You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/ndarray/README.md
+1-1Lines changed: 1 addition & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -83,7 +83,7 @@ In addition, the namespace contains the following multidimensional array utility
83
83
- <spanclass="signature">[`emptyLike( x[, options] )`][@stdlib/ndarray/empty-like]</span><spanclass="delimiter">: </span><spanclass="description">create an uninitialized ndarray having the same shape and data type as a provided ndarray.</span>
84
84
- <spanclass="signature">[`empty( shape[, options] )`][@stdlib/ndarray/empty]</span><spanclass="delimiter">: </span><spanclass="description">create an uninitialized ndarray having a specified shape and data type.</span>
- <spanclass="signature">[`fillBy( x, fcn[, thisArg] )`][@stdlib/ndarray/fill-by]</span><spanclass="delimiter">: </span><spanclass="description">fill an input `ndarray` according to a callback function.</span>
86
+
- <spanclass="signature">[`fillBy( x, fcn[, thisArg] )`][@stdlib/ndarray/fill-by]</span><spanclass="delimiter">: </span><spanclass="description">fill an input ndarray according to a callback function.</span>
87
87
- <spanclass="signature">[`fill( x, value )`][@stdlib/ndarray/fill]</span><spanclass="delimiter">: </span><spanclass="description">fill an input `ndarray` with a specified value.</span>
88
88
- <spanclass="signature">[`filterMap( x[, options], fcn[, thisArg] )`][@stdlib/ndarray/filter-map]</span><spanclass="delimiter">: </span><spanclass="description">filter and map elements in an input ndarray to elements in a new output ndarray according to a callback function.</span>
89
89
- <spanclass="signature">[`filter( x[, options], predicate[, thisArg] )`][@stdlib/ndarray/filter]</span><spanclass="delimiter">: </span><spanclass="description">return a shallow copy of an ndarray containing only those elements which pass a test implemented by a predicate function.</span>
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/stats/base/README.md
+2-2Lines changed: 2 additions & 2 deletions
Original file line number
Diff line number
Diff line change
@@ -70,7 +70,7 @@ The namespace contains the following statistical functions:
70
70
- <spanclass="signature">[`dnanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskmax]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
71
71
- <spanclass="signature">[`dnanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskmin]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
72
72
- <spanclass="signature">[`dnanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskrange]</span><spanclass="delimiter">: </span><spanclass="description">calculate the range of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
73
-
- <spanclass="signature">[`dnanstdev( N, correction, x, stride )`][@stdlib/stats/base/dnanstdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values.</span>
73
+
- <spanclass="signature">[`dnanstdev( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values.</span>
74
74
- <spanclass="signature">[`dsem( N, correction, x, strideX )`][@stdlib/stats/base/dsem]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard error of the mean of a double-precision floating-point strided array.</span>
75
75
- <spanclass="signature">[`dsempn( N, correction, x, strideX )`][@stdlib/stats/base/dsempn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm.</span>
76
76
- <spanclass="signature">[`dstdev( N, correction, x, strideX )`][@stdlib/stats/base/dstdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array.</span>
@@ -103,7 +103,7 @@ The namespace contains the following statistical functions:
103
103
- <spanclass="signature">[`nanmeanpn( N, x, stride )`][@stdlib/stats/base/nanmeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values and using a two-pass error correction algorithm.</span>
104
104
- <spanclass="signature">[`nanmeanwd( N, x, stride )`][@stdlib/stats/base/nanmeanwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values and using Welford's algorithm.</span>
105
105
- <spanclass="signature">[`nanminBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/nanmin-by]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum value of a strided array via a callback function, ignoring `NaN` values.</span>
106
-
- <spanclass="signature">[`nanmin( N, x, stride )`][@stdlib/stats/base/nanmin]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum value of a strided array, ignoring `NaN` values.</span>
106
+
- <spanclass="signature">[`nanmin( N, x, strideX )`][@stdlib/stats/base/nanmin]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum value of a strided array, ignoring `NaN` values.</span>
107
107
- <spanclass="signature">[`nanminabs( N, x, stride )`][@stdlib/stats/base/nanminabs]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum absolute value of a strided array, ignoring `NaN` values.</span>
108
108
- <spanclass="signature">[`nanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/nanmskmax]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum value of a strided array according to a mask, ignoring `NaN` values.</span>
109
109
- <spanclass="signature">[`nanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/nanmskmin]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum value of a strided array according to a mask, ignoring `NaN` values.</span>
0 commit comments