|
| 1 | +Getting Started with ``CommDebugMode`` |
| 2 | +===================================================== |
| 3 | + |
| 4 | +**Author**: `Anshul Sinha <https://github.com/sinhaanshul>`__ |
| 5 | + |
| 6 | + |
| 7 | +In this tutorial, we will explore how to use ``CommDebugMode`` with PyTorch's |
| 8 | +DistributedTensor (DTensor) for debugging by tracking collective operations in distributed training environments. |
| 9 | + |
| 10 | +Prerequisites |
| 11 | +--------------------- |
| 12 | + |
| 13 | +* Python 3.8 - 3.11 |
| 14 | +* PyTorch 2.2 or later |
| 15 | + |
| 16 | + |
| 17 | +What is ``CommDebugMode`` and why is it useful |
| 18 | +---------------------------------------------------- |
| 19 | +As the size of models continues to increase, users are seeking to leverage various combinations |
| 20 | +of parallel strategies to scale up distributed training. However, the lack of interoperability |
| 21 | +between existing solutions poses a significant challenge, primarily due to the absence of a |
| 22 | +unified abstraction that can bridge these different parallelism strategies. To address this |
| 23 | +issue, PyTorch has proposed `DistributedTensor(DTensor) |
| 24 | +<https://github.com/pytorch/pytorch/blob/main/torch/distributed/_tensor/examples/comm_mode_features_example.py>`_ |
| 25 | +which abstracts away the complexities of tensor communication in distributed training, |
| 26 | +providing a seamless user experience. However, when dealing with existing parallelism solutions and |
| 27 | +developing parallelism solutions using the unified abstraction like DTensor, the lack of transparency |
| 28 | +about what and when the collective communications happens under the hood could make it challenging |
| 29 | +for advanced users to identify and resolve issues. To address this challenge, ``CommDebugMode``, a |
| 30 | +Python context manager will serve as one of the primary debugging tools for DTensors, enabling |
| 31 | +users to view when and why collective operations are happening when using DTensors, effectively |
| 32 | +addressing this issue. |
| 33 | + |
| 34 | + |
| 35 | +Using ``CommDebugMode`` |
| 36 | +------------------------ |
| 37 | + |
| 38 | +Here is how you can use ``CommDebugMode``: |
| 39 | + |
| 40 | +.. code-block:: python |
| 41 | +
|
| 42 | + # The model used in this example is a MLPModule applying Tensor Parallel |
| 43 | + comm_mode = CommDebugMode() |
| 44 | + with comm_mode: |
| 45 | + output = model(inp) |
| 46 | +
|
| 47 | + # print the operation level collective tracing information |
| 48 | + print(comm_mode.generate_comm_debug_tracing_table(noise_level=0)) |
| 49 | +
|
| 50 | + # log the operation level collective tracing information to a file |
| 51 | + comm_mode.log_comm_debug_tracing_table_to_file( |
| 52 | + noise_level=1, file_name="transformer_operation_log.txt" |
| 53 | + ) |
| 54 | +
|
| 55 | + # dump the operation level collective tracing information to json file, |
| 56 | + # used in the visual browser below |
| 57 | + comm_mode.generate_json_dump(noise_level=2) |
| 58 | +
|
| 59 | +This is what the output looks like for a MLPModule at noise level 0: |
| 60 | + |
| 61 | +.. code-block:: python |
| 62 | +
|
| 63 | + Expected Output: |
| 64 | + Global |
| 65 | + FORWARD PASS |
| 66 | + *c10d_functional.all_reduce: 1 |
| 67 | + MLPModule |
| 68 | + FORWARD PASS |
| 69 | + *c10d_functional.all_reduce: 1 |
| 70 | + MLPModule.net1 |
| 71 | + MLPModule.relu |
| 72 | + MLPModule.net2 |
| 73 | + FORWARD PASS |
| 74 | + *c10d_functional.all_reduce: 1 |
| 75 | +
|
| 76 | +To use ``CommDebugMode``, you must wrap the code running the model in ``CommDebugMode`` and call the API that |
| 77 | +you want to use to display the data. You can also use a ``noise_level`` argument to control the verbosity |
| 78 | +level of displayed information. Here is what each noise level displays: |
| 79 | + |
| 80 | +| 0. Prints module-level collective counts |
| 81 | +| 1. Prints DTensor operations (not including trivial operations), module sharding information |
| 82 | +| 2. Prints tensor operations (not including trivial operations) |
| 83 | +| 3. Prints all operations |
| 84 | +
|
| 85 | +In the example above, you can see that the collective operation, all_reduce, occurs once in the forward pass |
| 86 | +of the ``MLPModule``. Furthermore, you can use ``CommDebugMode`` to pinpoint that the all-reduce operation happens |
| 87 | +in the second linear layer of the ``MLPModule``. |
| 88 | + |
| 89 | + |
| 90 | +Below is the interactive module tree visualization that you can use to upload your own JSON dump: |
| 91 | + |
| 92 | +.. raw:: html |
| 93 | + |
| 94 | + <!DOCTYPE html> |
| 95 | + <html lang ="en"> |
| 96 | + <head> |
| 97 | + <meta charset="UTF-8"> |
| 98 | + <meta name = "viewport" content="width=device-width, initial-scale=1.0"> |
| 99 | + <title>CommDebugMode Module Tree</title> |
| 100 | + <style> |
| 101 | + ul, #tree-container { |
| 102 | + list-style-type: none; |
| 103 | + margin: 0; |
| 104 | + padding: 0; |
| 105 | + } |
| 106 | + .caret { |
| 107 | + cursor: pointer; |
| 108 | + user-select: none; |
| 109 | + } |
| 110 | + .caret::before { |
| 111 | + content: "\25B6"; |
| 112 | + color:black; |
| 113 | + display: inline-block; |
| 114 | + margin-right: 6px; |
| 115 | + } |
| 116 | + .caret-down::before { |
| 117 | + transform: rotate(90deg); |
| 118 | + } |
| 119 | + .tree { |
| 120 | + padding-left: 20px; |
| 121 | + } |
| 122 | + .tree ul { |
| 123 | + padding-left: 20px; |
| 124 | + } |
| 125 | + .nested { |
| 126 | + display: none; |
| 127 | + } |
| 128 | + .active { |
| 129 | + display: block; |
| 130 | + } |
| 131 | + .forward-pass, |
| 132 | + .backward-pass { |
| 133 | + margin-left: 40px; |
| 134 | + } |
| 135 | + .forward-pass table { |
| 136 | + margin-left: 40px; |
| 137 | + width: auto; |
| 138 | + } |
| 139 | + .forward-pass table td, .forward-pass table th { |
| 140 | + padding: 8px; |
| 141 | + } |
| 142 | + .forward-pass ul { |
| 143 | + display: none; |
| 144 | + } |
| 145 | + table { |
| 146 | + font-family: arial, sans-serif; |
| 147 | + border-collapse: collapse; |
| 148 | + width: 100%; |
| 149 | + } |
| 150 | + td, th { |
| 151 | + border: 1px solid #dddddd; |
| 152 | + text-align: left; |
| 153 | + padding: 8px; |
| 154 | + } |
| 155 | + tr:nth-child(even) { |
| 156 | + background-color: #dddddd; |
| 157 | + } |
| 158 | + #drop-area { |
| 159 | + position: relative; |
| 160 | + width: 25%; |
| 161 | + height: 100px; |
| 162 | + border: 2px dashed #ccc; |
| 163 | + border-radius: 5px; |
| 164 | + padding: 0px; |
| 165 | + text-align: center; |
| 166 | + } |
| 167 | + .drag-drop-block { |
| 168 | + display: inline-block; |
| 169 | + width: 200px; |
| 170 | + height: 50px; |
| 171 | + background-color: #f7f7f7; |
| 172 | + border: 1px solid #ccc; |
| 173 | + border-radius: 5px; |
| 174 | + padding: 10px; |
| 175 | + font-size: 14px; |
| 176 | + color: #666; |
| 177 | + cursor: pointer; |
| 178 | + } |
| 179 | + #file-input { |
| 180 | + position: absolute; |
| 181 | + top: 0; |
| 182 | + left: 0; |
| 183 | + width: 100%; |
| 184 | + height: 100%; |
| 185 | + opacity: 0; |
| 186 | + } |
| 187 | + </style> |
| 188 | + </head> |
| 189 | + <body> |
| 190 | + <div id="drop-area"> |
| 191 | + <div class="drag-drop-block"> |
| 192 | + <span>Drag file here</span> |
| 193 | + </div> |
| 194 | + <input type="file" id="file-input" accept=".json"> |
| 195 | + </div> |
| 196 | + <div id="tree-container"></div> |
| 197 | + <script src="https://cdn.jsdelivr.net/gh/pytorch/pytorch@main/torch/distributed/_tensor/debug/comm_mode_broswer_visual.js"></script> |
| 198 | + </body> |
| 199 | + </html> |
| 200 | + |
| 201 | +Conclusion |
| 202 | +------------------------------------------ |
| 203 | + |
| 204 | +In this recipe, we have learned how to use ``CommDebugMode`` to debug Distributed Tensors and |
| 205 | +parallelism solutions that uses communication collectives with PyTorch. You can use your own |
| 206 | +JSON outputs in the embedded visual browser. |
| 207 | + |
| 208 | +For more detailed information about ``CommDebugMode``, see |
| 209 | +`comm_mode_features_example.py |
| 210 | +<https://github.com/pytorch/pytorch/blob/main/torch/distributed/_tensor/examples/comm_mode_features_example.py>`_ |
0 commit comments