Skip to content

Commit 97c1fcc

Browse files
author
mvargas33
committed
Fix flake8 identation
1 parent 7304ce5 commit 97c1fcc

File tree

1 file changed

+11
-8
lines changed

1 file changed

+11
-8
lines changed

test/test_bilinear_mixin.py

Lines changed: 11 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -10,6 +10,7 @@
1010

1111
RNG = check_random_state(0)
1212

13+
1314
class IdentityBilinearMixin(BilinearMixin):
1415
"""A simple Identity bilinear mixin that returns an identity matrix
1516
M as learned. Can change M for a random matrix calling random_M.
@@ -50,7 +51,7 @@ def identity_fit(d=100, n=100, n_pairs=None, random=False):
5051
mixin.fit(X, [0 for _ in range(n)], random=random)
5152
if n_pairs is not None:
5253
random_pairs = [[X[RNG.randint(0, n)], X[RNG.randint(0, n)]]
53-
for _ in range(n_pairs)]
54+
for _ in range(n_pairs)]
5455
else:
5556
random_pairs = None
5657
return X, random_pairs, mixin
@@ -62,7 +63,7 @@ def test_same_similarity_with_two_methods():
6263
In both cases, the results must match for the same input.
6364
Tests it for 'n_pairs' sampled from 'n' d-dimentional arrays.
6465
"""
65-
d, n, n_pairs= 100, 100, 1000
66+
d, n, n_pairs = 100, 100, 1000
6667
_, random_pairs, mixin = identity_fit(d=d, n=n, n_pairs=n_pairs, random=True)
6768
dist1 = mixin.score_pairs(random_pairs)
6869
dist2 = [mixin.get_metric()(p[0], p[1]) for p in random_pairs]
@@ -76,11 +77,12 @@ def test_check_correctness_similarity():
7677
get_metric(). Results are compared with the real bilinear similarity
7778
calculated in-place.
7879
"""
79-
d, n, n_pairs= 100, 100, 1000
80+
d, n, n_pairs = 100, 100, 1000
8081
_, random_pairs, mixin = identity_fit(d=d, n=n, n_pairs=n_pairs, random=True)
8182
dist1 = mixin.score_pairs(random_pairs)
8283
dist2 = [mixin.get_metric()(p[0], p[1]) for p in random_pairs]
83-
desired = [np.dot(np.dot(p[0].T, mixin.components_), p[1]) for p in random_pairs]
84+
desired = [np.dot(np.dot(p[0].T, mixin.components_), p[1])
85+
for p in random_pairs]
8486

8587
assert_array_almost_equal(dist1, desired) # score_pairs
8688
assert_array_almost_equal(dist2, desired) # get_metric
@@ -108,7 +110,7 @@ def test_check_handmade_symmetric_example():
108110
checks the random case: when the matrix is pd and symetric.
109111
"""
110112
# Random pairs for M = Identity
111-
d, n, n_pairs= 100, 100, 1000
113+
d, n, n_pairs = 100, 100, 1000
112114
_, random_pairs, mixin = identity_fit(d=d, n=n, n_pairs=n_pairs)
113115
pairs_reverse = [[p[1], p[0]] for p in random_pairs]
114116
dist1 = mixin.score_pairs(random_pairs)
@@ -122,13 +124,14 @@ def test_check_handmade_symmetric_example():
122124
dist2 = mixin.score_pairs(pairs_reverse)
123125
assert_array_almost_equal(dist1, dist2)
124126

127+
125128
def test_score_pairs_finite():
126129
"""
127130
Checks for 'n' score_pairs() of 'd' dimentions, that all
128131
similarities are finite numbers, not NaN, +inf or -inf.
129132
Considering a random M for bilinear similarity.
130133
"""
131-
d, n, n_pairs= 100, 100, 1000
134+
d, n, n_pairs = 100, 100, 1000
132135
_, random_pairs, mixin = identity_fit(d=d, n=n, n_pairs=n_pairs, random=True)
133136
dist1 = mixin.score_pairs(random_pairs)
134137
assert np.isfinite(dist1).all()
@@ -140,7 +143,7 @@ def test_score_pairs_dim():
140143
and scoring of 2D arrays (one tuple) should return an error (like
141144
scikit-learn's error when scoring 1D arrays)
142145
"""
143-
d, n, n_pairs= 100, 100, 1000
146+
d, n = 100, 100
144147
X, _, mixin = identity_fit(d=d, n=n, n_pairs=None, random=True)
145148
tuples = np.array(list(product(X, X)))
146149
assert mixin.score_pairs(tuples).shape == (tuples.shape[0],)
@@ -156,7 +159,7 @@ def test_score_pairs_dim():
156159
def test_check_scikitlearn_compatibility():
157160
"""Check that the similarity returned by get_metric() is compatible with
158161
scikit-learn's algorithms using a custom metric, DBSCAN for instance"""
159-
d, n= 100, 100
162+
d, n = 100, 100
160163
X, _, mixin = identity_fit(d=d, n=n, n_pairs=None, random=True)
161164
clustering = DBSCAN(metric=mixin.get_metric())
162165
clustering.fit(X)

0 commit comments

Comments
 (0)