Skip to content

Commit 66e21e2

Browse files
author
Jessica Lin
committed
Cleanup quantization recipe and update recipes in TOC
1 parent 827254a commit 66e21e2

File tree

6 files changed

+170
-190
lines changed

6 files changed

+170
-190
lines changed

index.rst

Lines changed: 28 additions & 28 deletions
Original file line numberDiff line numberDiff line change
@@ -9,13 +9,13 @@ Welcome to PyTorch Tutorials
99
.. Add callout items below this line
1010
1111
.. customcalloutitem::
12-
:description: The 60 min blitz is the most common starting point and provides a broad view on how to use PyTorch. It covers the basics all to the way constructing deep neural networks.
12+
:description: The 60 min blitz is the most common starting point and provides a broad view on how to use PyTorch. It covers the basics all to the way constructing deep neural networks.
1313
:header: New to PyTorch?
1414
:button_link: beginner/deep_learning_60min_blitz.html
1515
:button_text: Start 60-min blitz
1616

1717
.. customcalloutitem::
18-
:description: Bite-size, ready-to-deploy PyTorch code examples.
18+
:description: Bite-size, ready-to-deploy PyTorch code examples.
1919
:header: PyTorch Recipes
2020
:button_link: recipes/recipes_index.html
2121
:button_text: Explore Recipes
@@ -89,14 +89,14 @@ Welcome to PyTorch Tutorials
8989

9090
.. customcarditem::
9191
:header: Transfer Learning for Computer Vision Tutorial
92-
:card_description: Train a convolutional neural network for image classification using transfer learning.
92+
:card_description: Train a convolutional neural network for image classification using transfer learning.
9393
:image: _static/img/thumbnails/cropped/Transfer-Learning-for-Computer-Vision-Tutorial.png
9494
:link: beginner/transfer_learning_tutorial.html
9595
:tags: Image/Video
9696

9797
.. customcarditem::
9898
:header: Adversarial Example Generation
99-
:card_description: Train a convolutional neural network for image classification using transfer learning.
99+
:card_description: Train a convolutional neural network for image classification using transfer learning.
100100
:image: _static/img/thumbnails/cropped/Adversarial-Example-Generation.png
101101
:link: beginner/fgsm_tutorial.html
102102
:tags: Image/Video
@@ -112,7 +112,7 @@ Welcome to PyTorch Tutorials
112112
113113
.. customcarditem::
114114
:header: torchaudio Tutorial
115-
:card_description: Learn to load and preprocess data from a simple dataset with PyTorch's torchaudio library.
115+
:card_description: Learn to load and preprocess data from a simple dataset with PyTorch's torchaudio library.
116116
:image: _static/img/thumbnails/cropped/torchaudio-Tutorial.png
117117
:link: beginner/audio_preprocessing_tutorial.html
118118
:tags: Audio
@@ -121,27 +121,27 @@ Welcome to PyTorch Tutorials
121121
122122
.. customcarditem::
123123
:header: Sequence-to-Sequence Modeling with nn.Transformer and torchtext
124-
:card_description: Learn how to train a sequence-to-sequence model that uses the nn.Transformer module.
124+
:card_description: Learn how to train a sequence-to-sequence model that uses the nn.Transformer module.
125125
:image: _static/img/thumbnails/cropped/Sequence-to-Sequence-Modeling-with-nnTransformer-andTorchText.png
126126
:link: beginner/transformer_tutorial.html
127127
:tags: Text
128128

129129
.. customcarditem::
130130
:header: NLP from Scratch: Classifying Names with a Character-level RNN
131-
:card_description: Build and train a basic character-level RNN to classify word from scratch without the use of torchtext. First in a series of three tutorials.
131+
:card_description: Build and train a basic character-level RNN to classify word from scratch without the use of torchtext. First in a series of three tutorials.
132132
:image: _static/img/thumbnails/cropped/NLP-From-Scratch-Classifying-Names-with-a-Character-Level-RNN.png
133133
:link: intermediate/char_rnn_classification_tutorial
134134
:tags: Text
135135

136136
.. customcarditem::
137137
:header: NLP from Scratch: Generating Names with a Character-level RNN
138-
:card_description: After using character-level RNN to classify names, leanr how to generate names from languages. Second in a series of three tutorials.
138+
:card_description: After using character-level RNN to classify names, leanr how to generate names from languages. Second in a series of three tutorials.
139139
:image: _static/img/thumbnails/cropped/NLP-From-Scratch-Generating-Names-with-a-Character-Level-RNN.png
140140
:link: intermediate/char_rnn_generation_tutorial.html
141141
:tags: Text
142142

143143
.. customcarditem::
144-
:header: NLP from Scratch: Translation with a Sequence-to-sequence Network and Attention
144+
:header: NLP from Scratch: Translation with a Sequence-to-sequence Network and Attention
145145
:card_description: This is the third and final tutorial on doing “NLP From Scratch”, where we write our own classes and functions to preprocess the data to do our NLP modeling tasks.
146146
:image: _static/img/thumbnails/cropped/NLP-From-Scratch-Translation-with-a-Sequence-to-Sequence-Network-and-Attention.png
147147
:link: intermediate/seq2seq_translation_tutorial.html
@@ -156,7 +156,7 @@ Welcome to PyTorch Tutorials
156156

157157
.. customcarditem::
158158
:header: Language Translation with Torchtext
159-
:card_description: Use torchtext to reprocess data from a well-known datasets containing both English and German. Then use it to train a sequence-to-sequence model.
159+
:card_description: Use torchtext to reprocess data from a well-known datasets containing both English and German. Then use it to train a sequence-to-sequence model.
160160
:image: _static/img/thumbnails/cropped/Language-Translation-with-TorchText.png
161161
:link: beginner/torchtext_translation_tutorial.html
162162
:tags: Text
@@ -208,10 +208,10 @@ Welcome to PyTorch Tutorials
208208
:image: _static/img/thumbnails/cropped/experimental-Introduction-to-Named-Tensors-in-PyTorch.png
209209
:link: intermediate/memory_format_tutorial.html
210210
:tags: Frontend-APIs,Named-Tensor,Best-Practice
211-
211+
212212
.. customcarditem::
213213
:header: (experimental) Channels Last Memory Format in PyTorch
214-
:card_description: Get an overview of Channels Last memory format and understand how it is used to order NCHW tensors in memory preserving dimensions.
214+
:card_description: Get an overview of Channels Last memory format and understand how it is used to order NCHW tensors in memory preserving dimensions.
215215
:image: _static/img/thumbnails/cropped/experimental-Channels-Last-Memory-Format-in-PyTorch.png
216216
:link: intermediate/memory_format_tutorial.html
217217
:tags: Memory-Format,Best-Practice
@@ -225,7 +225,7 @@ Welcome to PyTorch Tutorials
225225

226226
.. customcarditem::
227227
:header: Custom C++ and CUDA Extensions
228-
:card_description: Create a neural network layer with no parameters using numpy. Then use scipy to create a neural network layer that has learnable weights.
228+
:card_description: Create a neural network layer with no parameters using numpy. Then use scipy to create a neural network layer that has learnable weights.
229229
:image: _static/img/thumbnails/cropped/Custom-Cpp-and-CUDA-Extensions.png
230230
:link: advanced/cpp_extension.html
231231
:tags: Frontend-APIs,C++,CUDA
@@ -236,14 +236,14 @@ Welcome to PyTorch Tutorials
236236
:image: _static/img/thumbnails/cropped/Extending-TorchScript-with-Custom-Cpp-Operators.png
237237
:link: advanced/torch_script_custom_ops.html
238238
:tags: Frontend-APIs,TorchScript,C++
239-
239+
240240
.. customcarditem::
241241
:header: Extending TorchScript with Custom C++ Classes
242242
:card_description: This is a continuation of the custom operator tutorial, and introduces the API we’ve built for binding C++ classes into TorchScript and Python simultaneously.
243243
:image: _static/img/thumbnails/cropped/Extending-TorchScript-with-Custom-Cpp-Classes.png
244244
:link: advanced/torch_script_custom_classes.html
245245
:tags: Frontend-APIs,TorchScript,C++
246-
246+
247247
.. customcarditem::
248248
:header: Autograd in C++ Frontend
249249
:card_description: The autograd package helps build flexible and dynamic nerural netorks. In this tutorial, exploreseveral examples of doing autograd in PyTorch C++ frontend
@@ -262,28 +262,28 @@ Welcome to PyTorch Tutorials
262262

263263
.. customcarditem::
264264
:header: (experimental) Dynamic Quantization on an LSTM Word Language Model
265-
:card_description: Apply dynamic quantization, the easiest form of quantization, to a LSTM-based next word prediction model.
265+
:card_description: Apply dynamic quantization, the easiest form of quantization, to a LSTM-based next word prediction model.
266266
:image: _static/img/thumbnails/cropped/experimental-Dynamic-Quantization-on-an-LSTM-Word-Language-Model.png
267267
:link: advanced/dynamic_quantization_tutorial.html
268268
:tags: Text,Quantization,Model-Optimization
269269

270270
.. customcarditem::
271271
:header: (experimental) Dynamic Quantization on BERT
272-
:card_description: Apply the dynamic quantization on a BERT (Bidirectional Embedding Representations from Transformers) model.
272+
:card_description: Apply the dynamic quantization on a BERT (Bidirectional Embedding Representations from Transformers) model.
273273
:image: _static/img/thumbnails/cropped/experimental-Dynamic-Quantization-on-BERT.png
274274
:link: intermediate/dynamic_quantization_bert_tutorial.html
275275
:tags: Text,Quantization,Model-Optimization
276276

277277
.. customcarditem::
278278
:header: (experimental) Static Quantization with Eager Mode in PyTorch
279-
:card_description: Learn techniques to impove a model's accuracy = post-training static quantization, per-channel quantization, and quantization-aware training.
279+
:card_description: Learn techniques to impove a model's accuracy = post-training static quantization, per-channel quantization, and quantization-aware training.
280280
:image: _static/img/thumbnails/cropped/experimental-Static-Quantization-with-Eager-Mode-in-PyTorch.png
281281
:link: advanced/static_quantization_tutorial.html
282282
:tags: Image/Video,Quantization,Model-Optimization
283283

284284
.. customcarditem::
285285
:header: (experimental) Quantized Transfer Learning for Computer Vision Tutorial
286-
:card_description: Learn techniques to impove a model's accuracy - post-training static quantization, per-channel quantization, and quantization-aware training.
286+
:card_description: Learn techniques to impove a model's accuracy - post-training static quantization, per-channel quantization, and quantization-aware training.
287287
:image: _static/img/thumbnails/cropped/experimental-Quantized-Transfer-Learning-for-Computer-Vision-Tutorial.png
288288
:link: advanced/static_quantization_tutorial.html
289289
:tags: Image/Video,Quantization,Model-Optimization
@@ -292,14 +292,14 @@ Welcome to PyTorch Tutorials
292292
293293
.. customcarditem::
294294
:header: Single-Machine Model Parallel Best Practices
295-
:card_description: Learn how to implement model parallel, a distributed training technique which splits a single model onto different GPUs, rather than replicating the entire model on each GPU
295+
:card_description: Learn how to implement model parallel, a distributed training technique which splits a single model onto different GPUs, rather than replicating the entire model on each GPU
296296
:image: _static/img/thumbnails/cropped/Model-Parallel-Best-Practices.png
297297
:link: intermediate/model_parallel_tutorial.html
298298
:tags: Parallel-and-Distributed-Training
299299

300300
.. customcarditem::
301301
:header: Getting Started with Distributed Data Parallel
302-
:card_description: Learn the basics of when to use distributed data paralle versus data parallel and work through an example to set it up.
302+
:card_description: Learn the basics of when to use distributed data paralle versus data parallel and work through an example to set it up.
303303
:image: _static/img/thumbnails/cropped/Getting-Started-with-Distributed-Data-Parallel.png
304304
:link: intermediate/ddp_tutorial.html
305305
:tags: Parallel-and-Distributed-Training
@@ -310,7 +310,7 @@ Welcome to PyTorch Tutorials
310310
:image: _static/img/thumbnails/cropped/Writing-Distributed-Applications-with-PyTorch.png
311311
:link: intermediate/dist_tuto.html
312312
:tags: Parallel-and-Distributed-Training
313-
313+
314314
.. customcarditem::
315315
:header: Getting Started with Distributed RPC Framework
316316
:card_description: Learn how to build distributed training using the torch.distributed.rpc package.
@@ -327,7 +327,7 @@ Welcome to PyTorch Tutorials
327327

328328
.. customcarditem::
329329
:header: Implementing a Parameter Server Using Distributed RPC Framework
330-
:card_description: Walk through a through a simple example of implementing a parameter server using PyTorch’s Distributed RPC framework.
330+
:card_description: Walk through a through a simple example of implementing a parameter server using PyTorch’s Distributed RPC framework.
331331
:image: _static/img/thumbnails/cropped/Implementing-a-Parameter-Server-Using-Distributed-RPC-Framework.png
332332
:link: intermediate/rpc_param_server_tutorial.html
333333
:tags: Parallel-and-Distributed-Training
@@ -365,13 +365,13 @@ Additional Resources
365365

366366
.. customcalloutitem::
367367
:header: PyTorch Cheat Sheet
368-
:description: Quick overview to essential PyTorch elements.
368+
:description: Quick overview to essential PyTorch elements.
369369
:button_link: beginner/ptcheat.html
370370
:button_text: Download
371371

372372
.. customcalloutitem::
373373
:header: Tutorials on GitHub
374-
:description: Access PyTorch Tutorials from GitHub.
374+
:description: Access PyTorch Tutorials from GitHub.
375375
:button_link: https://github.com/pytorch/tutorials
376376
:button_text: Go To GitHub
377377

@@ -382,7 +382,7 @@ Additional Resources
382382

383383
</div>
384384
</div>
385-
385+
386386
<div style='clear:both'></div>
387387

388388
.. -----------------------------------------
@@ -392,9 +392,9 @@ Additional Resources
392392
:maxdepth: 2
393393
:hidden:
394394
:includehidden:
395-
:caption: Recipes
395+
:caption: PyTorch Recipes
396396

397-
recipes/recipes_index
397+
See All Recipes <recipes/recipes_index>
398398

399399
.. toctree::
400400
:maxdepth: 2

recipes/index.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -280,7 +280,7 @@ PyTorch Recipes
280280

281281
.. raw:: html
282282

283-
<div class="sphx-glr-thumbcontainer" tooltip="--------------">
283+
<div class="sphx-glr-thumbcontainer" tooltip="In this recipe you will see how to take advantage of Dynamic Quantization to accelerate inferen...">
284284

285285
.. only:: html
286286

0 commit comments

Comments
 (0)