@@ -32,86 +32,102 @@ def test_imblearn_classification_scorers():
32
32
33
33
# sensitivity scorer
34
34
scorer = make_scorer (sensitivity_score , pos_label = None , average = 'macro' )
35
- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
35
+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
36
+ scoring = scorer )
36
37
grid .fit (X_train , y_train ).predict (X_test )
37
38
assert_allclose (grid .best_score_ , 0.92 , rtol = R_TOL )
38
39
39
40
scorer = make_scorer (sensitivity_score , pos_label = None , average = 'weighted' )
40
- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
41
+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
42
+ scoring = scorer )
41
43
grid .fit (X_train , y_train ).predict (X_test )
42
44
assert_allclose (grid .best_score_ , 0.92 , rtol = R_TOL )
43
45
44
46
scorer = make_scorer (sensitivity_score , pos_label = None , average = 'micro' )
45
- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
47
+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
48
+ scoring = scorer )
46
49
grid .fit (X_train , y_train ).predict (X_test )
47
50
assert_allclose (grid .best_score_ , 0.92 , rtol = R_TOL )
48
51
49
52
scorer = make_scorer (sensitivity_score , pos_label = 1 )
50
- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
53
+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
54
+ scoring = scorer )
51
55
grid .fit (X_train , y_train ).predict (X_test )
52
56
assert_allclose (grid .best_score_ , 0.92 , rtol = R_TOL )
53
57
54
58
# specificity scorer
55
59
scorer = make_scorer (specificity_score , pos_label = None , average = 'macro' )
56
- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
60
+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
61
+ scoring = scorer )
57
62
grid .fit (X_train , y_train ).predict (X_test )
58
63
assert_allclose (grid .best_score_ , 0.92 , rtol = R_TOL )
59
64
60
65
scorer = make_scorer (specificity_score , pos_label = None , average = 'weighted' )
61
- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
66
+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
67
+ scoring = scorer )
62
68
grid .fit (X_train , y_train ).predict (X_test )
63
69
assert_allclose (grid .best_score_ , 0.92 , rtol = R_TOL )
64
70
65
71
scorer = make_scorer (specificity_score , pos_label = None , average = 'micro' )
66
- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
72
+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
73
+ scoring = scorer )
67
74
grid .fit (X_train , y_train ).predict (X_test )
68
75
assert_allclose (grid .best_score_ , 0.92 , rtol = R_TOL )
69
76
70
77
scorer = make_scorer (specificity_score , pos_label = 1 )
71
- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
78
+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
79
+ scoring = scorer )
72
80
grid .fit (X_train , y_train ).predict (X_test )
73
81
assert_allclose (grid .best_score_ , 0.95 , rtol = R_TOL )
74
82
75
83
# geometric_mean scorer
76
84
scorer = make_scorer (geometric_mean_score , pos_label = None , average = 'macro' )
77
- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
85
+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
86
+ scoring = scorer )
78
87
grid .fit (X_train , y_train ).predict (X_test )
79
88
assert_allclose (grid .best_score_ , 0.92 , rtol = R_TOL )
80
89
81
90
scorer = make_scorer (
82
91
geometric_mean_score , pos_label = None , average = 'weighted' )
83
- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
92
+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
93
+ scoring = scorer )
84
94
grid .fit (X_train , y_train ).predict (X_test )
85
95
assert_allclose (grid .best_score_ , 0.92 , rtol = R_TOL )
86
96
87
97
scorer = make_scorer (geometric_mean_score , pos_label = None , average = 'micro' )
88
- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
98
+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
99
+ scoring = scorer )
89
100
grid .fit (X_train , y_train ).predict (X_test )
90
101
assert_allclose (grid .best_score_ , 0.92 , rtol = R_TOL )
91
102
92
103
scorer = make_scorer (geometric_mean_score , pos_label = 1 )
93
- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
104
+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
105
+ scoring = scorer )
94
106
grid .fit (X_train , y_train ).predict (X_test )
95
107
assert_allclose (grid .best_score_ , 0.92 , rtol = R_TOL )
96
108
97
109
# make a iba metric before a scorer
98
110
geo_mean_iba = make_index_balanced_accuracy ()(geometric_mean_score )
99
111
scorer = make_scorer (geo_mean_iba , pos_label = None , average = 'macro' )
100
- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
112
+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
113
+ scoring = scorer )
101
114
grid .fit (X_train , y_train ).predict (X_test )
102
115
assert_allclose (grid .best_score_ , 0.85 , rtol = R_TOL )
103
116
104
117
scorer = make_scorer (geo_mean_iba , pos_label = None , average = 'weighted' )
105
- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
118
+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
119
+ scoring = scorer )
106
120
grid .fit (X_train , y_train ).predict (X_test )
107
121
assert_allclose (grid .best_score_ , 0.85 , rtol = R_TOL )
108
122
109
123
scorer = make_scorer (geo_mean_iba , pos_label = None , average = 'micro' )
110
- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
124
+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
125
+ scoring = scorer )
111
126
grid .fit (X_train , y_train ).predict (X_test )
112
127
assert_allclose (grid .best_score_ , 0.85 , rtol = R_TOL )
113
128
114
129
scorer = make_scorer (geo_mean_iba , pos_label = 1 )
115
- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
130
+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
131
+ scoring = scorer )
116
132
grid .fit (X_train , y_train ).predict (X_test )
117
133
assert_allclose (grid .best_score_ , 0.84 , rtol = R_TOL )
0 commit comments