Skip to content

Commit db1b6a6

Browse files
authored
Merge branch 'main' into pianpwk/test_datadep_pr
2 parents 0feec2f + 5a5edfc commit db1b6a6

File tree

6 files changed

+12
-9
lines changed

6 files changed

+12
-9
lines changed

.lycheeignore

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -15,3 +15,6 @@ http://localhost:6006
1515

1616
# Ignore local host link from recipes_source/deployment_with_flask.rst
1717
http://localhost:5000/predict
18+
19+
# Ignore local host link from advanced_source/cpp_frontend.rst
20+
https://www.uber.com/blog/deep-neuroevolution/

advanced_source/cpp_frontend.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -57,7 +57,7 @@ the right tool for the job. Examples for such environments include:
5757
Multiprocessing is an alternative, but not as scalable and has significant
5858
shortcomings. C++ has no such constraints and threads are easy to use and
5959
create. Models requiring heavy parallelization, like those used in `Deep
60-
Neuroevolution <https://eng.uber.com/deep-neuroevolution/>`_, can benefit from
60+
Neuroevolution <https://www.uber.com/blog/deep-neuroevolution/>`_, can benefit from
6161
this.
6262
- **Existing C++ Codebases**: You may be the owner of an existing C++
6363
application doing anything from serving web pages in a backend server to
@@ -662,7 +662,7 @@ Defining the DCGAN Modules
662662
We now have the necessary background and introduction to define the modules for
663663
the machine learning task we want to solve in this post. To recap: our task is
664664
to generate images of digits from the `MNIST dataset
665-
<http://yann.lecun.com/exdb/mnist/>`_. We want to use a `generative adversarial
665+
<https://huggingface.co/datasets/ylecun/mnist>`_. We want to use a `generative adversarial
666666
network (GAN)
667667
<https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf>`_ to solve
668668
this task. In particular, we'll use a `DCGAN architecture

intermediate_source/ddp_series_minGPT.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ training <ddp_series_multinode.html>`__ \|\| **minGPT Training**
66
Training “real-world” models with DDP
77
=====================================
88

9-
Authors: `Suraj Subramanian <https://github.com/suraj813>`__
9+
Authors: `Suraj Subramanian <https://github.com/subramen>`__
1010

1111
.. grid:: 2
1212

intermediate_source/ddp_series_multinode.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ training** \|\| `minGPT Training <ddp_series_minGPT.html>`__
66
Multinode Training
77
==================
88

9-
Authors: `Suraj Subramanian <https://github.com/suraj813>`__
9+
Authors: `Suraj Subramanian <https://github.com/subramen>`__
1010

1111
.. grid:: 2
1212

intermediate_source/dynamic_quantization_bert_tutorial.rst

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -138,7 +138,7 @@ the following helper functions: one for converting the text examples
138138
into the feature vectors; The other one for measuring the F1 score of
139139
the predicted result.
140140

141-
The `glue_convert_examples_to_features <https://github.com/huggingface/transformers/blob/master/transformers/data/processors/glue.py>`_ function converts the texts into input features:
141+
The `glue_convert_examples_to_features <https://github.com/huggingface/transformers/blob/main/src/transformers/data/datasets/glue.py>`_ function converts the texts into input features:
142142

143143
- Tokenize the input sequences;
144144
- Insert [CLS] in the beginning;
@@ -147,7 +147,7 @@ The `glue_convert_examples_to_features <https://github.com/huggingface/transform
147147
- Generate token type ids to indicate whether a token belongs to the
148148
first sequence or the second sequence.
149149

150-
The `glue_compute_metrics <https://github.com/huggingface/transformers/blob/master/transformers/data/processors/glue.py>`_ function has the compute metrics with
150+
The `glue_compute_metrics <https://github.com/huggingface/transformers/blob/main/src/transformers/data/metrics/__init__.py#L60>`_ function has the compute metrics with
151151
the `F1 score <https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html>`_, which
152152
can be interpreted as a weighted average of the precision and recall,
153153
where an F1 score reaches its best value at 1 and worst score at 0. The
@@ -273,7 +273,7 @@ We load the tokenizer and fine-tuned BERT sequence classifier model
273273
2.3 Define the tokenize and evaluation function
274274
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
275275

276-
We reuse the tokenize and evaluation function from `HuggingFace <https://github.com/huggingface/transformers/blob/master/examples/run_glue.py>`_.
276+
We reuse the tokenize and evaluation function from `HuggingFace <https://github.com/huggingface/transformers/blob/main/examples/legacy/pytorch-lightning/run_glue.py>`_.
277277

278278
.. code:: python
279279

intermediate_source/torchserve_with_ipex.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -379,8 +379,8 @@ For interested readers, please check out the following documents:
379379

380380
- `CPU specific optimizations <https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html#cpu-specific-optimizations>`_
381381
- `Maximize Performance of Intel® Software Optimization for PyTorch* on CPU <https://www.intel.com/content/www/us/en/developer/articles/technical/how-to-get-better-performance-on-pytorchcaffe2-with-intel-acceleration.html>`_
382-
- `Performance Tuning Guide <https://intel.github.io/intel-extension-for-pytorch/tutorials/performance_tuning/tuning_guide.html>`_
383-
- `Launch Script Usage Guide <https://intel.github.io/intel-extension-for-pytorch/tutorials/performance_tuning/launch_script.html>`_
382+
- `Performance Tuning Guide <https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/performance_tuning/tuning_guide.html>`_
383+
- `Launch Script Usage Guide <https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/performance_tuning/launch_script.html>`_
384384
- `Top-down Microarchitecture Analysis Method <https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html>`_
385385
- `Configuring oneDNN for Benchmarking <https://oneapi-src.github.io/oneDNN/dev_guide_performance_settings.html#benchmarking-settings>`_
386386
- `Intel® VTune™ Profiler <https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#gs.tcbgpa>`_

0 commit comments

Comments
 (0)