diff --git a/notebooks/2_read_write.ipynb b/notebooks/2_read_write.ipynb
new file mode 100644
index 0000000..e21c689
--- /dev/null
+++ b/notebooks/2_read_write.ipynb
@@ -0,0 +1,912 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "
\n",
+ " \n",
+ "This tutorial uses the titanic data set, stored as CSV. The data consists of the following data columns:\n",
+ "\n",
+ "- PassengerId: Id of every passenger.\n",
+ "- Survived: This feature have value 0 and 1. 0 for not survived and 1 for survived.\n",
+ "- Pclass: There are 3 classes: Class 1, Class 2 and Class 3.\n",
+ "- Name: Name of passenger.\n",
+ "- Sex: Gender of passenger.\n",
+ "- Age: Age of passenger.\n",
+ "- SibSp: Indication that passenger have siblings and spouse.\n",
+ "- Parch: Whether a passenger is alone or have family.\n",
+ "- Ticket: Ticket number of passenger.\n",
+ "- Fare: Indicating the fare.\n",
+ "- Cabin: The cabin of passenger.\n",
+ "- Embarked: The embarked category.\n",
+ "\n",
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# How do I read and write tabular data? "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "> I want to start analyzing the titanic passenger data, available as a CSV file."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "titanic = pd.read_csv(\"../data/titanic.csv\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Pandas provides the `read_csv` function to read data stored as a csv file into a pandas `DataFrame`. Pandas supports many different file formats or data sources out of the box (csv, excel, sql, json, parquet, ...), each of them with the prefix `read_*`. \n",
+ "\n",
+ "Make sure to always have a first check on the data after reading in the data. When displaying a `DataFrame`, the first and last 5 rows will be shown by default:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " PassengerId | \n",
+ " Survived | \n",
+ " Pclass | \n",
+ " Name | \n",
+ " Sex | \n",
+ " Age | \n",
+ " SibSp | \n",
+ " Parch | \n",
+ " Ticket | \n",
+ " Fare | \n",
+ " Cabin | \n",
+ " Embarked | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " Braund, Mr. Owen Harris | \n",
+ " male | \n",
+ " 22.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " A/5 21171 | \n",
+ " 7.2500 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " Cumings, Mrs. John Bradley (Florence Briggs Th... | \n",
+ " female | \n",
+ " 38.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " PC 17599 | \n",
+ " 71.2833 | \n",
+ " C85 | \n",
+ " C | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " Heikkinen, Miss. Laina | \n",
+ " female | \n",
+ " 26.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " STON/O2. 3101282 | \n",
+ " 7.9250 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " Futrelle, Mrs. Jacques Heath (Lily May Peel) | \n",
+ " female | \n",
+ " 35.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 113803 | \n",
+ " 53.1000 | \n",
+ " C123 | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " Allen, Mr. William Henry | \n",
+ " male | \n",
+ " 35.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 373450 | \n",
+ " 8.0500 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 886 | \n",
+ " 887 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " Montvila, Rev. Juozas | \n",
+ " male | \n",
+ " 27.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 211536 | \n",
+ " 13.0000 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " 887 | \n",
+ " 888 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " Graham, Miss. Margaret Edith | \n",
+ " female | \n",
+ " 19.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 112053 | \n",
+ " 30.0000 | \n",
+ " B42 | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " 888 | \n",
+ " 889 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " Johnston, Miss. Catherine Helen \"Carrie\" | \n",
+ " female | \n",
+ " NaN | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " W./C. 6607 | \n",
+ " 23.4500 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " 889 | \n",
+ " 890 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " Behr, Mr. Karl Howell | \n",
+ " male | \n",
+ " 26.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 111369 | \n",
+ " 30.0000 | \n",
+ " C148 | \n",
+ " C | \n",
+ "
\n",
+ " \n",
+ " 890 | \n",
+ " 891 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " Dooley, Mr. Patrick | \n",
+ " male | \n",
+ " 32.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 370376 | \n",
+ " 7.7500 | \n",
+ " NaN | \n",
+ " Q | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
891 rows × 12 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " PassengerId Survived Pclass \\\n",
+ "0 1 0 3 \n",
+ "1 2 1 1 \n",
+ "2 3 1 3 \n",
+ "3 4 1 1 \n",
+ "4 5 0 3 \n",
+ ".. ... ... ... \n",
+ "886 887 0 2 \n",
+ "887 888 1 1 \n",
+ "888 889 0 3 \n",
+ "889 890 1 1 \n",
+ "890 891 0 3 \n",
+ "\n",
+ " Name Sex Age SibSp \\\n",
+ "0 Braund, Mr. Owen Harris male 22.0 1 \n",
+ "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
+ "2 Heikkinen, Miss. Laina female 26.0 0 \n",
+ "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
+ "4 Allen, Mr. William Henry male 35.0 0 \n",
+ ".. ... ... ... ... \n",
+ "886 Montvila, Rev. Juozas male 27.0 0 \n",
+ "887 Graham, Miss. Margaret Edith female 19.0 0 \n",
+ "888 Johnston, Miss. Catherine Helen \"Carrie\" female NaN 1 \n",
+ "889 Behr, Mr. Karl Howell male 26.0 0 \n",
+ "890 Dooley, Mr. Patrick male 32.0 0 \n",
+ "\n",
+ " Parch Ticket Fare Cabin Embarked \n",
+ "0 0 A/5 21171 7.2500 NaN S \n",
+ "1 0 PC 17599 71.2833 C85 C \n",
+ "2 0 STON/O2. 3101282 7.9250 NaN S \n",
+ "3 0 113803 53.1000 C123 S \n",
+ "4 0 373450 8.0500 NaN S \n",
+ ".. ... ... ... ... ... \n",
+ "886 0 211536 13.0000 NaN S \n",
+ "887 0 112053 30.0000 B42 S \n",
+ "888 2 W./C. 6607 23.4500 NaN S \n",
+ "889 0 111369 30.0000 C148 C \n",
+ "890 0 370376 7.7500 NaN Q \n",
+ "\n",
+ "[891 rows x 12 columns]"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "titanic"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "> I want to see the first 8 rows of a pandas DataFrame."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " PassengerId | \n",
+ " Survived | \n",
+ " Pclass | \n",
+ " Name | \n",
+ " Sex | \n",
+ " Age | \n",
+ " SibSp | \n",
+ " Parch | \n",
+ " Ticket | \n",
+ " Fare | \n",
+ " Cabin | \n",
+ " Embarked | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " Braund, Mr. Owen Harris | \n",
+ " male | \n",
+ " 22.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " A/5 21171 | \n",
+ " 7.2500 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " Cumings, Mrs. John Bradley (Florence Briggs Th... | \n",
+ " female | \n",
+ " 38.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " PC 17599 | \n",
+ " 71.2833 | \n",
+ " C85 | \n",
+ " C | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " Heikkinen, Miss. Laina | \n",
+ " female | \n",
+ " 26.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " STON/O2. 3101282 | \n",
+ " 7.9250 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " Futrelle, Mrs. Jacques Heath (Lily May Peel) | \n",
+ " female | \n",
+ " 35.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 113803 | \n",
+ " 53.1000 | \n",
+ " C123 | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " Allen, Mr. William Henry | \n",
+ " male | \n",
+ " 35.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 373450 | \n",
+ " 8.0500 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 6 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " Moran, Mr. James | \n",
+ " male | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 330877 | \n",
+ " 8.4583 | \n",
+ " NaN | \n",
+ " Q | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 7 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " McCarthy, Mr. Timothy J | \n",
+ " male | \n",
+ " 54.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 17463 | \n",
+ " 51.8625 | \n",
+ " E46 | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 8 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " Palsson, Master. Gosta Leonard | \n",
+ " male | \n",
+ " 2.0 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 349909 | \n",
+ " 21.0750 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " PassengerId Survived Pclass \\\n",
+ "0 1 0 3 \n",
+ "1 2 1 1 \n",
+ "2 3 1 3 \n",
+ "3 4 1 1 \n",
+ "4 5 0 3 \n",
+ "5 6 0 3 \n",
+ "6 7 0 1 \n",
+ "7 8 0 3 \n",
+ "\n",
+ " Name Sex Age SibSp \\\n",
+ "0 Braund, Mr. Owen Harris male 22.0 1 \n",
+ "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
+ "2 Heikkinen, Miss. Laina female 26.0 0 \n",
+ "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
+ "4 Allen, Mr. William Henry male 35.0 0 \n",
+ "5 Moran, Mr. James male NaN 0 \n",
+ "6 McCarthy, Mr. Timothy J male 54.0 0 \n",
+ "7 Palsson, Master. Gosta Leonard male 2.0 3 \n",
+ "\n",
+ " Parch Ticket Fare Cabin Embarked \n",
+ "0 0 A/5 21171 7.2500 NaN S \n",
+ "1 0 PC 17599 71.2833 C85 C \n",
+ "2 0 STON/O2. 3101282 7.9250 NaN S \n",
+ "3 0 113803 53.1000 C123 S \n",
+ "4 0 373450 8.0500 NaN S \n",
+ "5 0 330877 8.4583 NaN Q \n",
+ "6 0 17463 51.8625 E46 S \n",
+ "7 1 349909 21.0750 NaN S "
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "titanic.head(8)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "To see the first N rows of a `DataFrame`, use the `head` method with the required number of rows (in this case 8) as argument. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ " \n",
+ "__Note__: Interested in the last N rows instead? Pandas also provides a `tail` method. For example, `titanic.tail(10)` will return the last 10 rows of the DataFrame.\n",
+ "\n",
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "A check on how Pandas interpreted each of the column data types can be done by requesting the Pandas `dtypes` attribute:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "PassengerId int64\n",
+ "Survived int64\n",
+ "Pclass int64\n",
+ "Name object\n",
+ "Sex object\n",
+ "Age float64\n",
+ "SibSp int64\n",
+ "Parch int64\n",
+ "Ticket object\n",
+ "Fare float64\n",
+ "Cabin object\n",
+ "Embarked object\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "titanic.dtypes"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "For each of the columns, the used data type is enlisted. The data types in this `DataFrame` are integers (`int64`), floats (`float63`) and strings (`object`)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ " \n",
+ "__Note__: When asking for the `dtypes`, no brackets are used! `dtypes` is an attribute of a `DataFrame` and `Series`. Attributes of `DataFrame` or `Series` do not need brackets. Attributes represent a characteristic of a `DataFrame`/`Series`, whereas a method (which requires brackets) _do_ something with the `DataFrame`/`Series` as introduced in the [first tutorial](./1_table_oriented.ipynb).\n",
+ "\n",
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "> My colleague requested the titanic data as a spreadsheet."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "titanic.to_excel('titanic.xlsx', sheet_name='passengers', index=False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Whereas `read_*` fucntions are used to read data to Pandas, the `to_*` methods are used to store data. The `to_excel` method stores the data as an excel file. In the example here, the `sheet_name` is named _passengers_ instead of the default _Sheet1_. By setting `index=False` the row index labels are not saved in the spreadsheet."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The equivalent read function `read_excel` would reload the data to a DataFrame:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "titanic = pd.read_excel('titanic.xlsx', sheet_name='passengers')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " PassengerId | \n",
+ " Survived | \n",
+ " Pclass | \n",
+ " Name | \n",
+ " Sex | \n",
+ " Age | \n",
+ " SibSp | \n",
+ " Parch | \n",
+ " Ticket | \n",
+ " Fare | \n",
+ " Cabin | \n",
+ " Embarked | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " Braund, Mr. Owen Harris | \n",
+ " male | \n",
+ " 22.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " A/5 21171 | \n",
+ " 7.2500 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " Cumings, Mrs. John Bradley (Florence Briggs Th... | \n",
+ " female | \n",
+ " 38.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " PC 17599 | \n",
+ " 71.2833 | \n",
+ " C85 | \n",
+ " C | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " Heikkinen, Miss. Laina | \n",
+ " female | \n",
+ " 26.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " STON/O2. 3101282 | \n",
+ " 7.9250 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " Futrelle, Mrs. Jacques Heath (Lily May Peel) | \n",
+ " female | \n",
+ " 35.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 113803 | \n",
+ " 53.1000 | \n",
+ " C123 | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " Allen, Mr. William Henry | \n",
+ " male | \n",
+ " 35.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 373450 | \n",
+ " 8.0500 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " PassengerId Survived Pclass \\\n",
+ "0 1 0 3 \n",
+ "1 2 1 1 \n",
+ "2 3 1 3 \n",
+ "3 4 1 1 \n",
+ "4 5 0 3 \n",
+ "\n",
+ " Name Sex Age SibSp \\\n",
+ "0 Braund, Mr. Owen Harris male 22.0 1 \n",
+ "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
+ "2 Heikkinen, Miss. Laina female 26.0 0 \n",
+ "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
+ "4 Allen, Mr. William Henry male 35.0 0 \n",
+ "\n",
+ " Parch Ticket Fare Cabin Embarked \n",
+ "0 0 A/5 21171 7.2500 NaN S \n",
+ "1 0 PC 17599 71.2833 C85 C \n",
+ "2 0 STON/O2. 3101282 7.9250 NaN S \n",
+ "3 0 113803 53.1000 C123 S \n",
+ "4 0 373450 8.0500 NaN S "
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "titanic.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "> I'm interested in a technical summary of a `DataFrame`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 891 entries, 0 to 890\n",
+ "Data columns (total 12 columns):\n",
+ "PassengerId 891 non-null int64\n",
+ "Survived 891 non-null int64\n",
+ "Pclass 891 non-null int64\n",
+ "Name 891 non-null object\n",
+ "Sex 891 non-null object\n",
+ "Age 714 non-null float64\n",
+ "SibSp 891 non-null int64\n",
+ "Parch 891 non-null int64\n",
+ "Ticket 891 non-null object\n",
+ "Fare 891 non-null float64\n",
+ "Cabin 204 non-null object\n",
+ "Embarked 889 non-null object\n",
+ "dtypes: float64(2), int64(5), object(5)\n",
+ "memory usage: 83.7+ KB\n"
+ ]
+ }
+ ],
+ "source": [
+ "titanic.info()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The command provides a lot of technical information about the `DataFrame`, so let's explain the output in more detail:\n",
+ "\n",
+ "- It is indeed a `DataFrame`.\n",
+ "- There are 891 entries, i.e. 891 rows.\n",
+ "- Each row has a row label (aka the `index`) with values ranging from 0 to 890.\n",
+ "- The table has 12 columns. Most columns have a value for each of the rows (all 891 values are `non-null`). Some columns do have missing values and less than 891 `non-null` values. \n",
+ "- The columns `Name`, `Sex`, `Cabin` and `Embarked` consists of textual data (strings, aka `object`). The other columns are numerical data with some of them whole numbers (aka `integer`) and others are real numbers (aka `float`).\n",
+ "- The kind of data (characters, integers,...) in the different columns are summarized by listing the `dtypes`.\n",
+ "- The approximate amount of RAM used to hold the DataFrame is provided as well."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## REMEMBER\n",
+ "\n",
+ "- Getting data in to Pandas from many different file formats or data sources is supported by `read_*` functions.\n",
+ "- Exporting data out of Pandas is provided by different `to_*`methods.\n",
+ "- The `head`/`tail`/`info` methods and the `dtypes` attribute are convenient for a first check."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "__To user guide:__ For a complete overview of the input and output possibilites from and to Pandas, see :ref:`io`"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}