|
11 | 11 | import six
|
12 | 12 | from ._util import ArrayIndexer, check_input, validate_vector
|
13 | 13 | import warnings
|
14 |
| -import sys |
15 | 14 |
|
16 | 15 |
|
17 | 16 | class BaseMetricLearner(six.with_metaclass(ABCMeta, BaseEstimator)):
|
@@ -241,22 +240,14 @@ def transform(self, X):
|
241 | 240 | X_embedded : `numpy.ndarray`, shape=(n_samples, n_components)
|
242 | 241 | The embedded data points.
|
243 | 242 | """
|
244 |
| - # TODO: remove when we stop supporting Python < 3.5 |
245 |
| - if sys.version_info.major < 3 or sys.version_info.minor < 5: |
246 |
| - check_is_fitted(self, ['preprocessor_', 'components_']) |
247 |
| - else: |
248 |
| - check_is_fitted(self) |
| 243 | + check_is_fitted(self, ['preprocessor_', 'components_']) |
249 | 244 | X_checked = check_input(X, type_of_inputs='classic', estimator=self,
|
250 | 245 | preprocessor=self.preprocessor_,
|
251 | 246 | accept_sparse=True)
|
252 | 247 | return X_checked.dot(self.components_.T)
|
253 | 248 |
|
254 | 249 | def get_metric(self):
|
255 |
| - # TODO: remove when we stop supporting Python < 3.5 |
256 |
| - if sys.version_info.major < 3 or sys.version_info.minor < 5: |
257 |
| - check_is_fitted(self, 'components_') |
258 |
| - else: |
259 |
| - check_is_fitted(self) |
| 250 | + check_is_fitted(self, 'components_') |
260 | 251 | components_T = self.components_.T.copy()
|
261 | 252 |
|
262 | 253 | def metric_fun(u, v, squared=False):
|
@@ -309,11 +300,7 @@ def get_mahalanobis_matrix(self):
|
309 | 300 | M : `numpy.ndarray`, shape=(n_features, n_features)
|
310 | 301 | The copy of the learned Mahalanobis matrix.
|
311 | 302 | """
|
312 |
| - # TODO: remove when we stop supporting Python < 3.5 |
313 |
| - if sys.version_info.major < 3 or sys.version_info.minor < 5: |
314 |
| - check_is_fitted(self, 'components_') |
315 |
| - else: |
316 |
| - check_is_fitted(self) |
| 303 | + check_is_fitted(self, 'components_') |
317 | 304 | return self.components_.T.dot(self.components_)
|
318 | 305 |
|
319 | 306 |
|
@@ -376,11 +363,7 @@ def decision_function(self, pairs):
|
376 | 363 | y_predicted : `numpy.ndarray` of floats, shape=(n_constraints,)
|
377 | 364 | The predicted decision function value for each pair.
|
378 | 365 | """
|
379 |
| - # TODO: remove when we stop supporting Python < 3.5 |
380 |
| - if sys.version_info.major < 3 or sys.version_info.minor < 5: |
381 |
| - check_is_fitted(self, 'preprocessor_') |
382 |
| - else: |
383 |
| - check_is_fitted(self) |
| 366 | + check_is_fitted(self, 'preprocessor_') |
384 | 367 | pairs = check_input(pairs, type_of_inputs='tuples',
|
385 | 368 | preprocessor=self.preprocessor_,
|
386 | 369 | estimator=self, tuple_size=self._tuple_size)
|
@@ -623,11 +606,7 @@ def predict(self, quadruplets):
|
623 | 606 | prediction : `numpy.ndarray` of floats, shape=(n_constraints,)
|
624 | 607 | Predictions of the ordering of pairs, for each quadruplet.
|
625 | 608 | """
|
626 |
| - # TODO: remove when we stop supporting Python < 3.5 |
627 |
| - if sys.version_info.major < 3 or sys.version_info.minor < 5: |
628 |
| - check_is_fitted(self, 'preprocessor_') |
629 |
| - else: |
630 |
| - check_is_fitted(self) |
| 609 | + check_is_fitted(self, 'preprocessor_') |
631 | 610 | quadruplets = check_input(quadruplets, type_of_inputs='tuples',
|
632 | 611 | preprocessor=self.preprocessor_,
|
633 | 612 | estimator=self, tuple_size=self._tuple_size)
|
@@ -656,11 +635,7 @@ def decision_function(self, quadruplets):
|
656 | 635 | decision_function : `numpy.ndarray` of floats, shape=(n_constraints,)
|
657 | 636 | Metric differences.
|
658 | 637 | """
|
659 |
| - # TODO: remove when we stop supporting Python < 3.5 |
660 |
| - if sys.version_info.major < 3 or sys.version_info.minor < 5: |
661 |
| - check_is_fitted(self, 'preprocessor_') |
662 |
| - else: |
663 |
| - check_is_fitted(self) |
| 638 | + check_is_fitted(self, 'preprocessor_') |
664 | 639 | quadruplets = check_input(quadruplets, type_of_inputs='tuples',
|
665 | 640 | preprocessor=self.preprocessor_,
|
666 | 641 | estimator=self, tuple_size=self._tuple_size)
|
|
0 commit comments