@@ -29,7 +29,7 @@ randomly sampling with replacement the current available samples. The
29
29
>>> ros = RandomOverSampler(random_state=0)
30
30
>>> X_resampled, y_resampled = ros.fit_sample(X, y)
31
31
>>> from collections import Counter
32
- >>> print(Counter(y_resampled))
32
+ >>> print(Counter(y_resampled)) # doctest: +SKIP
33
33
Counter({2: 4674, 1: 4674, 0: 4674})
34
34
35
35
The augmented data set should be used instead of the original data set to train
@@ -67,7 +67,7 @@ can be used in the same manner::
67
67
68
68
>>> from imblearn.over_sampling import SMOTE, ADASYN
69
69
>>> X_resampled, y_resampled = SMOTE().fit_sample(X, y)
70
- >>> print(Counter(y_resampled))
70
+ >>> print(Counter(y_resampled)) # doctest: +SKIP
71
71
Counter({2: 4674, 1: 4674, 0: 4674})
72
72
>>> clf_smote = LinearSVC().fit(X_resampled, y_resampled)
73
73
>>> X_resampled, y_resampled = ADASYN().fit_sample(X, y)
@@ -132,7 +132,7 @@ available: (i) ``'borderline1'``, (ii) ``'borderline2'``, and (iii) ``'svm'``::
132
132
133
133
>>> from imblearn.over_sampling import SMOTE, ADASYN
134
134
>>> X_resampled, y_resampled = SMOTE(kind='borderline1').fit_sample(X, y)
135
- >>> print(Counter(y_resampled))
135
+ >>> print(Counter(y_resampled)) # doctest: +SKIP
136
136
Counter({2: 4674, 1: 4674, 0: 4674})
137
137
138
138
See :ref: `sphx_glr_auto_examples_over-sampling_plot_comparison_over_sampling.py `
0 commit comments