You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.rst
+15-15Lines changed: 15 additions & 15 deletions
Original file line number
Diff line number
Diff line change
@@ -169,32 +169,32 @@ The different algorithms are presented in the sphinx-gallery_.
169
169
References:
170
170
-----------
171
171
172
-
.. [1] : I. Tomek, “Two modifications of CNN,” In Systems, Man, and Cybernetics, IEEE Transactions on, vol. 6, pp 769-772, 2010.
172
+
.. [1] : I. Tomek, “Two modifications of CNN,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 6, pp. 769-772, 1976. [`bib <references.bib#L148>`_]
173
173
174
-
.. [2] : I. Mani, I. Zhang. “kNN approach to unbalanced data distributions: a case study involving information extraction,” In Proceedings of workshop on learning from imbalanced datasets, 2003.
174
+
.. [2] : I. Mani, J. Zhang. “kNN approach to unbalanced data distributions: A case study involving information extraction,” In Proceedings of the Workshop on Learning from Imbalanced Data Sets, pp. 1-7, 2003. [`pdf <https://www.site.uottawa.ca/~nat/Workshop2003/jzhang.pdf>`_] [`bib <references.bib#L113>`_]
175
175
176
-
.. [3] : P. Hart, “The condensed nearest neighbor rule,” In Information Theory, IEEE Transactions on, vol. 14(3), pp. 515-516, 1968.
176
+
.. [3] : P. E. Hart, “The condensed nearest neighbor rule,” IEEE Transactions on Information Theory, vol. 14(3), pp. 515-516, 1968. [`pdf <http://sci2s.ugr.es/keel/pdf/algorithm/articulo/hart1968.pdf>`_] [`bib <references.bib#L51>`_]
177
177
178
-
.. [4] : M. Kubat, S. Matwin, “Addressing the curse of imbalanced training sets: one-sided selection,” In ICML, vol. 97, pp. 179-186, 1997.
178
+
.. [4] : M. Kubat, S. Matwin, “Addressing the curse of imbalanced training sets: One-sided selection,” In Proceedings of the 14th International Conference on Machine Learning, vol. 97, pp. 179-186, 1997. [`pdf <http://sci2s.ugr.es/keel/pdf/algorithm/congreso/kubat97addressing.pdf>`_] [`bib <references.bib#L76>`_]
179
179
180
-
.. [5] : J. Laurikkala, “Improving identification of difficult small classes by balancing class distribution,” Springer Berlin Heidelberg, 2001.
180
+
.. [5] : J. Laurikkala, “Improving identification of difficult small classes by balancing class distribution,” Proceedings of the 8th Conference on Artificial Intelligence in Medicine in Europe, pp. 63-66, 2001. [`pdf <https://pdfs.semanticscholar.org/0e75/4db8253e84cde4ade4b6f5ba768a6150569a.pdf>`_] [`bib <references.bib#L89>`_]
181
181
182
-
.. [6] : D. Wilson, “Asymptotic Properties of Nearest Neighbor Rules Using Edited Data,” In IEEE Transactions on Systems, Man, and Cybernetrics, vol. 2(3), pp. 408-421, 1972.
182
+
.. [6] : D. Wilson, “Asymptotic Properties of Nearest Neighbor Rules Using Edited Data,” IEEE Transactions on Systems, Man, and Cybernetrics, vol. 2(3), pp. 408-421, 1972. [`pdf <http://sci2s.ugr.es/keel/pdf/algorithm/articulo/1972-Wilson-IEEETSMC.pdf>`_] [`bib <references.bib#L168>`_]
183
183
184
-
.. [7] : D. Smith, Michael R., Tony Martinez, and Christophe Giraud-Carrier. “An instance level analysis of data complexity.” Machine learning 95.2 (2014): 225-256.
184
+
.. [7] : M. R. Smith, T. Martinez, C. Giraud-Carrier, “An instance level analysis of data complexity,” Machine learning, vol. 95(2), pp. 225-256, 2014. [`pdf <https://pdfs.semanticscholar.org/5796/8c07abe6a734977db47b08cf4c567733aede.pdf>`_] [`bib <references.bib#L136>`_]
185
185
186
-
.. [8] : N. V. Chawla, K. W. Bowyer, L. O.Hall, W. P. Kegelmeyer, “SMOTE: synthetic minority over-sampling technique,” Journal of artificial intelligence research, 321-357, 2002.
186
+
.. [8] : N. V. Chawla, K. W. Bowyer, L. O.Hall, W. P. Kegelmeyer, “SMOTE: Synthetic minority over-sampling technique,” Journal of Artificial Intelligence Research, vol. 16, pp. 321-357, 2002. [`pdf <http://www.jair.org/media/953/live-953-2037-jair.pdf>`_] [`bib <references.bib#L28>`_]
187
187
188
-
.. [9] : H. Han, W. Wen-Yuan, M. Bing-Huan, “Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning,” Advances in intelligent computing, 878-887, 2005.
188
+
.. [9] : H. Han, W.-Y. Wang, B.-H. Mao, “Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning,” In Proceedings of the 1st International Conference on Intelligent Computing, pp. 878-887, 2005. [`pdf <http://sci2s.ugr.es/keel/pdf/specific/congreso/han_borderline_smote.pdf>`_] [`bib <references.bib#L38>`_]
189
189
190
-
.. [10] : H. M. Nguyen, E. W. Cooper, K. Kamei, “Borderline over-sampling for imbalanced data classification,” International Journal of Knowledge Engineering and Soft Data Paradigms, 3(1), pp.4-21, 2001.
190
+
.. [10] : H. M. Nguyen, E. W. Cooper, K. Kamei, “Borderline over-sampling for imbalanced data classification,” In Proceedings of the 5th International Workshop on computational Intelligence and Applications, pp. 24-29, 2009. [`pdf <http://ousar.lib.okayama-u.ac.jp/files/public/1/19617/20160528004522391723/IWCIA2009_A1005.pdf>`_] [`bib <references.bib#L126>`_]
191
191
192
-
.. [11] : G. Batista, R. C. Prati, M. C. Monard. “A study of the behavior of several methods for balancing machine learning training data,” ACM Sigkdd Explorations Newsletter 6 (1), 20-29, 2004.
192
+
.. [11] : G. E. A. P. A. Batista, R. C. Prati, M. C. Monard, “A study of the behavior of several methods for balancing machine learning training data,” ACM Sigkdd Explorations Newsletter, vol. 6(1), pp. 20-29, 2004. [`pdf <http://sci2s.ugr.es/keel/dataset/includes/catImbFiles/2004-Batista-SIGKDD.pdf>`_] [`bib <references.bib#L15>`_]
193
193
194
-
.. [12] : G. Batista, B. Bazzan, M. Monard, [“Balancing Training Data for Automated Annotation of Keywords: a Case Study,” In WOB, 10-18, 2003.
194
+
.. [12] : G. E. A. P. A. Batista, A. L. C. Bazzan, M. C. Monard, “Balancing training data for automated annotation of keywords: A case study,” In Proceedings of the 2nd Brazilian Workshop on Bioinformatics, pp. 10-18, 2003. [`pdf <http://www.inf.ufrgs.br/maslab/pergamus/pubs/balancing-training-data-for.pdf>`_] [`bib <references.bib#L2>`_]
195
195
196
-
.. [13] : X.Y. Liu, J. Wu and Z.H. Zhou, “Exploratory Undersampling for Class-Imbalance Learning,” in IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 2, pp. 539-550, April 2009.
196
+
.. [13] : X.-Y. Liu, J. Wu and Z.-H. Zhou, “Exploratory undersampling for class-imbalance learning,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 39(2), pp. 539-550, 2009. [`pdf <https://pdfs.semanticscholar.org/beac/3afc6a2cbdefe8dae03de25a139193ef6021.pdf>`_] [`bib <references.bib#L102>`_]
197
197
198
-
.. [14] : I. Tomek, “An Experiment with the Edited Nearest-Neighbor Rule,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 6(6), pp. 448-452, June 1976.
198
+
.. [14] : I. Tomek, “An experiment with the edited nearest-neighbor rule,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 6(6), pp. 448-452, 1976. [`bib <references.bib#L158>`_]
199
199
200
-
.. [15] : He, Haibo, Yang Bai, Edwardo A. Garcia, and Shutao Li. “ADASYN: Adaptive synthetic sampling approach for imbalanced learning,” In IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322-1328, 2008.
200
+
.. [15] : H. He, Y. Bai, E. A. Garcia, S. Li, “ADASYN: Adaptive synthetic sampling approach for imbalanced learning,” In Proceedings of the 5th IEEE International Joint Conference on Neural Networks, pp. 1322-1328, 2008. [`pdf <https://pdfs.semanticscholar.org/4823/4756b7cf798bfeb47328f7c5d597fd4838c2.pdf>`_] [`bib <references.bib#L62>`_]
0 commit comments