Skip to content

Commit 728fd73

Browse files
committed
Restructure NLP to go under learning pytorch and remove torchtext from requirements.txt
1 parent e6ea32d commit 728fd73

File tree

3 files changed

+49
-11
lines changed

3 files changed

+49
-11
lines changed

.ci/docker/requirements.txt

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,6 @@ matplotlib
1616
librosa
1717
torch==2.4
1818
torchvision
19-
torchtext
2019
torchdata
2120
networkx
2221
PyHamcrest

index.rst

Lines changed: 1 addition & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -955,6 +955,7 @@ Additional Resources
955955
beginner/deep_learning_60min_blitz
956956
beginner/pytorch_with_examples
957957
beginner/nn_tutorial
958+
intermediate/nlp_from_scratch_index
958959
intermediate/tensorboard_tutorial
959960
intermediate/pinmem_nonblock
960961

@@ -989,16 +990,6 @@ Additional Resources
989990
intermediate/text_to_speech_with_torchaudio
990991
intermediate/forced_alignment_with_torchaudio_tutorial
991992

992-
.. toctree::
993-
:maxdepth: 2
994-
:includehidden:
995-
:hidden:
996-
:caption: NLP
997-
998-
intermediate/char_rnn_classification_tutorial
999-
intermediate/char_rnn_generation_tutorial
1000-
intermediate/seq2seq_translation_tutorial
1001-
1002993
.. toctree::
1003994
:maxdepth: 2
1004995
:includehidden:
Lines changed: 48 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,48 @@
1+
NLP from Scratch
2+
================
3+
4+
In these three-part series you will build and train
5+
a basic character-level Recurrent Neural Network (RNN) to classify words.
6+
7+
You will learn:
8+
9+
* How to construct Recurrent Neural Networks from scratch
10+
* Essential data handling techniques for NLP
11+
* How to train an RNN to identify the language origin of words.
12+
13+
Before you begin, we recommend that you review the following:
14+
15+
* `PyTorch Learn the Basics series <https://pytorch.org/tutorials/beginner/basics/intro.html>`__
16+
* `How to install PyTorch <https://pytorch.org/get-started/locally/>`__
17+
18+
.. grid:: 3
19+
20+
.. grid-item-card:: :octicon:`file-code;1em`
21+
NLP From Scratch - Part 1: Classifying Names with a Character-Level RNN
22+
:link: https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
23+
:link-type: url
24+
25+
Learn how to use an RNN to classify names into their language of origin.
26+
+++
27+
:octicon:`code;1em` Code
28+
29+
.. grid-item-card:: :octicon:`file-code;1em`
30+
NLP From Scratch - Part 2: Generating Names with a Character-Level RNN
31+
:link: https://pytorch.org/tutorials/intermediate/char_rnn_generation_tutorial.html
32+
:link-type: url
33+
34+
Expand the RNN we created in Part 1 to generate names from languages.
35+
+++
36+
:octicon:`code;1em` Code
37+
38+
.. grid-item-card:: :octicon:`file-code;1em`
39+
NLP From Scratch - Part 3: Translation with a Sequence to Sequence Network and Attention
40+
:link: https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html
41+
:link-type: url
42+
43+
Create a sequence-to-sequence model that can translate your text from French
44+
to English.
45+
+++
46+
:octicon:`code;1em` Code
47+
48+

0 commit comments

Comments
 (0)