@@ -448,45 +448,45 @@ def _initialize_components(n_components, input, y=None, init='auto',
448
448
The input labels (or not if there are no labels).
449
449
450
450
init : string or numpy array, optional (default='auto')
451
- Initialization of the linear transformation. Possible options are
452
- 'auto', 'pca', 'lda', 'identity', 'random', and a numpy array of shape
453
- (n_features_a, n_features_b).
454
-
455
- 'auto'
456
- Depending on ``n_components``, the most reasonable initialization
457
- will be chosen. If ``n_components <= n_classes`` we use 'lda' (see
458
- the description of 'lda' init), as it uses labels information. If
459
- not, but ``n_components < min(n_features, n_samples)``, we use 'pca',
460
- as it projects data onto meaningful directions (those of higher
461
- variance). Otherwise, we just use 'identity'.
462
-
463
- 'pca'
464
- ``n_components`` principal components of the inputs passed
465
- to :meth:`fit` will be used to initialize the transformation.
466
- (See `sklearn.decomposition.PCA`)
467
-
468
- 'lda'
469
- ``min(n_components, n_classes)`` most discriminative
470
- components of the inputs passed to :meth:`fit` will be used to
471
- initialize the transformation. (If ``n_components > n_classes``,
472
- the rest of the components will be zero.) (See
473
- `sklearn.discriminant_analysis.LinearDiscriminantAnalysis`).
474
- This initialization is possible only if `has_classes == True`.
475
-
476
- 'identity'
477
- The identity matrix. If ``n_components`` is strictly smaller than the
478
- dimensionality of the inputs passed to :meth:`fit`, the identity
479
- matrix will be truncated to the first ``n_components`` rows.
480
-
481
- 'random'
482
- The initial transformation will be a random array of shape
483
- `(n_components, n_features)`. Each value is sampled from the
484
- standard normal distribution.
485
-
486
- numpy array
487
- n_features_b must match the dimensionality of the inputs passed to
488
- :meth:`fit` and n_features_a must be less than or equal to that.
489
- If ``n_components`` is not None, n_features_a must match it.
451
+ Initialization of the linear transformation. Possible options are
452
+ 'auto', 'pca', 'lda', 'identity', 'random', and a numpy array of shape
453
+ (n_features_a, n_features_b).
454
+
455
+ 'auto'
456
+ Depending on ``n_components``, the most reasonable initialization
457
+ will be chosen. If ``n_components <= n_classes`` we use 'lda' (see
458
+ the description of 'lda' init), as it uses labels information. If
459
+ not, but ``n_components < min(n_features, n_samples)``, we use 'pca',
460
+ as it projects data onto meaningful directions (those of higher
461
+ variance). Otherwise, we just use 'identity'.
462
+
463
+ 'pca'
464
+ ``n_components`` principal components of the inputs passed
465
+ to :meth:`fit` will be used to initialize the transformation.
466
+ (See `sklearn.decomposition.PCA`)
467
+
468
+ 'lda'
469
+ ``min(n_components, n_classes)`` most discriminative
470
+ components of the inputs passed to :meth:`fit` will be used to
471
+ initialize the transformation. (If ``n_components > n_classes``,
472
+ the rest of the components will be zero.) (See
473
+ `sklearn.discriminant_analysis.LinearDiscriminantAnalysis`).
474
+ This initialization is possible only if `has_classes == True`.
475
+
476
+ 'identity'
477
+ The identity matrix. If ``n_components`` is strictly smaller than the
478
+ dimensionality of the inputs passed to :meth:`fit`, the identity
479
+ matrix will be truncated to the first ``n_components`` rows.
480
+
481
+ 'random'
482
+ The initial transformation will be a random array of shape
483
+ `(n_components, n_features)`. Each value is sampled from the
484
+ standard normal distribution.
485
+
486
+ numpy array
487
+ n_features_b must match the dimensionality of the inputs passed to
488
+ :meth:`fit` and n_features_a must be less than or equal to that.
489
+ If ``n_components`` is not None, n_features_a must match it.
490
490
491
491
verbose : bool
492
492
Whether to print the details of the initialization or not.
@@ -606,26 +606,26 @@ def _initialize_metric_mahalanobis(input, init='identity', random_state=None,
606
606
The input samples (can be tuples or regular samples).
607
607
608
608
init : string or numpy array, optional (default='identity')
609
- Specification for the matrix to initialize. Possible options are
610
- 'identity', 'covariance', 'random', and a numpy array of shape
611
- (n_features, n_features).
612
-
613
- 'identity'
614
- An identity matrix of shape (n_features, n_features).
615
-
616
- 'covariance'
617
- The (pseudo-)inverse covariance matrix (raises an error if the
618
- covariance matrix is not definite and `strict_pd == True`)
619
-
620
- 'random'
621
- A random positive definite (PD) matrix of shape
622
- `(n_features, n_features)`, generated using
623
- `sklearn.datasets.make_spd_matrix`.
624
-
625
- numpy array
626
- A PSD matrix (or strictly PD if strict_pd==True) of
627
- shape (n_features, n_features), that will be used as such to
628
- initialize the metric, or set the prior.
609
+ Specification for the matrix to initialize. Possible options are
610
+ 'identity', 'covariance', 'random', and a numpy array of shape
611
+ (n_features, n_features).
612
+
613
+ 'identity'
614
+ An identity matrix of shape (n_features, n_features).
615
+
616
+ 'covariance'
617
+ The (pseudo-)inverse covariance matrix (raises an error if the
618
+ covariance matrix is not definite and `strict_pd == True`)
619
+
620
+ 'random'
621
+ A random positive definite (PD) matrix of shape
622
+ `(n_features, n_features)`, generated using
623
+ `sklearn.datasets.make_spd_matrix`.
624
+
625
+ numpy array
626
+ A PSD matrix (or strictly PD if strict_pd==True) of
627
+ shape (n_features, n_features), that will be used as such to
628
+ initialize the metric, or set the prior.
629
629
630
630
random_state : int or `numpy.RandomState` or None, optional (default=None)
631
631
A pseudo random number generator object or a seed for it if int. If
0 commit comments