Skip to content

Commit 0bacbc2

Browse files
feat: add C ndarray interface and refactor implementation
--- type: pre_commit_static_analysis_report description: Results of running static analysis checks when committing changes. report: - task: lint_filenames status: passed - task: lint_editorconfig status: passed - task: lint_markdown status: passed - task: lint_package_json status: na - task: lint_repl_help status: passed - task: lint_javascript_src status: passed - task: lint_javascript_cli status: na - task: lint_javascript_examples status: passed - task: lint_javascript_tests status: passed - task: lint_javascript_benchmarks status: passed - task: lint_python status: na - task: lint_r status: na - task: lint_c_src status: passed - task: lint_c_examples status: passed - task: lint_c_benchmarks status: passed - task: lint_c_tests_fixtures status: na - task: lint_shell status: na - task: lint_typescript_declarations status: passed - task: lint_typescript_tests status: na - task: lint_license_headers status: passed --- --- type: pre_push_report description: Results of running various checks prior to pushing changes. report: - task: run_javascript_examples status: na - task: run_c_examples status: na - task: run_cpp_examples status: na - task: run_javascript_readme_examples status: na - task: run_c_benchmarks status: na - task: run_cpp_benchmarks status: na - task: run_fortran_benchmarks status: na - task: run_javascript_benchmarks status: na - task: run_julia_benchmarks status: na - task: run_python_benchmarks status: na - task: run_r_benchmarks status: na - task: run_javascript_tests status: na ---
1 parent 60983a6 commit 0bacbc2

23 files changed

+437
-295
lines changed

lib/node_modules/@stdlib/stats/base/dnanvarianceyc/README.md

Lines changed: 139 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -98,7 +98,7 @@ The use of the term `n-1` is commonly referred to as Bessel's correction. Note,
9898
var dnanvarianceyc = require( '@stdlib/stats/base/dnanvarianceyc' );
9999
```
100100

101-
#### dnanvarianceyc( N, correction, x, stride )
101+
#### dnanvarianceyc( N, correction, x, strideX )
102102

103103
Computes the [variance][variance] of a double-precision floating-point strided array `x` ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
104104

@@ -116,18 +116,16 @@ The function has the following parameters:
116116
- **N**: number of indexed elements.
117117
- **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `n-c` where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
118118
- **x**: input [`Float64Array`][@stdlib/array/float64].
119-
- **stride**: index increment for `x`.
119+
- **strideX**: stride length for `x`.
120120

121-
The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`,
121+
The `N` and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`,
122122

123123
```javascript
124124
var Float64Array = require( '@stdlib/array/float64' );
125-
var floor = require( '@stdlib/math/base/special/floor' );
126125

127126
var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ] );
128-
var N = floor( x.length / 2 );
129127

130-
var v = dnanvarianceyc( N, 1, x, 2 );
128+
var v = dnanvarianceyc( 4, 1, x, 2 );
131129
// returns 6.25
132130
```
133131

@@ -137,44 +135,39 @@ Note that indexing is relative to the first index. To introduce an offset, use [
137135

138136
```javascript
139137
var Float64Array = require( '@stdlib/array/float64' );
140-
var floor = require( '@stdlib/math/base/special/floor' );
141138

142139
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
143140
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
144141

145-
var N = floor( x0.length / 2 );
146-
147-
var v = dnanvarianceyc( N, 1, x1, 2 );
142+
var v = dnanvarianceyc( 4, 1, x1, 2 );
148143
// returns 6.25
149144
```
150145

151-
#### dnanvarianceyc.ndarray( N, correction, x, stride, offset )
146+
#### dnanvarianceyc.ndarray( N, correction, x, strideX, offsetX )
152147

153148
Computes the [variance][variance] of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer and alternative indexing semantics.
154149

155150
```javascript
156151
var Float64Array = require( '@stdlib/array/float64' );
157152

158-
var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
153+
var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
159154

160155
var v = dnanvarianceyc.ndarray( x.length, 1, x, 1, 0 );
161156
// returns ~4.33333
162157
```
163158

164159
The function has the following additional parameters:
165160

166-
- **offset**: starting index for `x`.
161+
- **offsetX**: starting index for `x`.
167162

168-
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other value in `x` starting from the second value
163+
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other element in `x` starting from the second element
169164

170165
```javascript
171166
var Float64Array = require( '@stdlib/array/float64' );
172-
var floor = require( '@stdlib/math/base/special/floor' );
173167

174168
var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
175-
var N = floor( x.length / 2 );
176169

177-
var v = dnanvarianceyc.ndarray( N, 1, x, 2, 1 );
170+
var v = dnanvarianceyc.ndarray( 4, 1, x, 2, 1 );
178171
// returns 6.25
179172
```
180173

@@ -200,19 +193,19 @@ var v = dnanvarianceyc.ndarray( N, 1, x, 2, 1 );
200193
<!-- eslint no-undef: "error" -->
201194

202195
```javascript
203-
var randu = require( '@stdlib/random/base/randu' );
204-
var round = require( '@stdlib/math/base/special/round' );
205-
var Float64Array = require( '@stdlib/array/float64' );
196+
var uniform = require( '@stdlib/random/base/uniform' );
197+
var filledarrayBy = require( '@stdlib/array/filled-by' );
198+
var bernoulli = require( '@stdlib/random/base/bernoulli' );
206199
var dnanvarianceyc = require( '@stdlib/stats/base/dnanvarianceyc' );
207200

208-
var x;
209-
var i;
210-
211-
x = new Float64Array( 10 );
212-
for ( i = 0; i < x.length; i++ ) {
213-
x[ i ] = round( (randu()*100.0) - 50.0 );
201+
function rand() {
202+
if ( bernoulli( 0.8 ) < 1 ) {
203+
return NaN;
204+
}
205+
return uniform( -50.0, 50.0 );
214206
}
215-
console.log( x );
207+
208+
var x = filledarrayBy( 10, 'float64', rand );
216209

217210
var v = dnanvarianceyc( x.length, 1, x, 1 );
218211
console.log( v );
@@ -222,6 +215,125 @@ console.log( v );
222215

223216
<!-- /.examples -->
224217

218+
<!-- C interface documentation. -->
219+
220+
* * *
221+
222+
<section class="c">
223+
224+
## C APIs
225+
226+
<!-- Section to include introductory text. Make sure to keep an empty line after the intro `section` element and another before the `/section` close. -->
227+
228+
<section class="intro">
229+
230+
</section>
231+
232+
<!-- /.intro -->
233+
234+
<!-- C usage documentation. -->
235+
236+
<section class="usage">
237+
238+
### Usage
239+
240+
```c
241+
#include "stdlib/stats/base/dnanvarianceyc.h"
242+
```
243+
244+
#### stdlib_strided_dnanvarianceyc( N, correction, \*X, strideX )
245+
246+
Computes the [variance][variance] of a double-precision floating-point strided array `x` ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
247+
248+
```c
249+
const double x[] = { 1.0, -2.0, 0.0/0.0, 2.0 };
250+
251+
double v = stdlib_strided_dnanvarianceyc( 4, 1.0, x, 1 );
252+
// returns ~4.3333
253+
```
254+
255+
The function accepts the following arguments:
256+
257+
- **N**: `[in] CBLAS_INT` number of indexed elements.
258+
- **correction**: `[in] double` degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `n-c` where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
259+
- **X**: `[in] double*` input array.
260+
- **strideX**: `[in] CBLAS_INT` stride length for `X`.
261+
262+
```c
263+
double stdlib_strided_dnanvarianceyc( const CBLAS_INT N, const double correction, const double *X, const CBLAS_INT strideX );
264+
```
265+
266+
#### stdlib_strided_dnanvarianceyc_ndarray( N, correction, \*X, strideX, offsetX )
267+
268+
Computes the [variance][variance] of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer and alternative indexing semantics.
269+
270+
```c
271+
const double x[] = { 1.0, -2.0, 0.0/0.0, 2.0 };
272+
273+
double v = stdlib_strided_dnanvarianceyc_ndarray( 4, 1.0, x, 1, 0 );
274+
// returns ~4.3333
275+
```
276+
277+
The function accepts the following arguments:
278+
279+
- **N**: `[in] CBLAS_INT` number of indexed elements.
280+
- **correction**: `[in] double` degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `n-c` where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
281+
- **X**: `[in] double*` input array.
282+
- **strideX**: `[in] CBLAS_INT` stride length for `X`.
283+
- **offsetX**: `[in] CBLAS_INT` starting index for `X`.
284+
285+
```c
286+
double stdlib_strided_dnanvarianceyc_ndarray( const CBLAS_INT N, const double correction, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );
287+
```
288+
289+
</section>
290+
291+
<!-- /.usage -->
292+
293+
<!-- C API usage notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->
294+
295+
<section class="notes">
296+
297+
</section>
298+
299+
<!-- /.notes -->
300+
301+
<!-- C API usage examples. -->
302+
303+
<section class="examples">
304+
305+
### Examples
306+
307+
```c
308+
#include "stdlib/stats/base/dnanvarianceyc.h"
309+
#include <stdio.h>
310+
311+
int main( void ) {
312+
// Create a strided array:
313+
const double x[] = { 1.0, 2.0, 0.0/0.0, 3.0, 0.0/0.0, 4.0, 5.0, 6.0, 0.0/0.0, 7.0, 8.0, 0.0/0.0 };
314+
315+
// Specify the number of elements:
316+
const int N = 6;
317+
318+
// Specify the stride length:
319+
const int strideX = 2;
320+
321+
// Compute the variance:
322+
double v = stdlib_strided_dnanvarianceyc( N, 1, x, strideX );
323+
324+
// Print the result:
325+
printf( "sample variance: %lf\n", v );
326+
}
327+
```
328+
329+
</section>
330+
331+
<!-- /.examples -->
332+
333+
</section>
334+
335+
<!-- /.c -->
336+
225337
* * *
226338
227339
<section class="references">

lib/node_modules/@stdlib/stats/base/dnanvarianceyc/benchmark/benchmark.js

Lines changed: 17 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -21,16 +21,30 @@
2121
// MODULES //
2222

2323
var bench = require( '@stdlib/bench' );
24-
var randu = require( '@stdlib/random/base/randu' );
24+
var uniform = require( '@stdlib/random/base/uniform' );
25+
var bernoulli = require( '@stdlib/random/base/bernoulli' );
26+
var filledarrayBy = require( '@stdlib/array/filled-by' );
2527
var isnan = require( '@stdlib/math/base/assert/is-nan' );
2628
var pow = require( '@stdlib/math/base/special/pow' );
27-
var Float64Array = require( '@stdlib/array/float64' );
2829
var pkg = require( './../package.json' ).name;
2930
var dnanvarianceyc = require( './../lib/dnanvarianceyc.js' );
3031

3132

3233
// FUNCTIONS //
3334

35+
/**
36+
* Returns a random value or `NaN`.
37+
*
38+
* @private
39+
* @returns {number} random number or `NaN`
40+
*/
41+
function rand() {
42+
if ( bernoulli( 0.8 ) < 1 ) {
43+
return NaN;
44+
}
45+
return uniform( -10.0, 10.0 );
46+
}
47+
3448
/**
3549
* Creates a benchmark function.
3650
*
@@ -39,17 +53,7 @@ var dnanvarianceyc = require( './../lib/dnanvarianceyc.js' );
3953
* @returns {Function} benchmark function
4054
*/
4155
function createBenchmark( len ) {
42-
var x;
43-
var i;
44-
45-
x = new Float64Array( len );
46-
for ( i = 0; i < x.length; i++ ) {
47-
if ( randu() < 0.2 ) {
48-
x[ i ] = NaN;
49-
} else {
50-
x[ i ] = ( randu()*20.0 ) - 10.0;
51-
}
52-
}
56+
var x = filledarrayBy( len, 'float64', rand );
5357
return benchmark;
5458

5559
function benchmark( b ) {

lib/node_modules/@stdlib/stats/base/dnanvarianceyc/benchmark/benchmark.native.js

Lines changed: 17 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -22,10 +22,11 @@
2222

2323
var resolve = require( 'path' ).resolve;
2424
var bench = require( '@stdlib/bench' );
25-
var randu = require( '@stdlib/random/base/randu' );
25+
var uniform = require( '@stdlib/random/base/uniform' );
26+
var bernoulli = require( '@stdlib/random/base/bernoulli' );
27+
var filledarrayBy = require( '@stdlib/array/filled-by' );
2628
var isnan = require( '@stdlib/math/base/assert/is-nan' );
2729
var pow = require( '@stdlib/math/base/special/pow' );
28-
var Float64Array = require( '@stdlib/array/float64' );
2930
var tryRequire = require( '@stdlib/utils/try-require' );
3031
var pkg = require( './../package.json' ).name;
3132

@@ -40,6 +41,19 @@ var opts = {
4041

4142
// FUNCTIONS //
4243

44+
/**
45+
* Returns a random value or `NaN`.
46+
*
47+
* @private
48+
* @returns {number} random number or `NaN`
49+
*/
50+
function rand() {
51+
if ( bernoulli( 0.8 ) < 1 ) {
52+
return NaN;
53+
}
54+
return uniform( -10.0, 10.0 );
55+
}
56+
4357
/**
4458
* Creates a benchmark function.
4559
*
@@ -48,17 +62,7 @@ var opts = {
4862
* @returns {Function} benchmark function
4963
*/
5064
function createBenchmark( len ) {
51-
var x;
52-
var i;
53-
54-
x = new Float64Array( len );
55-
for ( i = 0; i < x.length; i++ ) {
56-
if ( randu() < 0.2 ) {
57-
x[ i ] = NaN;
58-
} else {
59-
x[ i ] = ( randu()*20.0 ) - 10.0;
60-
}
61-
}
65+
var x = filledarrayBy( len, 'float64', rand );
6266
return benchmark;
6367

6468
function benchmark( b ) {

lib/node_modules/@stdlib/stats/base/dnanvarianceyc/benchmark/benchmark.ndarray.js

Lines changed: 17 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -21,16 +21,30 @@
2121
// MODULES //
2222

2323
var bench = require( '@stdlib/bench' );
24-
var randu = require( '@stdlib/random/base/randu' );
24+
var uniform = require( '@stdlib/random/base/uniform' );
25+
var bernoulli = require( '@stdlib/random/base/bernoulli' );
26+
var filledarrayBy = require( '@stdlib/array/filled-by' );
2527
var isnan = require( '@stdlib/math/base/assert/is-nan' );
2628
var pow = require( '@stdlib/math/base/special/pow' );
27-
var Float64Array = require( '@stdlib/array/float64' );
2829
var pkg = require( './../package.json' ).name;
2930
var dnanvarianceyc = require( './../lib/ndarray.js' );
3031

3132

3233
// FUNCTIONS //
3334

35+
/**
36+
* Returns a random value or `NaN`.
37+
*
38+
* @private
39+
* @returns {number} random number or `NaN`
40+
*/
41+
function rand() {
42+
if ( bernoulli( 0.8 ) < 1 ) {
43+
return NaN;
44+
}
45+
return uniform( -10.0, 10.0 );
46+
}
47+
3448
/**
3549
* Creates a benchmark function.
3650
*
@@ -39,17 +53,7 @@ var dnanvarianceyc = require( './../lib/ndarray.js' );
3953
* @returns {Function} benchmark function
4054
*/
4155
function createBenchmark( len ) {
42-
var x;
43-
var i;
44-
45-
x = new Float64Array( len );
46-
for ( i = 0; i < x.length; i++ ) {
47-
if ( randu() < 0.2 ) {
48-
x[ i ] = NaN;
49-
} else {
50-
x[ i ] = ( randu()*20.0 ) - 10.0;
51-
}
52-
}
56+
var x = filledarrayBy( len, 'float64', rand );
5357
return benchmark;
5458

5559
function benchmark( b ) {

0 commit comments

Comments
 (0)