16
16
[- 11.72 , - 2.34 ],
17
17
[- 11.43 , - 5.85 ],
18
18
[- 10.66 , - 4.33 ],
19
- [ - 9.64 , - 7.05 ],
20
- [ - 8.39 , - 4.41 ],
21
- [ - 8.07 , - 5.66 ],
22
- [ - 7.28 , 0.91 ],
23
- [ - 7.24 , - 2.41 ],
24
- [ - 6.13 , - 4.81 ],
25
- [ - 5.92 , - 6.81 ],
26
- [ - 4. , - 1.81 ],
27
- [ - 3.96 , 2.67 ],
28
- [ - 3.74 , - 7.31 ],
29
- [ - 2.96 , 4.69 ],
30
- [ - 1.56 , - 2.33 ],
31
- [ - 1.02 , - 4.57 ],
32
- [ 0.46 , 4.07 ],
33
- [ 1.2 , - 1.53 ],
34
- [ 1.32 , 0.41 ],
35
- [ 1.56 , - 5.19 ],
36
- [ 2.52 , 5.89 ],
37
- [ 3.03 , - 4.15 ],
38
- [ 4. , - 0.59 ],
39
- [ 4.4 , 2.07 ],
40
- [ 4.41 , - 7.45 ],
41
- [ 4.45 , - 4.12 ],
42
- [ 5.13 , - 6.28 ],
43
- [ 5.4 , - 5 ],
44
- [ 6.26 , 4.65 ],
45
- [ 7.02 , - 6.22 ],
46
- [ 7.5 , - 0.11 ],
47
- [ 8.1 , - 2.05 ],
48
- [ 8.42 , 2.47 ],
49
- [ 9.62 , 3.87 ],
50
- [ 10.54 , - 4.47 ],
51
- [ 11.42 , 0.01 ]
19
+ [- 9.64 , - 7.05 ],
20
+ [- 8.39 , - 4.41 ],
21
+ [- 8.07 , - 5.66 ],
22
+ [- 7.28 , 0.91 ],
23
+ [- 7.24 , - 2.41 ],
24
+ [- 6.13 , - 4.81 ],
25
+ [- 5.92 , - 6.81 ],
26
+ [- 4. , - 1.81 ],
27
+ [- 3.96 , 2.67 ],
28
+ [- 3.74 , - 7.31 ],
29
+ [- 2.96 , 4.69 ],
30
+ [- 1.56 , - 2.33 ],
31
+ [- 1.02 , - 4.57 ],
32
+ [0.46 , 4.07 ],
33
+ [1.2 , - 1.53 ],
34
+ [1.32 , 0.41 ],
35
+ [1.56 , - 5.19 ],
36
+ [2.52 , 5.89 ],
37
+ [3.03 , - 4.15 ],
38
+ [4. , - 0.59 ],
39
+ [4.4 , 2.07 ],
40
+ [4.41 , - 7.45 ],
41
+ [4.45 , - 4.12 ],
42
+ [5.13 , - 6.28 ],
43
+ [5.4 , - 5 ],
44
+ [6.26 , 4.65 ],
45
+ [7.02 , - 6.22 ],
46
+ [7.5 , - 0.11 ],
47
+ [8.1 , - 2.05 ],
48
+ [8.42 , 2.47 ],
49
+ [9.62 , 3.87 ],
50
+ [10.54 , - 4.47 ],
51
+ [11.42 , 0.01 ]
52
52
])
53
53
y = np .array ([0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 ,
54
54
0 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 ])
@@ -92,43 +92,43 @@ def test_dense_sparse(fmt):
92
92
93
93
def test_weak ():
94
94
X_expected = np .array ([
95
- [ - 3.96 , 2.67 ],
96
- [ - 3.96 , 2.67 ],
97
- [ - 3.96 , 2.67 ],
98
- [ 3.03 , - 4.15 ],
99
- [- 11.83 , - 6.81 ],
100
- [- 11.72 , - 2.34 ],
101
- [- 11.43 , - 5.85 ],
102
- [- 10.66 , - 4.33 ],
103
- [ - 9.64 , - 7.05 ],
104
- [ - 8.39 , - 4.41 ],
105
- [ - 8.07 , - 5.66 ],
106
- [ - 7.28 , 0.91 ],
107
- [ - 7.24 , - 2.41 ],
108
- [ - 6.13 , - 4.81 ],
109
- [ - 5.92 , - 6.81 ],
110
- [ - 4. , - 1.81 ],
111
- [ - 3.96 , 2.67 ],
112
- [ - 3.74 , - 7.31 ],
113
- [ - 2.96 , 4.69 ],
114
- [ - 1.56 , - 2.33 ],
115
- [ - 1.02 , - 4.57 ],
116
- [ 0.46 , 4.07 ],
117
- [ 1.2 , - 1.53 ],
118
- [ 1.32 , 0.41 ],
119
- [ 1.56 , - 5.19 ],
120
- [ 3.03 , - 4.15 ],
121
- [ 4. , - 0.59 ],
122
- [ 4.4 , 2.07 ],
123
- [ 4.41 , - 7.45 ],
124
- [ 5.13 , - 6.28 ],
125
- [ 5.4 , - 5. ],
126
- [ 6.26 , 4.65 ],
127
- [ 7.02 , - 6.22 ],
128
- [ 8.1 , - 2.05 ],
129
- [ 8.42 , 2.47 ],
130
- [ 10.54 , - 4.47 ],
131
- [ 11.42 , 0.01 ]
95
+ [- 3.96 , 2.67 ],
96
+ [- 3.96 , 2.67 ],
97
+ [- 3.96 , 2.67 ],
98
+ [3.03 , - 4.15 ],
99
+ [- 11.83 , - 6.81 ],
100
+ [- 11.72 , - 2.34 ],
101
+ [- 11.43 , - 5.85 ],
102
+ [- 10.66 , - 4.33 ],
103
+ [- 9.64 , - 7.05 ],
104
+ [- 8.39 , - 4.41 ],
105
+ [- 8.07 , - 5.66 ],
106
+ [- 7.28 , 0.91 ],
107
+ [- 7.24 , - 2.41 ],
108
+ [- 6.13 , - 4.81 ],
109
+ [- 5.92 , - 6.81 ],
110
+ [- 4. , - 1.81 ],
111
+ [- 3.96 , 2.67 ],
112
+ [- 3.74 , - 7.31 ],
113
+ [- 2.96 , 4.69 ],
114
+ [- 1.56 , - 2.33 ],
115
+ [- 1.02 , - 4.57 ],
116
+ [0.46 , 4.07 ],
117
+ [1.2 , - 1.53 ],
118
+ [1.32 , 0.41 ],
119
+ [1.56 , - 5.19 ],
120
+ [3.03 , - 4.15 ],
121
+ [4. , - 0.59 ],
122
+ [4.4 , 2.07 ],
123
+ [4.41 , - 7.45 ],
124
+ [5.13 , - 6.28 ],
125
+ [5.4 , - 5. ],
126
+ [6.26 , 4.65 ],
127
+ [7.02 , - 6.22 ],
128
+ [8.1 , - 2.05 ],
129
+ [8.42 , 2.47 ],
130
+ [10.54 , - 4.47 ],
131
+ [11.42 , 0.01 ]
132
132
])
133
133
y_expected = np .array ([1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ,
134
134
0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 0 , 0 ])
@@ -142,46 +142,46 @@ def test_weak():
142
142
143
143
def test_relabel ():
144
144
X_expected = np .array ([
145
- [ - 3.96 , 2.67 ],
146
- [ - 3.96 , 2.67 ],
147
- [ - 3.96 , 2.67 ],
148
- [ 3.03 , - 4.15 ],
149
- [- 11.83 , - 6.81 ],
150
- [- 11.72 , - 2.34 ],
151
- [- 11.43 , - 5.85 ],
152
- [- 10.66 , - 4.33 ],
153
- [ - 9.64 , - 7.05 ],
154
- [ - 8.39 , - 4.41 ],
155
- [ - 8.07 , - 5.66 ],
156
- [ - 7.28 , 0.91 ],
157
- [ - 7.24 , - 2.41 ],
158
- [ - 6.13 , - 4.81 ],
159
- [ - 5.92 , - 6.81 ],
160
- [ - 4. , - 1.81 ],
161
- [ - 3.96 , 2.67 ],
162
- [ - 3.74 , - 7.31 ],
163
- [ - 2.96 , 4.69 ],
164
- [ - 1.56 , - 2.33 ],
165
- [ - 1.02 , - 4.57 ],
166
- [ 0.46 , 4.07 ],
167
- [ 1.2 , - 1.53 ],
168
- [ 1.32 , 0.41 ],
169
- [ 1.56 , - 5.19 ],
170
- [ 3.03 , - 4.15 ],
171
- [ 4. , - 0.59 ],
172
- [ 4.4 , 2.07 ],
173
- [ 4.41 , - 7.45 ],
174
- [ 4.45 , - 4.12 ],
175
- [ 5.13 , - 6.28 ],
176
- [ 5.4 , - 5. ],
177
- [ 6.26 , 4.65 ],
178
- [ 7.02 , - 6.22 ],
179
- [ 7.5 , - 0.11 ],
180
- [ 8.1 , - 2.05 ],
181
- [ 8.42 , 2.47 ],
182
- [ 9.62 , 3.87 ],
183
- [ 10.54 , - 4.47 ],
184
- [ 11.42 , 0.01 ]
145
+ [- 3.96 , 2.67 ],
146
+ [- 3.96 , 2.67 ],
147
+ [- 3.96 , 2.67 ],
148
+ [3.03 , - 4.15 ],
149
+ [- 11.83 , - 6.81 ],
150
+ [- 11.72 , - 2.34 ],
151
+ [- 11.43 , - 5.85 ],
152
+ [- 10.66 , - 4.33 ],
153
+ [- 9.64 , - 7.05 ],
154
+ [- 8.39 , - 4.41 ],
155
+ [- 8.07 , - 5.66 ],
156
+ [- 7.28 , 0.91 ],
157
+ [- 7.24 , - 2.41 ],
158
+ [- 6.13 , - 4.81 ],
159
+ [- 5.92 , - 6.81 ],
160
+ [- 4. , - 1.81 ],
161
+ [- 3.96 , 2.67 ],
162
+ [- 3.74 , - 7.31 ],
163
+ [- 2.96 , 4.69 ],
164
+ [- 1.56 , - 2.33 ],
165
+ [- 1.02 , - 4.57 ],
166
+ [0.46 , 4.07 ],
167
+ [1.2 , - 1.53 ],
168
+ [1.32 , 0.41 ],
169
+ [1.56 , - 5.19 ],
170
+ [3.03 , - 4.15 ],
171
+ [4. , - 0.59 ],
172
+ [4.4 , 2.07 ],
173
+ [4.41 , - 7.45 ],
174
+ [4.45 , - 4.12 ],
175
+ [5.13 , - 6.28 ],
176
+ [5.4 , - 5. ],
177
+ [6.26 , 4.65 ],
178
+ [7.02 , - 6.22 ],
179
+ [7.5 , - 0.11 ],
180
+ [8.1 , - 2.05 ],
181
+ [8.42 , 2.47 ],
182
+ [9.62 , 3.87 ],
183
+ [10.54 , - 4.47 ],
184
+ [11.42 , 0.01 ]
185
185
])
186
186
y_expected = np .array ([1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ,
187
187
0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 0 , 0 ])
@@ -195,50 +195,51 @@ def test_relabel():
195
195
196
196
def test_strong ():
197
197
X_expected = np .array ([
198
- [ 1.2 , - 1.53 ],
199
- [ 3.03 , - 4.15 ],
200
- [ - 3.96 , 2.67 ],
201
- [ - 3.96 , 2.67 ],
202
- [ - 3.96 , 2.67 ],
203
- [ - 3.96 , 2.67 ],
204
- [ - 3.96 , 2.67 ],
205
- [ 8.42 , 2.47 ],
206
- [- 11.83 , - 6.81 ],
207
- [- 11.72 , - 2.34 ],
208
- [- 11.43 , - 5.85 ],
209
- [- 10.66 , - 4.33 ],
210
- [ - 9.64 , - 7.05 ],
211
- [ - 8.39 , - 4.41 ],
212
- [ - 8.07 , - 5.66 ],
213
- [ - 7.28 , 0.91 ],
214
- [ - 7.24 , - 2.41 ],
215
- [ - 6.13 , - 4.81 ],
216
- [ - 5.92 , - 6.81 ],
217
- [ - 4. , - 1.81 ],
218
- [ - 3.96 , 2.67 ],
219
- [ - 3.74 , - 7.31 ],
220
- [ - 2.96 , 4.69 ],
221
- [ - 1.56 , - 2.33 ],
222
- [ - 1.02 , - 4.57 ],
223
- [ 0.46 , 4.07 ],
224
- [ 1.2 , - 1.53 ],
225
- [ 1.32 , 0.41 ],
226
- [ 1.56 , - 5.19 ],
227
- [ 3.03 , - 4.15 ],
228
- [ 4. , - 0.59 ],
229
- [ 4.4 , 2.07 ],
230
- [ 4.41 , - 7.45 ],
231
- [ 5.13 , - 6.28 ],
232
- [ 5.4 , - 5. ],
233
- [ 6.26 , 4.65 ],
234
- [ 7.02 , - 6.22 ],
235
- [ 8.1 , - 2.05 ],
236
- [ 8.42 , 2.47 ],
237
- [ 10.54 , - 4.47 ],
238
- [ 11.42 , 0.01 ]
198
+ [1.2 , - 1.53 ],
199
+ [3.03 , - 4.15 ],
200
+ [- 3.96 , 2.67 ],
201
+ [- 3.96 , 2.67 ],
202
+ [- 3.96 , 2.67 ],
203
+ [- 3.96 , 2.67 ],
204
+ [- 3.96 , 2.67 ],
205
+ [8.42 , 2.47 ],
206
+ [- 11.83 , - 6.81 ],
207
+ [- 11.72 , - 2.34 ],
208
+ [- 11.43 , - 5.85 ],
209
+ [- 10.66 , - 4.33 ],
210
+ [- 9.64 , - 7.05 ],
211
+ [- 8.39 , - 4.41 ],
212
+ [- 8.07 , - 5.66 ],
213
+ [- 7.28 , 0.91 ],
214
+ [- 7.24 , - 2.41 ],
215
+ [- 6.13 , - 4.81 ],
216
+ [- 5.92 , - 6.81 ],
217
+ [- 4. , - 1.81 ],
218
+ [- 3.96 , 2.67 ],
219
+ [- 3.74 , - 7.31 ],
220
+ [- 2.96 , 4.69 ],
221
+ [- 1.56 , - 2.33 ],
222
+ [- 1.02 , - 4.57 ],
223
+ [0.46 , 4.07 ],
224
+ [1.2 , - 1.53 ],
225
+ [1.32 , 0.41 ],
226
+ [1.56 , - 5.19 ],
227
+ [3.03 , - 4.15 ],
228
+ [4. , - 0.59 ],
229
+ [4.4 , 2.07 ],
230
+ [4.41 , - 7.45 ],
231
+ [5.13 , - 6.28 ],
232
+ [5.4 , - 5. ],
233
+ [6.26 , 4.65 ],
234
+ [7.02 , - 6.22 ],
235
+ [8.1 , - 2.05 ],
236
+ [8.42 , 2.47 ],
237
+ [10.54 , - 4.47 ],
238
+ [11.42 , 0.01 ]
239
239
])
240
240
y_expected = np .array ([1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
241
- 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 0 , 0 ])
241
+ 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 0 ,
242
+ 0 ])
242
243
243
244
strong = SPIDER (kind = 'strong' )
244
245
X_resampled , y_resampled = strong .fit_resample (X , y )
0 commit comments