@@ -15,6 +15,11 @@ scikit-learn:
15
15
- :class: `imblearn.under_sampling.ClusterCentroids `
16
16
- :class: `imblearn.under_sampling.InstanceHardnessThreshold `
17
17
18
+ The following samplers will give different results due to change linked to
19
+ the random state internal usage:
20
+
21
+ - :class: `imblearn.over_sampling.SMOTENC `
22
+
18
23
Bug fixes
19
24
.........
20
25
@@ -52,7 +57,8 @@ Enhancement
52
57
- :class: `imblearn.under_sampling.RandomUnderSampling `,
53
58
:class: `imblearn.over_sampling.RandomOverSampling `,
54
59
:class: `imblearn.datasets.make_imbalance ` accepts Pandas DataFrame in and
55
- will output Pandas DataFrame.
60
+ will output Pandas DataFrame. Similarly, it will accepts Pandas Series in and
61
+ will output Pandas Series.
56
62
:pr: `636 ` by :user: `Guillaume Lemaitre <glemaitre> `.
57
63
58
64
- :class: `imblearn.FunctionSampler ` accepts a parameter ``validate `` allowing
@@ -62,7 +68,20 @@ Enhancement
62
68
- :class: `imblearn.under_sampling.RandomUnderSampler `,
63
69
:class: `imblearn.over_sampling.RandomOverSampler ` can resample when non
64
70
finite values are present in ``X ``.
65
- :pr: `643 ` by `Guillaume Lemaitre <glemaitre> `.
71
+ :pr: `643 ` by :user: `Guillaume Lemaitre <glemaitre> `.
72
+
73
+ - All samplers will output a Pandas DataFrame if a Pandas DataFrame was given
74
+ as an input.
75
+ :pr: `644 ` by :user: `Guillaume Lemaitre <glemaitre> `.
76
+
77
+ - The samples generation in
78
+ :class: `imblearn.over_sampling.SMOTE `,
79
+ :class: `imblearn.over_sampling.BorderlineSMOTE `,
80
+ :class: `imblearn.over_sampling.SVMSMOTE `,
81
+ :class: `imblearn.over_sampling.KMeansSMOTE `,
82
+ :class: `imblearn.over_sampling.SMOTENC ` is now vectorize with giving
83
+ an additional speed-up when `X ` in sparse.
84
+ :pr: `596 ` by :user: `Matt Edding <MattEding> `.
66
85
67
86
Deprecation
68
87
...........
0 commit comments