Skip to content

Commit 8039bd4

Browse files
committed
MNT update README file
1 parent 5e56e88 commit 8039bd4

File tree

1 file changed

+13
-4
lines changed

1 file changed

+13
-4
lines changed

README.rst

Lines changed: 13 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,7 @@ Documentation
4141
Installation documentation, API documentation, and examples can be found on the
4242
documentation_.
4343

44-
.. _documentation: https://imbalanced-learn.readthedocs.io/en/stable/
44+
.. _documentation: https://imbalanced-learn.org/stable/
4545

4646
Installation
4747
------------
@@ -150,9 +150,11 @@ Below is a list of the methods currently implemented in this module.
150150
* Over-sampling
151151
1. Random minority over-sampling with replacement
152152
2. SMOTE - Synthetic Minority Over-sampling Technique [8]_
153-
3. bSMOTE(1 & 2) - Borderline SMOTE of types 1 and 2 [9]_
154-
4. SVM SMOTE - Support Vectors SMOTE [10]_
155-
5. ADASYN - Adaptive synthetic sampling approach for imbalanced learning [15]_
153+
3. SMOTENC - SMOTE for Nominal Continuous [8]_
154+
4. bSMOTE(1 & 2) - Borderline SMOTE of types 1 and 2 [9]_
155+
5. SVM SMOTE - Support Vectors SMOTE [10]_
156+
6. ADASYN - Adaptive synthetic sampling approach for imbalanced learning [15]_
157+
7. KMeans-SMOTE [17]_
156158

157159
* Over-sampling followed by under-sampling
158160
1. SMOTE + Tomek links [12]_
@@ -162,6 +164,9 @@ Below is a list of the methods currently implemented in this module.
162164
1. Easy Ensemble classifier [13]_
163165
2. Balanced Random Forest [16]_
164166
3. Balanced Bagging
167+
4. RUSBoost [18]_
168+
169+
* Mini-batch resampling for Keras and Tensorflow
165170

166171
The different algorithms are presented in the sphinx-gallery_.
167172

@@ -202,3 +207,7 @@ References:
202207
.. [15] : H. He, Y. Bai, E. A. Garcia, S. Li, “ADASYN: Adaptive synthetic sampling approach for imbalanced learning,” In Proceedings of the 5th IEEE International Joint Conference on Neural Networks, pp. 1322-1328, 2008.
203208
204209
.. [16] : C. Chao, A. Liaw, and L. Breiman. "Using random forest to learn imbalanced data." University of California, Berkeley 110 (2004): 1-12.
210+
211+
.. [17] : Felix Last, Georgios Douzas, Fernando Bacao, "Oversampling for Imbalanced Learning Based on K-Means and SMOTE"
212+
213+
.. [18] : Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. "RUSBoost: A hybrid approach to alleviating class imbalance." IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 40.1 (2010): 185-197.

0 commit comments

Comments
 (0)