Skip to content

Commit b560fff

Browse files
Change kernel to 5x5 in 1st Conv2d layer in model init
Signed-off-by: Kiersten Stokes <kierstenstokes@gmail.com>
1 parent b6e9dcb commit b560fff

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

beginner_source/introyt/introyt1_tutorial.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -176,9 +176,9 @@ class LeNet(nn.Module):
176176

177177
def __init__(self):
178178
super(LeNet, self).__init__()
179-
# 1 input image channel (black & white), 6 output channels, 3x3 square convolution
179+
# 1 input image channel (black & white), 6 output channels, 5x5 square convolution
180180
# kernel
181-
self.conv1 = nn.Conv2d(1, 6, 3)
181+
self.conv1 = nn.Conv2d(1, 6, 5)
182182
self.conv2 = nn.Conv2d(6, 16, 3)
183183
# an affine operation: y = Wx + b
184184
self.fc1 = nn.Linear(16 * 6 * 6, 120) # 6*6 from image dimension

0 commit comments

Comments
 (0)