|
30 | 30 |
|
31 | 31 | from imblearn.over_sampling.base import BaseOverSampler
|
32 | 32 | from imblearn.under_sampling.base import BaseCleaningSampler, BaseUnderSampler
|
33 |
| -from imblearn.ensemble.base import BaseEnsembleSampler |
34 | 33 | from imblearn.under_sampling import NearMiss, ClusterCentroids
|
35 | 34 |
|
36 | 35 |
|
@@ -168,12 +167,6 @@ def check_samplers_fit_resample(name, Sampler):
|
168 | 167 | for class_sample in target_stats.keys()
|
169 | 168 | if class_sample != class_minority
|
170 | 169 | )
|
171 |
| - elif isinstance(sampler, BaseEnsembleSampler): |
172 |
| - y_ensemble = y_res[0] |
173 |
| - n_samples = min(target_stats.values()) |
174 |
| - assert all( |
175 |
| - value == n_samples for value in Counter(y_ensemble).values() |
176 |
| - ) |
177 | 170 |
|
178 | 171 |
|
179 | 172 | def check_samplers_sampling_strategy_fit_resample(name, Sampler):
|
@@ -202,12 +195,6 @@ def check_samplers_sampling_strategy_fit_resample(name, Sampler):
|
202 | 195 | sampler.set_params(sampling_strategy=sampling_strategy)
|
203 | 196 | X_res, y_res = sampler.fit_resample(X, y)
|
204 | 197 | assert Counter(y_res)[1] == expected_stat
|
205 |
| - if isinstance(sampler, BaseEnsembleSampler): |
206 |
| - sampling_strategy = {2: 201, 0: 201} |
207 |
| - sampler.set_params(sampling_strategy=sampling_strategy) |
208 |
| - X_res, y_res = sampler.fit_resample(X, y) |
209 |
| - y_ensemble = y_res[0] |
210 |
| - assert Counter(y_ensemble)[1] == expected_stat |
211 | 198 |
|
212 | 199 |
|
213 | 200 | def check_samplers_sparse(name, Sampler):
|
@@ -239,17 +226,10 @@ def check_samplers_sparse(name, Sampler):
|
239 | 226 | set_random_state(sampler)
|
240 | 227 | X_res_sparse, y_res_sparse = sampler.fit_resample(X_sparse, y)
|
241 | 228 | X_res, y_res = sampler.fit_resample(X, y)
|
242 |
| - if not isinstance(sampler, BaseEnsembleSampler): |
243 |
| - assert sparse.issparse(X_res_sparse) |
244 |
| - assert_allclose(X_res_sparse.A, X_res) |
245 |
| - assert_allclose(y_res_sparse, y_res) |
246 |
| - else: |
247 |
| - for x_sp, x, y_sp, y in zip( |
248 |
| - X_res_sparse, X_res, y_res_sparse, y_res |
249 |
| - ): |
250 |
| - assert sparse.issparse(x_sp) |
251 |
| - assert_allclose(x_sp.A, x) |
252 |
| - assert_allclose(y_sp, y) |
| 229 | + for x_sp, x, y_sp, y in zip(X_res_sparse, X_res, y_res_sparse, y_res): |
| 230 | + assert sparse.issparse(x_sp) |
| 231 | + assert_allclose(x_sp.A, x) |
| 232 | + assert_allclose(y_sp, y) |
253 | 233 |
|
254 | 234 |
|
255 | 235 | def check_samplers_pandas(name, Sampler):
|
@@ -297,13 +277,8 @@ def check_samplers_multiclass_ova(name, Sampler):
|
297 | 277 | X_res, y_res = sampler.fit_resample(X, y)
|
298 | 278 | X_res_ova, y_res_ova = sampler.fit_resample(X, y_ova)
|
299 | 279 | assert_allclose(X_res, X_res_ova)
|
300 |
| - if issubclass(Sampler, BaseEnsembleSampler): |
301 |
| - for batch_y, batch_y_ova in zip(y_res, y_res_ova): |
302 |
| - assert type_of_target(batch_y_ova) == type_of_target(y_ova) |
303 |
| - assert_allclose(batch_y, batch_y_ova.argmax(axis=1)) |
304 |
| - else: |
305 |
| - assert type_of_target(y_res_ova) == type_of_target(y_ova) |
306 |
| - assert_allclose(y_res, y_res_ova.argmax(axis=1)) |
| 280 | + assert type_of_target(y_res_ova) == type_of_target(y_ova) |
| 281 | + assert_allclose(y_res, y_res_ova.argmax(axis=1)) |
307 | 282 |
|
308 | 283 |
|
309 | 284 | def check_samplers_preserve_dtype(name, Sampler):
|
|
0 commit comments