From 946900d5c1f584b649157ac833ba19fac45bfc3d Mon Sep 17 00:00:00 2001
From: Planeshifter <1913638+Planeshifter@users.noreply.github.com>
Date: Sat, 15 Feb 2025 02:35:52 +0000
Subject: [PATCH] docs: update namespace table of contents
Signed-off-by: stdlib-bot <82920195+stdlib-bot@users.noreply.github.com>
---
lib/node_modules/@stdlib/stats/base/README.md | 6 +++---
1 file changed, 3 insertions(+), 3 deletions(-)
diff --git a/lib/node_modules/@stdlib/stats/base/README.md b/lib/node_modules/@stdlib/stats/base/README.md
index 84a9af577adc..35f84e79ff21 100644
--- a/lib/node_modules/@stdlib/stats/base/README.md
+++ b/lib/node_modules/@stdlib/stats/base/README.md
@@ -69,7 +69,7 @@ The namespace contains the following statistical functions:
- [`dmeankbn( N, x, strideX )`][@stdlib/stats/base/dmeankbn]: calculate the arithmetic mean of a double-precision floating-point strided array using an improved Kahan–Babuška algorithm.
- [`dmeankbn2( N, x, strideX )`][@stdlib/stats/base/dmeankbn2]: calculate the arithmetic mean of a double-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.
- [`dmeanli( N, x, strideX )`][@stdlib/stats/base/dmeanli]: calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.
-- [`dmeanlipw( N, x, stride )`][@stdlib/stats/base/dmeanlipw]: calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.
+- [`dmeanlipw( N, x, strideX )`][@stdlib/stats/base/dmeanlipw]: calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.
- [`dmeanors( N, x, strideX )`][@stdlib/stats/base/dmeanors]: calculate the arithmetic mean of a double-precision floating-point strided array using ordinary recursive summation.
- [`dmeanpn( N, x, stride )`][@stdlib/stats/base/dmeanpn]: calculate the arithmetic mean of a double-precision floating-point strided array using a two-pass error correction algorithm.
- [`dmeanpw( N, x, strideX )`][@stdlib/stats/base/dmeanpw]: calculate the arithmetic mean of a double-precision floating-point strided array using pairwise summation.
@@ -90,7 +90,7 @@ The namespace contains the following statistical functions:
- [`dnanmaxabs( N, x, strideX )`][@stdlib/stats/base/dnanmaxabs]: calculate the maximum absolute value of a double-precision floating-point strided array, ignoring `NaN` values.
- [`dnanmean( N, x, stride )`][@stdlib/stats/base/dnanmean]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values.
- [`dnanmeanors( N, x, strideX )`][@stdlib/stats/base/dnanmeanors]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation.
-- [`dnanmeanpn( N, x, stride )`][@stdlib/stats/base/dnanmeanpn]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using a two-pass error correction algorithm.
+- [`dnanmeanpn( N, x, strideX )`][@stdlib/stats/base/dnanmeanpn]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using a two-pass error correction algorithm.
- [`dnanmeanpw( N, x, strideX )`][@stdlib/stats/base/dnanmeanpw]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using pairwise summation.
- [`dnanmeanwd( N, x, strideX )`][@stdlib/stats/base/dnanmeanwd]: calculate the arithmetic mean of a double-precision floating-point strided array, using Welford's algorithm and ignoring `NaN` values.
- [`dnanmin( N, x, strideX )`][@stdlib/stats/base/dnanmin]: calculate the minimum value of a double-precision floating-point strided array, ignoring `NaN` values.
@@ -124,7 +124,7 @@ The namespace contains the following statistical functions:
- [`dsmeanpw( N, x, strideX )`][@stdlib/stats/base/dsmeanpw]: calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation with extended accumulation and returning an extended precision result.
- [`dsmeanwd( N, x, strideX )`][@stdlib/stats/base/dsmeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and returning an extended precision result.
- [`dsnanmean( N, x, stride )`][@stdlib/stats/base/dsnanmean]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using extended accumulation, and returning an extended precision result.
-- [`dsnanmeanors( N, x, stride )`][@stdlib/stats/base/dsnanmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.
+- [`dsnanmeanors( N, x, strideX )`][@stdlib/stats/base/dsnanmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.
- [`dsnanmeanpn( N, x, strideX )`][@stdlib/stats/base/dsnanmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using a two-pass error correction algorithm with extended accumulation, and returning an extended precision result.
- [`dsnanmeanwd( N, x, strideX )`][@stdlib/stats/base/dsnanmeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using Welford's algorithm with extended accumulation, and returning an extended precision result.
- [`dstdev( N, correction, x, stride )`][@stdlib/stats/base/dstdev]: calculate the standard deviation of a double-precision floating-point strided array.