You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/stats/base/README.md
+3-3Lines changed: 3 additions & 3 deletions
Original file line number
Diff line number
Diff line change
@@ -69,7 +69,7 @@ The namespace contains the following statistical functions:
69
69
- <spanclass="signature">[`dmeankbn( N, x, strideX )`][@stdlib/stats/base/dmeankbn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using an improved Kahan–Babuška algorithm.</span>
70
70
- <spanclass="signature">[`dmeankbn2( N, x, strideX )`][@stdlib/stats/base/dmeankbn2]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.</span>
71
71
- <spanclass="signature">[`dmeanli( N, x, strideX )`][@stdlib/stats/base/dmeanli]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
72
-
- <spanclass="signature">[`dmeanlipw( N, x, stride )`][@stdlib/stats/base/dmeanlipw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.</span>
72
+
- <spanclass="signature">[`dmeanlipw( N, x, strideX )`][@stdlib/stats/base/dmeanlipw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.</span>
73
73
- <spanclass="signature">[`dmeanors( N, x, strideX )`][@stdlib/stats/base/dmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using ordinary recursive summation.</span>
74
74
- <spanclass="signature">[`dmeanpn( N, x, stride )`][@stdlib/stats/base/dmeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using a two-pass error correction algorithm.</span>
75
75
- <spanclass="signature">[`dmeanpw( N, x, strideX )`][@stdlib/stats/base/dmeanpw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using pairwise summation.</span>
@@ -90,7 +90,7 @@ The namespace contains the following statistical functions:
90
90
- <spanclass="signature">[`dnanmaxabs( N, x, strideX )`][@stdlib/stats/base/dnanmaxabs]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum absolute value of a double-precision floating-point strided array, ignoring `NaN` values.</span>
91
91
- <spanclass="signature">[`dnanmean( N, x, stride )`][@stdlib/stats/base/dnanmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values.</span>
92
92
- <spanclass="signature">[`dnanmeanors( N, x, strideX )`][@stdlib/stats/base/dnanmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation.</span>
93
-
- <spanclass="signature">[`dnanmeanpn( N, x, stride )`][@stdlib/stats/base/dnanmeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using a two-pass error correction algorithm.</span>
93
+
- <spanclass="signature">[`dnanmeanpn( N, x, strideX )`][@stdlib/stats/base/dnanmeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using a two-pass error correction algorithm.</span>
94
94
- <spanclass="signature">[`dnanmeanpw( N, x, strideX )`][@stdlib/stats/base/dnanmeanpw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using pairwise summation.</span>
95
95
- <spanclass="signature">[`dnanmeanwd( N, x, strideX )`][@stdlib/stats/base/dnanmeanwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array, using Welford's algorithm and ignoring `NaN` values.</span>
96
96
- <spanclass="signature">[`dnanmin( N, x, strideX )`][@stdlib/stats/base/dnanmin]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum value of a double-precision floating-point strided array, ignoring `NaN` values.</span>
@@ -124,7 +124,7 @@ The namespace contains the following statistical functions:
124
124
- <spanclass="signature">[`dsmeanpw( N, x, strideX )`][@stdlib/stats/base/dsmeanpw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation with extended accumulation and returning an extended precision result.</span>
125
125
- <spanclass="signature">[`dsmeanwd( N, x, strideX )`][@stdlib/stats/base/dsmeanwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and returning an extended precision result.</span>
126
126
- <spanclass="signature">[`dsnanmean( N, x, stride )`][@stdlib/stats/base/dsnanmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using extended accumulation, and returning an extended precision result.</span>
127
-
- <spanclass="signature">[`dsnanmeanors( N, x, stride )`][@stdlib/stats/base/dsnanmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.</span>
127
+
- <spanclass="signature">[`dsnanmeanors( N, x, strideX )`][@stdlib/stats/base/dsnanmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.</span>
128
128
- <spanclass="signature">[`dsnanmeanpn( N, x, strideX )`][@stdlib/stats/base/dsnanmeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using a two-pass error correction algorithm with extended accumulation, and returning an extended precision result.</span>
129
129
- <spanclass="signature">[`dsnanmeanwd( N, x, strideX )`][@stdlib/stats/base/dsnanmeanwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using Welford's algorithm with extended accumulation, and returning an extended precision result.</span>
130
130
- <spanclass="signature">[`dstdev( N, correction, x, stride )`][@stdlib/stats/base/dstdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array.</span>
0 commit comments