Skip to content

Commit ee2679c

Browse files
committed
DOC add references to known algorithms
1 parent 793a7c8 commit ee2679c

File tree

1 file changed

+19
-4
lines changed

1 file changed

+19
-4
lines changed

imblearn/ensemble/_bagging.py

Lines changed: 19 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -33,6 +33,10 @@ class BalancedBaggingClassifier(BaggingClassifier):
3333
implementation. It includes an additional step to balance the training set
3434
at fit time using a given sampler.
3535
36+
This classifier can serves as a basis to implement various methods such as
37+
Exactly Balanced Bagging [6]_, Roughly Balanced Bagging [7]_,
38+
Over-Bagging [6]_, or SMOTE-Bagging [8]_.
39+
3640
Read more in the :ref:`User Guide <bagging>`.
3741
3842
Parameters
@@ -60,8 +64,8 @@ class BalancedBaggingClassifier(BaggingClassifier):
6064
Whether samples are drawn with replacement.
6165
6266
.. note::
63-
It is important to note that the bootstrap will be generated from
64-
the resampled dataset.
67+
Note that this bootstrap will be generated from the resampled
68+
dataset.
6569
6670
bootstrap_features : bool, default=False
6771
Whether features are drawn with replacement.
@@ -92,7 +96,7 @@ class BalancedBaggingClassifier(BaggingClassifier):
9296
sampler : sampler object, default=None
9397
The sampler used to balanced the dataset before to bootstrap
9498
(if `bootstrap=True`) and `fit` a base estimator. By default, a
95-
:class:`~sklearn.under_sampling.RandomUnderSampler` is used.
99+
:class:`~imblearn.under_sampling.RandomUnderSampler` is used.
96100
97101
.. versionadded:: 0.8
98102
@@ -164,10 +168,21 @@ class BalancedBaggingClassifier(BaggingClassifier):
164168
.. [4] G. Louppe and P. Geurts, "Ensembles on Random Patches", Machine
165169
Learning and Knowledge Discovery in Databases, 346-361, 2012.
166170
167-
.. [5] Chen, Chao, Andy Liaw, and Leo Breiman. "Using random forest to
171+
.. [5] C. Chen Chao, A. Liaw, and L. Breiman. "Using random forest to
168172
learn imbalanced data." University of California, Berkeley 110,
169173
2004.
170174
175+
.. [6] R. Maclin, and D. Opitz. "An empirical evaluation of bagging and
176+
boosting." AAAI/IAAI 1997 (1997): 546-551.
177+
178+
.. [7] S. Hido, H. Kashima, and Y. Takahashi. "Roughly balanced bagging
179+
for imbalanced data." Statistical Analysis and Data Mining: The ASA
180+
Data Science Journal 2.5‐6 (2009): 412-426.
181+
182+
.. [8] S. Wang, and X. Yao. "Diversity analysis on imbalanced data sets by
183+
using ensemble models." 2009 IEEE symposium on computational
184+
intelligence and data mining. IEEE, 2009.
185+
171186
Examples
172187
--------
173188
>>> from collections import Counter

0 commit comments

Comments
 (0)