Skip to content

Commit a7bdc00

Browse files
Planeshifterstdlib-bot
authored andcommitted
docs: update namespace table of contents
Signed-off-by: stdlib-bot <82920195+stdlib-bot@users.noreply.github.com>
1 parent 337adbf commit a7bdc00

File tree

1 file changed

+1
-1
lines changed
  • lib/node_modules/@stdlib/math/base/special

1 file changed

+1
-1
lines changed

lib/node_modules/@stdlib/math/base/special/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -257,7 +257,7 @@ var fcns = special;
257257
- <span class="signature">[`csch( x )`][@stdlib/math/base/special/csch]</span><span class="delimiter">: </span><span class="description">compute the hyperbolic cosecant of a number.</span>
258258
- <span class="signature">[`deg2rad( x )`][@stdlib/math/base/special/deg2rad]</span><span class="delimiter">: </span><span class="description">convert an angle from degrees to radians.</span>
259259
- <span class="signature">[`deg2radf( x )`][@stdlib/math/base/special/deg2radf]</span><span class="delimiter">: </span><span class="description">convert an angle from degrees to radians (single-precision).</span>
260-
- <span class="signature">[`digamma( x )`][@stdlib/math/base/special/digamma]</span><span class="delimiter">: </span><span class="description">digamma function.</span>
260+
- <span class="signature">[`digamma()`][@stdlib/math/base/special/digamma]</span><span class="delimiter">: </span><span class="description">digamma function.</span>
261261
- <span class="signature">[`diracDelta( x )`][@stdlib/math/base/special/dirac-delta]</span><span class="delimiter">: </span><span class="description">evaluate the Dirac delta function.</span>
262262
- <span class="signature">[`eta( s )`][@stdlib/math/base/special/dirichlet-eta]</span><span class="delimiter">: </span><span class="description">dirichlet eta function.</span>
263263
- <span class="signature">[`ellipe( m )`][@stdlib/math/base/special/ellipe]</span><span class="delimiter">: </span><span class="description">compute the complete elliptic integral of the second kind.</span>

0 commit comments

Comments
 (0)