You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[RISCV][TTI] Properly model odd vector sized LD/ST operations (llvm#100436)
The motivation for this change is the costing of a LD or ST with nearly
power of 2 vectors (e.g. <3 x i32> or <7 x i32>) on V. There's an
experimental option in SLP to allow emitting these if the cost model
says they're profitable. This really helps with e.g. RGB vectors.
Our actual lowering for these depends on whether a wider container type
is known available. If so, we use a vle or vse on the wider type with a
restricted VL. If not, we split until a legal type is found, and then
apply the vle/vse on the sub-pieces.
This change is intentionally restricted to only the case where promotion
(widening w/VL predication) is involved. We appear to have at least one
bug in our splitting lowering (see discussion on review), and to avoid
exposing this more widely, I chose to not adjust costs for the splitting
case. The current splitting costing assumes scalarization (which is not
true of the actual lowering), but that has the effect of biasing
vectorization away from such cases strongly.
For the widening case, the true cost scales with the next largest legal
type. The default implementation assumes that such a type is scalarized.
Changing that brings our cost in line with our actual lowering decision.
Note that since scalarization is not possible for scalable types, the
prior costing falsely returned Invalid for that case.
; CHECK-NEXT: [[WIDE_MASKED_LOAD:%.*]] = call <vscale x 2 x i32> @llvm.masked.load.nxv2i32.p0(ptr [[TMP7]], i32 4, <vscale x 2 x i1> [[ACTIVE_LANE_MASK]], <vscale x 2 x i32> poison)
25
-
; CHECK-NEXT: [[TMP8:%.*]] = add nsw <vscale x 2 x i32> [[WIDE_MASKED_LOAD]], shufflevector (<vscale x 2 x i32> insertelement (<vscale x 2 x i32> poison, i32 1, i64 0), <vscale x 2 x i32> poison, <vscale x 2 x i32> zeroinitializer)
26
-
; CHECK-NEXT: call void @llvm.masked.store.nxv2i32.p0(<vscale x 2 x i32> [[TMP8]], ptr [[TMP7]], i32 4, <vscale x 2 x i1> [[ACTIVE_LANE_MASK]])
; CHECK-NEXT: [[WIDE_MASKED_LOAD:%.*]] = call <vscale x 1 x i32> @llvm.masked.load.nxv1i32.p0(ptr [[TMP5]], i32 4, <vscale x 1 x i1> [[ACTIVE_LANE_MASK]], <vscale x 1 x i32> poison)
23
+
; CHECK-NEXT: [[TMP6:%.*]] = add nsw <vscale x 1 x i32> [[WIDE_MASKED_LOAD]], shufflevector (<vscale x 1 x i32> insertelement (<vscale x 1 x i32> poison, i32 1, i64 0), <vscale x 1 x i32> poison, <vscale x 1 x i32> zeroinitializer)
24
+
; CHECK-NEXT: call void @llvm.masked.store.nxv1i32.p0(<vscale x 1 x i32> [[TMP6]], ptr [[TMP5]], i32 4, <vscale x 1 x i1> [[ACTIVE_LANE_MASK]])
0 commit comments