@@ -33,6 +33,10 @@ class BalancedBaggingClassifier(BaggingClassifier):
33
33
implementation. It includes an additional step to balance the training set
34
34
at fit time using a given sampler.
35
35
36
+ This classifier can serves as a basis to implement various methods such as
37
+ Exactly Balanced Bagging [6]_, Roughly Balanced Bagging [7]_,
38
+ Over-Bagging [6]_, or SMOTE-Bagging [8]_.
39
+
36
40
Read more in the :ref:`User Guide <bagging>`.
37
41
38
42
Parameters
@@ -60,8 +64,8 @@ class BalancedBaggingClassifier(BaggingClassifier):
60
64
Whether samples are drawn with replacement.
61
65
62
66
.. note::
63
- It is important to note that the bootstrap will be generated from
64
- the resampled dataset.
67
+ Note that this bootstrap will be generated from the resampled
68
+ dataset.
65
69
66
70
bootstrap_features : bool, default=False
67
71
Whether features are drawn with replacement.
@@ -92,7 +96,7 @@ class BalancedBaggingClassifier(BaggingClassifier):
92
96
sampler : sampler object, default=None
93
97
The sampler used to balanced the dataset before to bootstrap
94
98
(if `bootstrap=True`) and `fit` a base estimator. By default, a
95
- :class:`~sklearn .under_sampling.RandomUnderSampler` is used.
99
+ :class:`~imblearn .under_sampling.RandomUnderSampler` is used.
96
100
97
101
.. versionadded:: 0.8
98
102
@@ -164,10 +168,21 @@ class BalancedBaggingClassifier(BaggingClassifier):
164
168
.. [4] G. Louppe and P. Geurts, "Ensembles on Random Patches", Machine
165
169
Learning and Knowledge Discovery in Databases, 346-361, 2012.
166
170
167
- .. [5] Chen, Chao, Andy Liaw, and Leo Breiman. "Using random forest to
171
+ .. [5] C. Chen Chao, A. Liaw, and L. Breiman. "Using random forest to
168
172
learn imbalanced data." University of California, Berkeley 110,
169
173
2004.
170
174
175
+ .. [6] R. Maclin, and D. Opitz. "An empirical evaluation of bagging and
176
+ boosting." AAAI/IAAI 1997 (1997): 546-551.
177
+
178
+ .. [7] S. Hido, H. Kashima, and Y. Takahashi. "Roughly balanced bagging
179
+ for imbalanced data." Statistical Analysis and Data Mining: The ASA
180
+ Data Science Journal 2.5‐6 (2009): 412-426.
181
+
182
+ .. [8] S. Wang, and X. Yao. "Diversity analysis on imbalanced data sets by
183
+ using ensemble models." 2009 IEEE symposium on computational
184
+ intelligence and data mining. IEEE, 2009.
185
+
171
186
Examples
172
187
--------
173
188
>>> from collections import Counter
0 commit comments