Skip to content

Commit c31e562

Browse files
author
Joan Massich
committed
change assert_raise for raises(xxx)
1 parent a864553 commit c31e562

File tree

6 files changed

+54
-39
lines changed

6 files changed

+54
-39
lines changed

imblearn/ensemble/tests/test_balance_cascade.py

Lines changed: 5 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -6,12 +6,14 @@
66
from __future__ import print_function
77

88
import numpy as np
9-
from sklearn.utils.testing import assert_array_equal, assert_raises
9+
from sklearn.utils.testing import assert_array_equal
1010
from sklearn.utils.testing import assert_raises_regex
1111
from sklearn.ensemble import RandomForestClassifier
1212

1313
from imblearn.ensemble import BalanceCascade
1414

15+
from pytest import raises
16+
1517
RND_SEED = 0
1618
X = np.array([[0.11622591, -0.0317206], [0.77481731, 0.60935141],
1719
[1.25192108, -0.22367336], [0.53366841, -0.30312976],
@@ -299,7 +301,8 @@ def test_fit_sample_auto_linear_svm():
299301
def test_init_wrong_classifier():
300302
classifier = 'rnd'
301303
bc = BalanceCascade(classifier=classifier)
302-
assert_raises(NotImplementedError, bc.fit_sample, X, Y)
304+
with raises(NotImplementedError):
305+
bc.fit_sample(X, Y)
303306

304307

305308
def test_fit_sample_auto_early_stop():

imblearn/metrics/tests/test_classification.py

Lines changed: 17 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@
1717
from sklearn.utils.fixes import np_version
1818
from sklearn.utils.validation import check_random_state
1919
from sklearn.utils.testing import assert_allclose, assert_array_equal
20-
from sklearn.utils.testing import assert_no_warnings, assert_raises
20+
from sklearn.utils.testing import assert_no_warnings
2121
from sklearn.utils.testing import assert_warns_message, ignore_warnings
2222
from sklearn.utils.testing import assert_raise_message
2323
from sklearn.metrics import accuracy_score, average_precision_score
@@ -32,7 +32,7 @@
3232
from imblearn.metrics import make_index_balanced_accuracy
3333
from imblearn.metrics import classification_report_imbalanced
3434

35-
from pytest import approx
35+
from pytest import approx, raises
3636

3737
RND_SEED = 42
3838
R_TOL = 1e-2
@@ -177,27 +177,22 @@ def test_sensitivity_specificity_error_multilabels():
177177
y_true_bin = label_binarize(y_true, classes=np.arange(5))
178178
y_pred_bin = label_binarize(y_pred, classes=np.arange(5))
179179

180-
assert_raises(ValueError, sensitivity_score, y_true_bin, y_pred_bin)
180+
with raises(ValueError):
181+
sensitivity_score(y_true_bin, y_pred_bin)
181182

182183

183184
@ignore_warnings
184185
def test_sensitivity_specificity_support_errors():
185186
y_true, y_pred, _ = make_prediction(binary=True)
186187

187188
# Bad pos_label
188-
assert_raises(
189-
ValueError,
190-
sensitivity_specificity_support,
191-
y_true,
192-
y_pred,
193-
pos_label=2,
194-
average='binary')
189+
with raises(ValueError):
190+
sensitivity_specificity_support(y_true, y_pred, pos_label=2,
191+
average='binary')
195192

196193
# Bad average option
197-
assert_raises(
198-
ValueError,
199-
sensitivity_specificity_support, [0, 1, 2], [1, 2, 0],
200-
average='mega')
194+
with raises(ValueError):
195+
sensitivity_specificity_support([0, 1, 2], [1, 2, 0], average='mega')
201196

202197

203198
def test_sensitivity_specificity_unused_pos_label():
@@ -459,16 +454,20 @@ def test_iba_error_y_score_prob():
459454

460455
aps = make_index_balanced_accuracy(alpha=0.5, squared=True)(
461456
average_precision_score)
462-
assert_raises(AttributeError, aps, y_true, y_pred)
457+
with raises(AttributeError):
458+
aps(y_true, y_pred)
463459

464460
brier = make_index_balanced_accuracy(alpha=0.5, squared=True)(
465461
brier_score_loss)
466-
assert_raises(AttributeError, brier, y_true, y_pred)
462+
with raises(AttributeError):
463+
brier(y_true, y_pred)
467464

468465
kappa = make_index_balanced_accuracy(alpha=0.5, squared=True)(
469466
cohen_kappa_score)
470-
assert_raises(AttributeError, kappa, y_true, y_pred)
467+
with raises(AttributeError):
468+
kappa(y_true, y_pred)
471469

472470
ras = make_index_balanced_accuracy(alpha=0.5, squared=True)(
473471
roc_auc_score)
474-
assert_raises(AttributeError, ras, y_true, y_pred)
472+
with raises(AttributeError):
473+
ras(y_true, y_pred)

imblearn/tests/test_pipeline.py

Lines changed: 18 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,6 @@
1111
import time
1212

1313
import numpy as np
14-
from sklearn.utils.testing import assert_raises
1514
from sklearn.utils.testing import assert_raises_regex
1615
from sklearn.utils.testing import assert_raise_message
1716
from sklearn.utils.testing import assert_array_equal
@@ -33,6 +32,8 @@
3332
from imblearn.under_sampling import (RandomUnderSampler,
3433
EditedNearestNeighbours as ENN)
3534

35+
from pytest import raises
36+
3637
JUNK_FOOD_DOCS = (
3738
"the pizza pizza beer copyright",
3839
"the pizza burger beer copyright",
@@ -176,7 +177,8 @@ def transform(self, X, y=None):
176177

177178
def test_pipeline_init():
178179
# Test the various init parameters of the pipeline.
179-
assert_raises(TypeError, Pipeline)
180+
with raises(TypeError):
181+
Pipeline()
180182
# Check that we can't instantiate pipelines with objects without fit
181183
# method
182184
assert_raises_regex(TypeError,
@@ -215,7 +217,8 @@ def test_pipeline_init():
215217
repr(pipe)
216218

217219
# Check that params are not set when naming them wrong
218-
assert_raises(ValueError, pipe.set_params, anova__C=0.1)
220+
with raises(ValueError):
221+
pipe.set_params(anova__C=0.1)
219222

220223
# Test clone
221224
pipe2 = clone(pipe)
@@ -471,8 +474,10 @@ def test_set_pipeline_steps():
471474

472475
# With invalid data
473476
pipeline.set_params(steps=[('junk', ())])
474-
assert_raises(TypeError, pipeline.fit, [[1]], [1])
475-
assert_raises(TypeError, pipeline.fit_transform, [[1]], [1])
477+
with raises(TypeError):
478+
pipeline.fit([[1]], [1])
479+
with raises(TypeError):
480+
pipeline.fit_transform([[1]], [1])
476481

477482

478483
def test_set_pipeline_step_none():
@@ -595,10 +600,12 @@ def test_classes_property():
595600

596601
reg = make_pipeline(SelectKBest(k=1), LinearRegression())
597602
reg.fit(X, y)
598-
assert_raises(AttributeError, getattr, reg, "classes_")
603+
with raises(AttributeError):
604+
getattr(reg, "classes_")
599605

600606
clf = make_pipeline(SelectKBest(k=1), LogisticRegression(random_state=0))
601-
assert_raises(AttributeError, getattr, clf, "classes_")
607+
with raises(AttributeError):
608+
getattr(clf, "classes_")
602609
clf.fit(X, y)
603610
assert_array_equal(clf.classes_, np.unique(y))
604611

@@ -1018,9 +1025,8 @@ def test_pipeline_with_step_that_implements_both_sample_and_transform():
10181025
random_state=0)
10191026

10201027
clf = LogisticRegression()
1021-
assert_raises(TypeError, Pipeline, [('step', FitTransformSample()),
1022-
('logistic', clf)])
1023-
# assert_raises(TypeError, lambda x: [][0])
1028+
with raises(TypeError):
1029+
Pipeline([('step', FitTransformSample()), ('logistic', clf)])
10241030

10251031

10261032
def test_pipeline_with_step_that_it_is_pipeline():
@@ -1041,7 +1047,8 @@ def test_pipeline_with_step_that_it_is_pipeline():
10411047
rus = RandomUnderSampler(random_state=0)
10421048
filter1 = SelectKBest(f_classif, k=2)
10431049
pipe1 = Pipeline([('rus', rus), ('anova', filter1)])
1044-
assert_raises(TypeError, Pipeline, [('pipe1', pipe1), ('logistic', clf)])
1050+
with raises(TypeError):
1051+
Pipeline([('pipe1', pipe1), ('logistic', clf)])
10451052

10461053

10471054
def test_pipeline_fit_then_sample_with_sampler_last_estimator():

imblearn/under_sampling/prototype_selection/tests/test_allknn.py

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -7,12 +7,13 @@
77

88
import numpy as np
99
from sklearn.utils.testing import assert_allclose, assert_array_equal
10-
from sklearn.utils.testing import assert_raises
1110
from sklearn.neighbors import NearestNeighbors
1211
from sklearn.datasets import make_classification
1312

1413
from imblearn.under_sampling import AllKNN
1514

15+
from pytest import raises
16+
1617
RND_SEED = 0
1718
X = np.array([[-0.12840393, 0.66446571], [1.32319756, -0.13181616],
1819
[0.04296502, -0.37981873], [0.83631853, 0.18569783],
@@ -171,4 +172,5 @@ def test_allknn_fit_sample_with_nn_object():
171172
def test_alknn_not_good_object():
172173
nn = 'rnd'
173174
allknn = AllKNN(n_neighbors=nn, random_state=RND_SEED, kind_sel='mode')
174-
assert_raises(ValueError, allknn.fit_sample, X, Y)
175+
with raises(ValueError):
176+
allknn.fit_sample(X, Y)

imblearn/under_sampling/prototype_selection/tests/test_instance_hardness_threshold.py

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -7,12 +7,12 @@
77

88
import numpy as np
99
from sklearn.utils.testing import assert_array_equal
10-
from sklearn.utils.testing import assert_raises
11-
from sklearn.utils.testing import assert_raises_regex
1210
from sklearn.ensemble import GradientBoostingClassifier
1311

1412
from imblearn.under_sampling import InstanceHardnessThreshold
1513

14+
from pytest import raises
15+
1616
RND_SEED = 0
1717
X = np.array([[-0.3879569, 0.6894251], [-0.09322739, 1.28177189],
1818
[-0.77740357, 0.74097941], [0.91542919, -0.65453327],
@@ -31,7 +31,8 @@ def test_iht_wrong_estimator():
3131
est = 'rnd'
3232
iht = InstanceHardnessThreshold(
3333
estimator=est, ratio=ratio, random_state=RND_SEED)
34-
assert_raises(NotImplementedError, iht.fit_sample, X, Y)
34+
with raises(NotImplementedError):
35+
iht.fit_sample(X, Y)
3536

3637

3738
def test_iht_init():

imblearn/under_sampling/prototype_selection/tests/test_repeated_edited_nearest_neighbours.py

Lines changed: 6 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -7,12 +7,13 @@
77

88
import numpy as np
99
from sklearn.utils.testing import assert_array_equal
10-
from sklearn.utils.testing import assert_raises
1110

1211
from sklearn.neighbors import NearestNeighbors
1312

1413
from imblearn.under_sampling import RepeatedEditedNearestNeighbours
1514

15+
from pytest import raises
16+
1617
RND_SEED = 0
1718
X = np.array([[-0.12840393, 0.66446571], [1.32319756, -0.13181616],
1819
[0.04296502, -0.37981873], [0.83631853, 0.18569783],
@@ -53,7 +54,8 @@ def test_renn_iter_wrong():
5354
max_iter = -1
5455
renn = RepeatedEditedNearestNeighbours(
5556
max_iter=max_iter, random_state=RND_SEED)
56-
assert_raises(ValueError, renn.fit_sample, X, Y)
57+
with raises(ValueError):
58+
renn.fit_sample(X, Y)
5759

5860

5961
def test_renn_fit_sample():
@@ -177,4 +179,5 @@ def test_renn_not_good_object():
177179
nn = 'rnd'
178180
renn = RepeatedEditedNearestNeighbours(
179181
n_neighbors=nn, random_state=RND_SEED, kind_sel='mode')
180-
assert_raises(ValueError, renn.fit_sample, X, Y)
182+
with raises(ValueError):
183+
renn.fit_sample(X, Y)

0 commit comments

Comments
 (0)