Skip to content

Commit f2fa81e

Browse files
authored
Merge branch 'master' into patch-1
2 parents 774bde0 + 521b123 commit f2fa81e

File tree

8 files changed

+14
-12
lines changed

8 files changed

+14
-12
lines changed

.jenkins/build.sh

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -12,6 +12,8 @@ export LANG=C.UTF-8
1212

1313
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null && pwd )"
1414

15+
# Update root certificates by installing new libgnutls30
16+
sudo apt-get update || sudo apt-get install libgnutls30
1517
sudo apt-get update
1618
sudo apt-get install -y --no-install-recommends unzip p7zip-full sox libsox-dev libsox-fmt-all rsync
1719

advanced_source/cpp_frontend.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1015,7 +1015,7 @@ probabilities.
10151015
is called *label smoothing*.
10161016
10171017
Before evaluating the discriminator, we zero out the gradients of its
1018-
parameters. After computing the loss, we back-propagate through the network by
1018+
parameters. After computing the loss, we back-propagate it through the network by
10191019
calling ``d_loss.backward()`` to compute new gradients. We repeat this spiel for
10201020
the fake images. Instead of using images from the dataset, we let the generator
10211021
create fake images for this by feeding it a batch of random noise. We then

beginner_source/blitz/cifar10_tutorial.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@
2222
2323
Specifically for vision, we have created a package called
2424
``torchvision``, that has data loaders for common datasets such as
25-
Imagenet, CIFAR10, MNIST, etc. and data transformers for images, viz.,
25+
ImageNet, CIFAR10, MNIST, etc. and data transformers for images, viz.,
2626
``torchvision.datasets`` and ``torch.utils.data.DataLoader``.
2727
2828
This provides a huge convenience and avoids writing boilerplate code.

beginner_source/former_torchies/parallelism_tutorial.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -125,7 +125,7 @@ def forward(self, x):
125125
#
126126
# - :doc:`Train neural nets to play video games </intermediate/reinforcement_q_learning>`
127127
# - `Train a state-of-the-art ResNet network on imagenet`_
128-
# - `Train an face generator using Generative Adversarial Networks`_
128+
# - `Train a face generator using Generative Adversarial Networks`_
129129
# - `Train a word-level language model using Recurrent LSTM networks`_
130130
# - `More examples`_
131131
# - `More tutorials`_
@@ -134,7 +134,7 @@ def forward(self, x):
134134
#
135135
# .. _`Deep Learning with PyTorch: a 60-minute blitz`: https://github.com/pytorch/tutorials/blob/master/Deep%20Learning%20with%20PyTorch.ipynb
136136
# .. _Train a state-of-the-art ResNet network on imagenet: https://github.com/pytorch/examples/tree/master/imagenet
137-
# .. _Train an face generator using Generative Adversarial Networks: https://github.com/pytorch/examples/tree/master/dcgan
137+
# .. _Train a face generator using Generative Adversarial Networks: https://github.com/pytorch/examples/tree/master/dcgan
138138
# .. _Train a word-level language model using Recurrent LSTM networks: https://github.com/pytorch/examples/tree/master/word_language_model
139139
# .. _More examples: https://github.com/pytorch/examples
140140
# .. _More tutorials: https://github.com/pytorch/tutorials

beginner_source/ptcheat.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -237,7 +237,7 @@ Learning rate scheduling
237237
.. code-block:: python
238238
239239
scheduler = optim.X(optimizer,...) # create lr scheduler
240-
scheduler.step() # update lr at start of epoch
240+
scheduler.step() # update lr after optimizer updates weights
241241
optim.lr_scheduler.X # where X is LambdaLR, MultiplicativeLR,
242242
# StepLR, MultiStepLR, ExponentialLR,
243243
# CosineAnnealingLR, ReduceLROnPlateau, CyclicLR,

intermediate_source/rpc_async_execution.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ This tutorial demonstrates how to build batch-processing RPC applications with
1414
the `@rpc.functions.async_execution <https://pytorch.org/docs/master/rpc.html#torch.distributed.rpc.functions.async_execution>`__
1515
decorator, which helps to speed up training by reducing the number of blocked
1616
RPC threads and consolidating CUDA operations on the callee. This shares the
17-
same idea as `Batch Inference with TorchServer <https://pytorch.org/serve/batch_inference_with_ts.html>`__.
17+
same idea as `Batch Inference with TorchServe <https://pytorch.org/serve/batch_inference_with_ts.html>`__.
1818

1919
.. note:: This tutorial requires PyTorch v1.6.0 or above.
2020

@@ -199,7 +199,7 @@ Batch-Processing CartPole Solver
199199

200200
This section uses CartPole-v1 from `OpenAI Gym <https://gym.openai.com/>`__ as
201201
an example to show the performance impact of batch processing RPC. Please note
202-
that the goal is to demonstrate the usage of
202+
that since the goal is to demonstrate the usage of
203203
`@rpc.functions.async_execution <https://pytorch.org/docs/master/rpc.html#torch.distributed.rpc.functions.async_execution>`__
204204
instead of building the best CartPole solver or solving most different RL
205205
problems, we use very simple policies and reward calculation strategies and

intermediate_source/torchvision_tutorial.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -220,7 +220,7 @@ way of doing it:
220220
import torchvision
221221
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
222222
223-
# load a model pre-trained pre-trained on COCO
223+
# load a model pre-trained on COCO
224224
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
225225
226226
# replace the classifier with a new one, that has
@@ -290,7 +290,7 @@ be using Mask R-CNN:
290290
291291
292292
def get_model_instance_segmentation(num_classes):
293-
# load an instance segmentation model pre-trained pre-trained on COCO
293+
# load an instance segmentation model pre-trained on COCO
294294
model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True)
295295
296296
# get number of input features for the classifier

recipes_source/recipes/loading_data_recipe.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -14,9 +14,9 @@
1414
`torch.utils.data.Dataset <https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset>`__.
1515
These datasets are currently available in:
1616
17-
* `torchvision <https://pytorch.org/docs/stable/torchvision/datasets.html>`__
18-
* `torchaudio <https://pytorch.org/audio/datasets.html>`__
19-
* `torchtext <https://pytorch.org/text/datasets.html>`__
17+
* `torchvision <https://pytorch.org/vision/stable/datasets.html>`__
18+
* `torchaudio <https://pytorch.org/audio/stable/datasets.html>`__
19+
* `torchtext <https://pytorch.org/text/stable/datasets.html>`__
2020
2121
with more to come.
2222
Using the Yesno dataset from ``torchaudio.datasets.YESNO``, we will

0 commit comments

Comments
 (0)