diff --git a/lib/node_modules/@stdlib/ndarray/README.md b/lib/node_modules/@stdlib/ndarray/README.md
index dfe3c7bf3606..475a44c64e62 100644
--- a/lib/node_modules/@stdlib/ndarray/README.md
+++ b/lib/node_modules/@stdlib/ndarray/README.md
@@ -83,7 +83,7 @@ In addition, the namespace contains the following multidimensional array utility
- [`emptyLike( x[, options] )`][@stdlib/ndarray/empty-like]: create an uninitialized ndarray having the same shape and data type as a provided ndarray.
- [`empty( shape[, options] )`][@stdlib/ndarray/empty]: create an uninitialized ndarray having a specified shape and data type.
- [`FancyArray( dtype, buffer, shape, strides, offset, order[, options] )`][@stdlib/ndarray/fancy]: fancy multidimensional array constructor.
-- [`fillBy( x, fcn[, thisArg] )`][@stdlib/ndarray/fill-by]: fill an input `ndarray` according to a callback function.
+- [`fillBy( x, fcn[, thisArg] )`][@stdlib/ndarray/fill-by]: fill an input ndarray according to a callback function.
- [`fill( x, value )`][@stdlib/ndarray/fill]: fill an input `ndarray` with a specified value.
- [`filterMap( x[, options], fcn[, thisArg] )`][@stdlib/ndarray/filter-map]: filter and map elements in an input ndarray to elements in a new output ndarray according to a callback function.
- [`filter( x[, options], predicate[, thisArg] )`][@stdlib/ndarray/filter]: return a shallow copy of an ndarray containing only those elements which pass a test implemented by a predicate function.
diff --git a/lib/node_modules/@stdlib/stats/base/README.md b/lib/node_modules/@stdlib/stats/base/README.md
index 39799da50934..f27a7dd8ef1a 100644
--- a/lib/node_modules/@stdlib/stats/base/README.md
+++ b/lib/node_modules/@stdlib/stats/base/README.md
@@ -70,7 +70,7 @@ The namespace contains the following statistical functions:
- [`dnanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskmax]: calculate the maximum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.
- [`dnanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskmin]: calculate the minimum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.
- [`dnanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskrange]: calculate the range of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.
-- [`dnanstdev( N, correction, x, stride )`][@stdlib/stats/base/dnanstdev]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values.
+- [`dnanstdev( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdev]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values.
- [`dsem( N, correction, x, strideX )`][@stdlib/stats/base/dsem]: calculate the standard error of the mean of a double-precision floating-point strided array.
- [`dsempn( N, correction, x, strideX )`][@stdlib/stats/base/dsempn]: calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm.
- [`dstdev( N, correction, x, strideX )`][@stdlib/stats/base/dstdev]: calculate the standard deviation of a double-precision floating-point strided array.
@@ -103,7 +103,7 @@ The namespace contains the following statistical functions:
- [`nanmeanpn( N, x, stride )`][@stdlib/stats/base/nanmeanpn]: calculate the arithmetic mean of a strided array, ignoring `NaN` values and using a two-pass error correction algorithm.
- [`nanmeanwd( N, x, stride )`][@stdlib/stats/base/nanmeanwd]: calculate the arithmetic mean of a strided array, ignoring `NaN` values and using Welford's algorithm.
- [`nanminBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/nanmin-by]: calculate the minimum value of a strided array via a callback function, ignoring `NaN` values.
-- [`nanmin( N, x, stride )`][@stdlib/stats/base/nanmin]: calculate the minimum value of a strided array, ignoring `NaN` values.
+- [`nanmin( N, x, strideX )`][@stdlib/stats/base/nanmin]: calculate the minimum value of a strided array, ignoring `NaN` values.
- [`nanminabs( N, x, stride )`][@stdlib/stats/base/nanminabs]: calculate the minimum absolute value of a strided array, ignoring `NaN` values.
- [`nanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/nanmskmax]: calculate the maximum value of a strided array according to a mask, ignoring `NaN` values.
- [`nanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/nanmskmin]: calculate the minimum value of a strided array according to a mask, ignoring `NaN` values.