diff --git a/index.rst b/index.rst index 28b02b64563..2c48d56aa09 100644 --- a/index.rst +++ b/index.rst @@ -387,6 +387,13 @@ Welcome to PyTorch Tutorials :link: intermediate/custom_function_conv_bn_tutorial.html :tags: Extending-PyTorch,Frontend-APIs +.. customcarditem:: + :header: Forward-mode Automatic Differentiation + :card_description: Learn how to use forward-mode automatic differentiation + :image: _static/img/thumbnails/cropped/generic-pytorch-logo.PNG + :link: intermediate/forward_ad_usage.html + :tags: Frontend-APIs + .. Model Optimization .. customcarditem:: @@ -746,6 +753,7 @@ Additional Resources :caption: Frontend APIs intermediate/memory_format_tutorial + intermediate/forward_ad_usage advanced/cpp_frontend advanced/torch-script-parallelism advanced/cpp_autograd diff --git a/forward_ad_usage.py b/intermediate_source/forward_ad_usage.py similarity index 95% rename from forward_ad_usage.py rename to intermediate_source/forward_ad_usage.py index b521ebbef13..81ac5bcea0e 100644 --- a/forward_ad_usage.py +++ b/intermediate_source/forward_ad_usage.py @@ -1,11 +1,17 @@ # -*- coding: utf-8 -*- """ -Forward-mode Automatic Differentiation -====================================== +Forward-mode Automatic Differentiation (Beta) +============================================= This tutorial demonstrates how to use forward-mode AD to compute directional derivatives (or equivalently, Jacobian-vector products). +The tutorial below uses some APIs only available in versions >= 1.11 +(or nightly builds). + +Also note that forward-mode AD is currently in beta. The API is +subject to change and operator coverage is still incomplete. + Basic Usage -------------------------------------------------------------------- Unlike reverse-mode AD, forward-mode AD computes gradients eagerly