@@ -77,9 +77,10 @@ def convert_float64(X):
77
77
SimpleImputer (missing_values = - 1 , strategy = 'most_frequent' ),
78
78
OneHotEncoder (categories = 'auto' ))
79
79
80
- preprocessor = ColumnTransformer ([('num' , numerical_pipeline , num_col ),
81
- ('cat' , categorical_pipeline , cat_col )],
82
- remainder = 'drop' )
80
+ preprocessor = ColumnTransformer (
81
+ [('numerical_preprocessing' , numerical_pipeline , numerical_columns ),
82
+ ('categorical_preprocessing' , categorical_pipeline , categorical_columns )],
83
+ remainder = 'drop' )
83
84
84
85
# Create an environment variable to avoid using the GPU. This can be changed.
85
86
import os
@@ -150,7 +151,7 @@ def wrapper(*args, **kwds):
150
151
@timeit
151
152
def fit_predict_imbalanced_model (X_train , y_train , X_test , y_test ):
152
153
model = make_model (X_train .shape [1 ])
153
- model .fit (X_train , y_train , epochs = 2 , verbose = 0 , batch_size = 1000 )
154
+ model .fit (X_train , y_train , epochs = 2 , verbose = 1 , batch_size = 1000 )
154
155
y_pred = model .predict_proba (X_test , batch_size = 1000 )
155
156
return roc_auc_score (y_test , y_pred )
156
157
@@ -168,7 +169,7 @@ def fit_predict_balanced_model(X_train, y_train, X_test, y_test):
168
169
training_generator = BalancedBatchGenerator (X_train , y_train ,
169
170
batch_size = 1000 ,
170
171
random_state = 42 )
171
- model .fit_generator (generator = training_generator , epochs = 5 , verbose = 0 )
172
+ model .fit_generator (generator = training_generator , epochs = 5 , verbose = 1 )
172
173
y_pred = model .predict_proba (X_test , batch_size = 1000 )
173
174
return roc_auc_score (y_test , y_pred )
174
175
0 commit comments