex_lock(&tmp->future->mutex); |
| 154 | + if (tmp->future->flag & __FUTURE_DESTROYED) { |
| 155 | + pthread_mutex_unlock(&tmp->future->mutex); |
| 156 | + pthread_mutex_destroy(&tmp->future->mutex); |
| 157 | + pthread_cond_destroy(&tmp->future->cond_finished); |
| 158 | + free(tmp->future); |
| 159 | + } else { |
| 160 | + tmp->future->flag |= __FUTURE_CANCELLED; |
| 161 | + pthread_mutex_unlock(&tmp->future->mutex); |
| 162 | + } |
| 163 | + free(tmp); |
| 164 | + tmp = jobqueue->head; |
| 165 | + } |
| 166 | + |
| 167 | + pthread_mutex_destroy(&jobqueue->rwlock); |
| 168 | + pthread_cond_destroy(&jobqueue->cond_nonempty); |
| 169 | + free(jobqueue); |
| 170 | +} |
| 171 | + |
| 172 | +static void __jobqueue_fetch_cleanup(void *arg) |
| 173 | +{ |
| 174 | + pthread_mutex_t *mutex = (pthread_mutex_t *) arg; |
| 175 | + pthread_mutex_unlock(mutex); |
| 176 | +} |
| 177 | + |
| 178 | +static void *jobqueue_fetch(void *queue) |
| 179 | +{ |
| 180 | + jobqueue_t *jobqueue = (jobqueue_t *) queue; |
| 181 | + threadtask_t *task; |
| 182 | + int old_state; |
| 183 | + |
| 184 | + pthread_cleanup_push(__jobqueue_fetch_cleanup, (void *) &jobqueue->rwlock); |
| 185 | + |
| 186 | + while (1) { |
| 187 | + pthread_mutex_lock(&jobqueue->rwlock); |
| 188 | + pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); |
| 189 | + pthread_testcancel(); |
| 190 | + |
| 191 | + while (!jobqueue->tail) |
| 192 | + pthread_cond_wait(&jobqueue->cond_nonempty, &jobqueue->rwlock); |
| 193 | + pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &old_state); |
| 194 | + if (jobqueue->head == jobqueue->tail) { |
| 195 | + task = jobqueue->tail; |
| 196 | + jobqueue->head = jobqueue->tail = NULL; |
| 197 | + } else { |
| 198 | + threadtask_t *tmp; |
| 199 | + for (tmp = jobqueue->head; tmp->next != jobqueue->tail; |
| 200 | + tmp = tmp->next) |
| 201 | + ; |
| 202 | + task = tmp->next; |
| 203 | + tmp->next = NULL; |
| 204 | + jobqueue->tail = tmp; |
| 205 | + } |
| 206 | + pthread_mutex_unlock(&jobqueue->rwlock); |
| 207 | + |
| 208 | + if (task->func) { |
| 209 | + pthread_mutex_lock(&task->future->mutex); |
| 210 | + if (task->future->flag & __FUTURE_CANCELLED) { |
| 211 | + pthread_mutex_unlock(&task->future->mutex); |
| 212 | + free(task); |
| 213 | + continue; |
| 214 | + } else { |
| 215 | + task->future->flag |= __FUTURE_RUNNING; |
| 216 | + pthread_mutex_unlock(&task->future->mutex); |
| 217 | + } |
| 218 | + |
| 219 | + void *ret_value = task->func(task->arg); |
| 220 | + pthread_mutex_lock(&task->future->mutex); |
| 221 | + if (task->future->flag & __FUTURE_DESTROYED) { |
| 222 | + pthread_mutex_unlock(&task->future->mutex); |
| 223 | + pthread_mutex_destroy(&task->future->mutex); |
| 224 | + pthread_cond_destroy(&task->future->cond_finished); |
| 225 | + free(task->future); |
| 226 | + } else { |
| 227 | + task->future->flag |= __FUTURE_FINISHED; |
| 228 | + task->future->result = ret_value; |
| 229 | + pthread_cond_broadcast(&task->future->cond_finished); |
| 230 | + pthread_mutex_unlock(&task->future->mutex); |
| 231 | + } |
| 232 | + free(task); |
| 233 | + } else { |
| 234 | + pthread_mutex_destroy(&task->future->mutex); |
| 235 | + pthread_cond_destroy(&task->future->cond_finished); |
| 236 | + free(task->future); |
| 237 | + free(task); |
| 238 | + break; |
| 239 | + } |
| 240 | + } |
| 241 | + |
| 242 | + pthread_cleanup_pop(0); |
| 243 | + pthread_exit(NULL); |
| 244 | +} |
| 245 | + |
| 246 | +struct __threadpool *tpool_create(size_t count) |
| 247 | +{ |
| 248 | + jobqueue_t *jobqueue = jobqueue_create(); |
| 249 | + struct __threadpool *pool = malloc(sizeof(struct __threadpool)); |
| 250 | + if (!jobqueue || !pool) { |
| 251 | + if (jobqueue) |
| 252 | + jobqueue_destroy(jobqueue); |
| 253 | + free(pool); |
| 254 | + return NULL; |
| 255 | + } |
| 256 | + |
| 257 | + pool->count = count, pool->jobqueue = jobqueue; |
| 258 | + if ((pool->workers = malloc(count * sizeof(pthread_t)))) { |
| 259 | + for (int i = 0; i < count; i++) { |
| 260 | + if (pthread_create(&pool->workers[i], NULL, jobqueue_fetch, |
| 261 | + (void *) jobqueue)) { |
| 262 | + for (int j = 0; j < i; j++) |
| 263 | + pthread_cancel(pool->workers[j]); |
| 264 | + for (int j = 0; j < i; j++) |
| 265 | + pthread_join(pool->workers[j], NULL); |
| 266 | + free(pool->workers); |
| 267 | + jobqueue_destroy(jobqueue); |
| 268 | + free(pool); |
| 269 | + return NULL; |
| 270 | + } |
| 271 | + } |
| 272 | + return pool; |
| 273 | + } |
| 274 | + |
| 275 | + jobqueue_destroy(jobqueue); |
| 276 | + free(pool); |
| 277 | + return NULL; |
| 278 | +} |
| 279 | + |
| 280 | +struct __tpool_future *tpool_apply(struct __threadpool *pool, |
| 281 | + void *(*func)(void *), |
| 282 | + void *arg) |
| 283 | +{ |
| 284 | + jobqueue_t *jobqueue = pool->jobqueue; |
| 285 | + threadtask_t *new_head = malloc(sizeof(threadtask_t)); |
| 286 | + struct __tpool_future *future = tpool_future_create(); |
| 287 | + if (new_head && future) { |
| 288 | + new_head->func = func, new_head->arg = arg, new_head->future = future; |
| 289 | + pthread_mutex_lock(&jobqueue->rwlock); |
| 290 | + if (jobqueue->head) { |
| 291 | + new_head->next = jobqueue->head; |
| 292 | + jobqueue->head = new_head; |
| 293 | + } else { |
| 294 | + jobqueue->head = jobqueue->tail = new_head; |
| 295 | + pthread_cond_broadcast(&jobqueue->cond_nonempty); |
| 296 | + } |
| 297 | + pthread_mutex_unlock(&jobqueue->rwlock); |
| 298 | + } else if (new_head) { |
| 299 | + free(new_head); |
| 300 | + return NULL; |
| 301 | + } else if (future) { |
| 302 | + tpool_future_destroy(future); |
| 303 | + return NULL; |
| 304 | + } |
| 305 | + return future; |
| 306 | +} |
| 307 | + |
| 308 | +int tpool_join(struct __threadpool *pool) |
| 309 | +{ |
| 310 | + size_t num_threads = pool->count; |
| 311 | + for (int i = 0; i < num_threads; i++) |
| 312 | + tpool_apply(pool, NULL, NULL); |
| 313 | + for (int i = 0; i < num_threads; i++) |
| 314 | + pthread_join(pool->workers[i], NULL); |
| 315 | + free(pool->workers); |
| 316 | + jobqueue_destroy(pool->jobqueue); |
| 317 | + free(pool); |
| 318 | + return 0; |
| 319 | +} |
| 320 | + |
| 321 | +#include <math.h> |
| 322 | +#include <stdio.h> |
| 323 | + |
| 324 | +#define PRECISION 100 /* upper bound in BPP sum */ |
| 325 | + |
| 326 | +/* Use Bailey–Borwein–Plouffe formula to approximate PI */ |
| 327 | +static void *bpp(void *arg) |
| 328 | +{ |
| 329 | + int k = *(int *) arg; |
| 330 | + double sum = (4.0 / (8 * k + 1)) - (2.0 / (8 * k + 4)) - |
| 331 | + (1.0 / (8 * k + 5)) - (1.0 / (8 * k + 6)); |
| 332 | + double *product = malloc(sizeof(double)); |
| 333 | + if (product) |
| 334 | + *product = 1 / pow(16, k) * sum; |
| 335 | + return (void *) product; |
| 336 | +} |
| 337 | + |
| 338 | +int main() |
| 339 | +{ |
| 340 | + int bpp_args[PRECISION + 1]; |
| 341 | + double bpp_sum = 0; |
| 342 | + tpool_t pool = tpool_create(4); |
| 343 | + tpool_future_t futures[PRECISION + 1]; |
| 344 | + |
| 345 | + for (int i = 0; i <= PRECISION; i++) { |
| 346 | + bpp_args[i] = i; |
| 347 | + futures[i] = tpool_apply(pool, bpp, (void *) &bpp_args[i]); |
| 348 | + } |
| 349 | + |
| 350 | + for (int i = 0; i <= PRECISION; i++) { |
| 351 | + double *result = tpool_future_get(futures[i], 0 /* blocking wait */); |
| 352 | + bpp_sum += *result; |
| 353 | + tpool_future_destroy(futures[i]); |
| 354 | + free(result); |
| 355 | + } |
| 356 | + |
| 357 | + tpool_join(pool); |
| 358 | + printf("PI calculated with %d terms: %.15f\n", PRECISION + 1, bpp_sum); |
| 359 | + return 0; |
| 360 | +} |
0 commit comments