Skip to content

Commit b409fec

Browse files
committed
Update user-defined triton kernels tutorial with new torch.library.triton_op
The new API is a more advanced complement to the existing APIs.
1 parent 82f449a commit b409fec

File tree

1 file changed

+181
-3
lines changed

1 file changed

+181
-3
lines changed

recipes_source/torch_compile_user_defined_triton_kernel_tutorial.py

Lines changed: 181 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -140,17 +140,195 @@ def add_fn(x, y):
140140
print(f"Vector addition of\nX:\t{x}\nY:\t{y}\nis equal to\n{out}")
141141

142142
######################################################################
143-
# Composibility and Limitations
143+
# Composability
144+
# -------------------------------------------------------------------
145+
#
146+
# User-defined triton kernels do not automatically support all PyTorch
147+
# subsystems, like in the following use cases:
148+
# - Adding a CPU fallback
149+
# - Adding a ``FlopCounter`` formula
150+
# - Composing with Tensor Subclasses
151+
#
152+
# To compose with additional PyTorch subsystems, use ``torch.library.triton_op``.
153+
#
154+
# triton_op is a structured way of defining a custom operator that is backed by one
155+
# or more triton kernels: like regular custom operators (``torch.library.custom_op``),
156+
# you are able to specify the interactions with PyTorch subsystems via ``torch.library``.
157+
# However, unlike ``torch.library.custom_op``, which creates opaque callables w.r.t.
158+
# ``torch.compile``, ``torch.compile`` traces into ``triton_op`` to apply optimizations.
159+
#
160+
# Here’s a chart of which API to use when integrating triton kernels with PyTorch.
161+
#
162+
# .. list-table::
163+
# :header-rows: 1
164+
#
165+
# * -
166+
# - triton kernel (no explicit torch.library wrapper)
167+
# - torch.library.triton_op
168+
# - torch.library.custom_op
169+
# * - Supports inference
170+
# - Yes
171+
# - Yes
172+
# - Yes
173+
# * - Supports training
174+
# - In the majority of cases
175+
# - Yes
176+
# - Yes
177+
# * - Supports torch.compile
178+
# - Yes
179+
# - Yes
180+
# - Yes
181+
# * - Supports torch.compile(fullgraph=True)
182+
# - In the majority of cases
183+
# - In the majority of cases
184+
# - In all cases
185+
# * - Does torch.compile trace into the implementation?
186+
# - Yes
187+
# - Yes
188+
# - No
189+
# * - Supports AOTInductor
190+
# - Yes
191+
# - Yes
192+
# - No
193+
# * - Supports PyTorch Subsystems like FlopCounterMode, CPU Fallback, Tensor Subclasses
194+
# - No
195+
# - Yes
196+
# - Yes
197+
198+
######################################################################
199+
# Wrapping triton kernels with triton_op
200+
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
201+
#
202+
# Use ``torch.library.triton_op`` to wrap a function that may invoke one or more triton kernels.
203+
# Use ``torch.library.wrap_triton`` to wrap the calls to the triton kernel.
204+
205+
from torch.library import triton_op, wrap_triton
206+
207+
@triton_op("mylib::mysin", mutates_args={})
208+
def mysin(x):
209+
out = torch.empty_like(x)
210+
n_elements = x.numel()
211+
wrap_triton(sin_kernel)[(n_elements,)](x, out, n_elements, BLOCK_SIZE=4)
212+
return out
213+
214+
######################################################################
215+
# You can invoke the ``triton_op`` in one of the following two ways.
216+
217+
x = torch.randn(3, device="cuda")
218+
y = mysin(x)
219+
z = torch.ops.mylib.mysin.default(x)
220+
221+
assert torch.allclose(y, x.sin())
222+
assert torch.allclose(z, x.sin())
223+
224+
######################################################################
225+
# The resulting ``triton_op`` works with ``torch.compile`` and ``AOTInductor``.
226+
227+
y = torch.compile(mysin)(x)
228+
assert torch.allclose(y, x.sin())
229+
230+
######################################################################
231+
# Adding training support
232+
# ^^^^^^^^^^^^^^^^^^^^^^^
233+
#
234+
# Use ``register_autograd`` to add an autograd formula for the ``triton_op``.
235+
# Prefer this to using ``torch.autograd.Function`` (which has various composability footguns
236+
# with ``torch.compile``).
237+
238+
def backward(ctx, grad_output):
239+
x, = ctx.saved_tensors
240+
return grad_input * x.cos()
241+
242+
def setup_context(ctx, inputs, output):
243+
x, = inputs
244+
ctx.save_for_backward(x)
245+
246+
mysin.register_autograd(backward, setup_context=setup_context)
247+
248+
######################################################################
249+
# Note that the backward must be a composition of PyTorch-understood operators.
250+
# If you want the backward to call triton kernels, then those must be wrapped in ``triton_op`` as well:
251+
252+
@triton.jit
253+
def cos_kernel(
254+
in_ptr0,
255+
out_ptr,
256+
n_elements,
257+
BLOCK_SIZE: "tl.constexpr",
258+
):
259+
pid = tl.program_id(axis=0)
260+
block_start = pid * BLOCK_SIZE
261+
offsets = block_start + tl.arange(0, BLOCK_SIZE)
262+
mask = offsets < n_elements
263+
x = tl.load(in_ptr0 + offsets, mask=mask)
264+
output = tl.cos(x)
265+
tl.store(out_ptr + offsets, output, mask=mask)
266+
267+
@triton_op("mylib::mycos", mutates_args={})
268+
def mycos(x):
269+
out = torch.empty_like(x)
270+
n_elements = x.numel()
271+
wrap_triton(cos_kernel)[(n_elements,)](x, out, n_elements, BLOCK_SIZE=4)
272+
return out
273+
274+
def backward(ctx, grad_output):
275+
x, = ctx.saved_tensors
276+
return grad_input * mycos(x)
277+
278+
def setup_context(ctx, inputs, output):
279+
x, = inputs
280+
ctx.save_for_backward(x)
281+
282+
mysin.register_autograd(backward, setup_context=setup_context)
283+
284+
######################################################################
285+
# Adding a CPU Fallback
286+
# ^^^^^^^^^^^^^^^^^^^^^
287+
# triton kernels don’t run on CPU. Use ``register_kernel`` to add a CPU (or any other device) fallback for the ``triton_op``:
288+
289+
@mysin.register_kernel("cpu")
290+
def _(x):
291+
return torch.sin(x)
292+
293+
x = torch.randn(3)
294+
y = mysin(x)
295+
assert torch.allclose(y, x.sin())
296+
297+
The fallback must be composed of PyTorch operators.
298+
299+
######################################################################
300+
# Adding a FlopCounter Formula
301+
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
302+
#
303+
# To specify how many flops the triton kernel reports under PyTorch's flop counter,
304+
# use ``register_flop_formula``.
305+
306+
from torch.utils.flop_counter import FlopCounterMode, register_flop_formula
307+
308+
@register_flop_formula(torch.ops.mylib.mysin)
309+
def _(x_shape):
310+
numel = 1
311+
for s in x_shape:
312+
numel *= s
313+
return numel
314+
315+
x = torch.randn(3, device="cuda")
316+
with FlopCounterMode() as flop_counter:
317+
y = mysin(x)
318+
319+
######################################################################
320+
# Limitations
144321
# --------------------------------------------------------------------
145322
#
146323
# As of PyTorch 2.3, the support for user-defined Triton kernels in ``torch.compile``
147324
# includes dynamic shapes, ``torch.autograd.Function``, JIT inductor, and AOT inductor.
148325
# You can use these features together to build complex, high-performance models.
149326
#
327+
# PyTorch 2.6 added ``torch.library.triton_op``, which adds support for
328+
# user-defined Triton kernels in tensor subclasses and other advanced features.
329+
#
150330
# However, there are certain limitations to be aware of:
151331
#
152-
# * **Tensor Subclasses:** Currently, there is no support for
153-
# tensor subclasses and other advanced features.
154332
# * **Triton Features:** While ``triton.heuristics`` can be used either standalone or
155333
# before ``triton.autotune``, it cannot be used after ``triton.autotune``. This
156334
# implies that if ``triton.heuristics`` and ``triton.autotune`` are to be used

0 commit comments

Comments
 (0)