|
| 1 | +""" |
| 2 | +nn.Transformer Tutorial |
| 3 | +============================ |
| 4 | +
|
| 5 | +This is a tutorial to show how to implement `nn.Transformer <https://pytorch.org/docs/master/nn.html?highlight=nn%20transformer#torch.nn.Transformer>`__ module. |
| 6 | +
|
| 7 | +PyTorch 1.2 release includes a standard transformer module based on the |
| 8 | +paper `Attention is All You |
| 9 | +Need <https://arxiv.org/pdf/1706.03762.pdf>`__. The transformer model |
| 10 | +has been proved to be superior in quality for many sequence-to-sequence |
| 11 | +problems while being more parallelizable. The ``nn.Transformer`` module |
| 12 | +relies entirely on an attention mechanism (another module recently |
| 13 | +implemented as `nn.MultiheadAttention <https://pytorch.org/docs/master/nn.html?highlight=multiheadattention#torch.nn.MultiheadAttention>`__) to draw global dependencies |
| 14 | +between input and output. The ``nn.Transformer`` module is now highly |
| 15 | +modularized such that a single component (like `nn.TransformerEncoder <https://pytorch.org/docs/master/nn.html?highlight=nn%20transformerencoder#torch.nn.TransformerEncoder>`__ |
| 16 | +in this tutorial) can be easily adapted/composed. |
| 17 | +
|
| 18 | +.. image:: ../_static/img/transformer_architecture.jpg |
| 19 | +
|
| 20 | +""" |
| 21 | + |
| 22 | +###################################################################### |
| 23 | +# Define the model |
| 24 | +# ---------------- |
| 25 | +# |
| 26 | + |
| 27 | + |
| 28 | +###################################################################### |
| 29 | +# In this tutorial, we train ``nn.TransformerEncoder`` model on a |
| 30 | +# language modeling task. The language modeling task is to assign a |
| 31 | +# probability for the likelihood of a given word (or a sequence of words) |
| 32 | +# to follow a sequence of words. A sequence of tokens are passed to the embedding |
| 33 | +# layer first, followed by a positional encoding layer to account for the order |
| 34 | +# of the word (see the next paragraph for more details). The |
| 35 | +# ``nn.TransformerEncoder`` consists of multiple layers of |
| 36 | +# `nn.TransformerEncoderLayer <https://pytorch.org/docs/master/nn.html?highlight=transformerencoderlayer#torch.nn.TransformerEncoderLayer>`__. Along with the input sequence, a square |
| 37 | +# attention mask is required because the self-attention layers in |
| 38 | +# ``nn.TransformerEncoder`` are only allowed to attend the earlier positions in |
| 39 | +# the sequence. For the language modeling task, any tokens on the future |
| 40 | +# positions should be masked. To have the actual words, the output |
| 41 | +# of ``nn.TransformerEncoder`` model is sent to the final Linear |
| 42 | +# layer, which is followed by a log-Softmax function. |
| 43 | +# |
| 44 | + |
| 45 | +import math |
| 46 | +import torch |
| 47 | +import torch.nn as nn |
| 48 | +import torch.nn.functional as F |
| 49 | + |
| 50 | +class TransformerModel(nn.Module): |
| 51 | + |
| 52 | + def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5): |
| 53 | + super(TransformerModel, self).__init__() |
| 54 | + from torch.nn import TransformerEncoder, TransformerEncoderLayer |
| 55 | + self.model_type = 'Transformer' |
| 56 | + self.src_mask = None |
| 57 | + self.pos_encoder = PositionalEncoding(ninp, dropout) |
| 58 | + encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout) |
| 59 | + self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers) |
| 60 | + self.encoder = nn.Embedding(ntoken, ninp) |
| 61 | + self.ninp = ninp |
| 62 | + self.decoder = nn.Linear(ninp, ntoken) |
| 63 | + |
| 64 | + self.init_weights() |
| 65 | + |
| 66 | + def _generate_square_subsequent_mask(self, sz): |
| 67 | + mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) |
| 68 | + mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) |
| 69 | + return mask |
| 70 | + |
| 71 | + def init_weights(self): |
| 72 | + initrange = 0.1 |
| 73 | + self.encoder.weight.data.uniform_(-initrange, initrange) |
| 74 | + self.decoder.bias.data.zero_() |
| 75 | + self.decoder.weight.data.uniform_(-initrange, initrange) |
| 76 | + |
| 77 | + def forward(self, src): |
| 78 | + if self.src_mask is None or self.src_mask.size(0) != len(src): |
| 79 | + device = src.device |
| 80 | + mask = self._generate_square_subsequent_mask(len(src)).to(device) |
| 81 | + self.src_mask = mask |
| 82 | + |
| 83 | + src = self.encoder(src) * math.sqrt(self.ninp) |
| 84 | + src = self.pos_encoder(src) |
| 85 | + output = self.transformer_encoder(src, self.src_mask) |
| 86 | + output = self.decoder(output) |
| 87 | + return F.log_softmax(output, dim=-1) |
| 88 | + |
| 89 | + |
| 90 | +###################################################################### |
| 91 | +# ``PositionalEncoding`` module injects some information about the |
| 92 | +# relative or absolute position of the tokens in the sequence. The |
| 93 | +# positional encodings have the same dimension as the embeddings so that |
| 94 | +# the two can be summed. Here, we use ``sine`` and ``cosine`` functions of |
| 95 | +# different frequencies. |
| 96 | +# |
| 97 | + |
| 98 | +class PositionalEncoding(nn.Module): |
| 99 | + |
| 100 | + def __init__(self, d_model, dropout=0.1, max_len=5000): |
| 101 | + super(PositionalEncoding, self).__init__() |
| 102 | + self.dropout = nn.Dropout(p=dropout) |
| 103 | + |
| 104 | + pe = torch.zeros(max_len, d_model) |
| 105 | + position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) |
| 106 | + div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) |
| 107 | + pe[:, 0::2] = torch.sin(position * div_term) |
| 108 | + pe[:, 1::2] = torch.cos(position * div_term) |
| 109 | + pe = pe.unsqueeze(0).transpose(0, 1) |
| 110 | + self.register_buffer('pe', pe) |
| 111 | + |
| 112 | + def forward(self, x): |
| 113 | + x = x + self.pe[:x.size(0), :] |
| 114 | + return self.dropout(x) |
| 115 | + |
| 116 | + |
| 117 | +###################################################################### |
| 118 | +# Load and batch data |
| 119 | +# ------------------- |
| 120 | +# |
| 121 | + |
| 122 | + |
| 123 | +###################################################################### |
| 124 | +# The training process uses Wikitext-2 dataset from ``torchtext``. The |
| 125 | +# vocab object is built based on the train dataset and is used to numericalize |
| 126 | +# tokens into tensors. Starting from sequential data, the ``batchify()`` |
| 127 | +# function arranges the dataset into columns. For instance, with the |
| 128 | +# alphabet as the sequence and a batch size of 4, we have the following |
| 129 | +# arrangement: |
| 130 | +# |
| 131 | +# ┌ A G M S ┐ |
| 132 | +# |
| 133 | +# │ B H N T │ |
| 134 | +# |
| 135 | +# │ C I O U | |
| 136 | +# |
| 137 | +# │ D J P V | |
| 138 | +# |
| 139 | +# │ E K Q W | |
| 140 | +# |
| 141 | +# └ F L R X ┘ |
| 142 | +# |
| 143 | +# These columns are treated as independent by the model, which means that |
| 144 | +# the dependence of ``G`` and ``F`` can not be learned, but allows more |
| 145 | +# efficient batch processing. |
| 146 | +# |
| 147 | + |
| 148 | +import torchtext |
| 149 | +from torchtext.data.utils import get_tokenizer |
| 150 | +TEXT = torchtext.data.Field(tokenize=get_tokenizer("basic_english"), |
| 151 | + init_token='<sos>', |
| 152 | + eos_token='<eos>', |
| 153 | + lower=True) |
| 154 | +train_txt, val_txt, test_txt = torchtext.datasets.WikiText2.splits(TEXT) |
| 155 | +TEXT.build_vocab(train_txt) |
| 156 | +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 157 | + |
| 158 | +def batchify(data, bsz): |
| 159 | + data = TEXT.numericalize([data.examples[0].text]) |
| 160 | + # Divide the dataset into bsz parts. |
| 161 | + nbatch = data.size(0) // bsz |
| 162 | + # Trim off any extra elements that wouldn't cleanly fit (remainders). |
| 163 | + data = data.narrow(0, 0, nbatch * bsz) |
| 164 | + # Evenly divide the data across the bsz batches. |
| 165 | + data = data.view(bsz, -1).t().contiguous() |
| 166 | + return data.to(device) |
| 167 | + |
| 168 | +batch_size = 20 |
| 169 | +eval_batch_size = 10 |
| 170 | +train_data = batchify(train_txt, batch_size) |
| 171 | +val_data = batchify(val_txt, eval_batch_size) |
| 172 | +test_data = batchify(test_txt, eval_batch_size) |
| 173 | + |
| 174 | + |
| 175 | +###################################################################### |
| 176 | +# Functions to generate input and target sequence |
| 177 | +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 178 | +# |
| 179 | + |
| 180 | + |
| 181 | +###################################################################### |
| 182 | +# ``get_batch()`` function generates the input and target sequence for |
| 183 | +# the transformer model. It subdivides the source data into chunks of |
| 184 | +# length ``bptt``. For the language modeling task, the model needs the |
| 185 | +# following words as ``Target``. For example, with a ``bptt`` value of 2, |
| 186 | +# we’d get the following two Variables for ``i`` = 0: |
| 187 | +# |
| 188 | +# Input | Target |
| 189 | +# |
| 190 | +# ┌ A G M S ┐ ┌ B H N T ┐ |
| 191 | +# |
| 192 | +# └ B H N T ┘ └ C I O U ┘ |
| 193 | +# |
| 194 | +# It should be noted that the chunks are along dimension 0, consistent |
| 195 | +# with the ``S`` dimension in the Transformer model. The batch dimension |
| 196 | +# ``N`` is along dimension 1. |
| 197 | +# |
| 198 | + |
| 199 | +bptt = 35 |
| 200 | +def get_batch(source, i): |
| 201 | + seq_len = min(bptt, len(source) - 1 - i) |
| 202 | + data = source[i:i+seq_len] |
| 203 | + target = source[i+1:i+1+seq_len].view(-1) |
| 204 | + return data, target |
| 205 | + |
| 206 | + |
| 207 | +###################################################################### |
| 208 | +# Initiate an instance |
| 209 | +# -------------------- |
| 210 | +# |
| 211 | + |
| 212 | + |
| 213 | +###################################################################### |
| 214 | +# The model is set up with the hyperparameter below. The vocab size is |
| 215 | +# equal to the length of the vocab object. |
| 216 | +# |
| 217 | + |
| 218 | +ntokens = len(TEXT.vocab.stoi) # the size of vocabulary |
| 219 | +emsize = 200 # embedding dimension |
| 220 | +nhid = 200 # the dimension of the feedforward network model in nn.TransformerEncoder |
| 221 | +nlayers = 2 # the number of nn.TransformerEncoderLayer in nn.TransformerEncoder |
| 222 | +nhead = 2 # the number of heads in the multiheadattention models |
| 223 | +dropout = 0.2 # the dropout value |
| 224 | +model = TransformerModel(ntokens, emsize, nhead, nhid, nlayers, dropout).to(device) |
| 225 | + |
| 226 | + |
| 227 | +###################################################################### |
| 228 | +# Run the model |
| 229 | +# ------------- |
| 230 | +# |
| 231 | + |
| 232 | + |
| 233 | +###################################################################### |
| 234 | +# `CrossEntropyLoss <https://pytorch.org/docs/master/nn.html?highlight=crossentropyloss#torch.nn.CrossEntropyLoss>`__ |
| 235 | +# is applied to track the loss and |
| 236 | +# `SGD <https://pytorch.org/docs/master/optim.html?highlight=sgd#torch.optim.SGD>`__ |
| 237 | +# implements stochastic gradient descent method as the optimizer. The initial |
| 238 | +# learning rate is set to 5.0. `StepLR <https://pytorch.org/docs/master/optim.html?highlight=steplr#torch.optim.lr_scheduler.StepLR>`__ is |
| 239 | +# applied to adjust the learn rate through epochs. During the |
| 240 | +# training, we use |
| 241 | +# `nn.utils.clip_grad_norm\_ <https://pytorch.org/docs/master/nn.html?highlight=nn%20utils%20clip_grad_norm#torch.nn.utils.clip_grad_norm_>`__ |
| 242 | +# function to scale all the gradient together to prevent exploding. |
| 243 | +# |
| 244 | + |
| 245 | +criterion = nn.CrossEntropyLoss() |
| 246 | +lr = 5.0 # learning rate |
| 247 | +optimizer = torch.optim.SGD(model.parameters(), lr=lr) |
| 248 | +scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95) |
| 249 | + |
| 250 | +import time |
| 251 | +def train(): |
| 252 | + model.train() # Turn on the train mode |
| 253 | + total_loss = 0. |
| 254 | + start_time = time.time() |
| 255 | + ntokens = len(TEXT.vocab.stoi) |
| 256 | + for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)): |
| 257 | + data, targets = get_batch(train_data, i) |
| 258 | + optimizer.zero_grad() |
| 259 | + output = model(data) |
| 260 | + loss = criterion(output.view(-1, ntokens), targets) |
| 261 | + loss.backward() |
| 262 | + torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) |
| 263 | + optimizer.step() |
| 264 | + |
| 265 | + total_loss += loss.item() |
| 266 | + log_interval = 200 |
| 267 | + if batch % log_interval == 0 and batch > 0: |
| 268 | + cur_loss = total_loss / log_interval |
| 269 | + elapsed = time.time() - start_time |
| 270 | + print('| epoch {:3d} | {:5d}/{:5d} batches | ' |
| 271 | + 'lr {:02.2f} | ms/batch {:5.2f} | ' |
| 272 | + 'loss {:5.2f} | ppl {:8.2f}'.format( |
| 273 | + epoch, batch, len(train_data) // bptt, scheduler.get_lr()[0], |
| 274 | + elapsed * 1000 / log_interval, |
| 275 | + cur_loss, math.exp(cur_loss))) |
| 276 | + total_loss = 0 |
| 277 | + start_time = time.time() |
| 278 | + |
| 279 | +def evaluate(eval_model, data_source): |
| 280 | + eval_model.eval() # Turn on the evaluation mode |
| 281 | + total_loss = 0. |
| 282 | + ntokens = len(TEXT.vocab.stoi) |
| 283 | + with torch.no_grad(): |
| 284 | + for i in range(0, data_source.size(0) - 1, bptt): |
| 285 | + data, targets = get_batch(data_source, i) |
| 286 | + output = eval_model(data) |
| 287 | + output_flat = output.view(-1, ntokens) |
| 288 | + total_loss += len(data) * criterion(output_flat, targets).item() |
| 289 | + return total_loss / (len(data_source) - 1) |
| 290 | + |
| 291 | +###################################################################### |
| 292 | +# Loop over epochs. Save the model if the validation loss is the best |
| 293 | +# we've seen so far. Adjust the learning rate after each epoch. |
| 294 | + |
| 295 | +best_val_loss = float("inf") |
| 296 | +epochs = 3 # The number of epochs |
| 297 | +best_model = None |
| 298 | + |
| 299 | +for epoch in range(1, epochs + 1): |
| 300 | + epoch_start_time = time.time() |
| 301 | + train() |
| 302 | + val_loss = evaluate(model, val_data) |
| 303 | + print('-' * 89) |
| 304 | + print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | ' |
| 305 | + 'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time), |
| 306 | + val_loss, math.exp(val_loss))) |
| 307 | + print('-' * 89) |
| 308 | + |
| 309 | + if val_loss < best_val_loss: |
| 310 | + best_val_loss = val_loss |
| 311 | + best_model = model |
| 312 | + |
| 313 | + scheduler.step() |
| 314 | + |
| 315 | + |
| 316 | +###################################################################### |
| 317 | +# Evaluate the model with the test dataset |
| 318 | +# ------------------------------------- |
| 319 | +# |
| 320 | +# Apply the best model to check the result with the test dataset. |
| 321 | + |
| 322 | +test_loss = evaluate(best_model, test_data) |
| 323 | +print('=' * 89) |
| 324 | +print('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format( |
| 325 | + test_loss, math.exp(test_loss))) |
| 326 | +print('=' * 89) |
0 commit comments