Skip to content

Commit 1fdf1cd

Browse files
authored
Fix forward AD tutorial directory and add to index (#1758)
1 parent 796013c commit 1fdf1cd

File tree

2 files changed

+16
-2
lines changed

2 files changed

+16
-2
lines changed

index.rst

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -387,6 +387,13 @@ Welcome to PyTorch Tutorials
387387
:link: intermediate/custom_function_conv_bn_tutorial.html
388388
:tags: Extending-PyTorch,Frontend-APIs
389389

390+
.. customcarditem::
391+
:header: Forward-mode Automatic Differentiation
392+
:card_description: Learn how to use forward-mode automatic differentiation
393+
:image: _static/img/thumbnails/cropped/generic-pytorch-logo.PNG
394+
:link: intermediate/forward_ad_usage.html
395+
:tags: Frontend-APIs
396+
390397
.. Model Optimization
391398
392399
.. customcarditem::
@@ -746,6 +753,7 @@ Additional Resources
746753
:caption: Frontend APIs
747754

748755
intermediate/memory_format_tutorial
756+
intermediate/forward_ad_usage
749757
advanced/cpp_frontend
750758
advanced/torch-script-parallelism
751759
advanced/cpp_autograd

forward_ad_usage.py renamed to intermediate_source/forward_ad_usage.py

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,17 @@
11
# -*- coding: utf-8 -*-
22
"""
3-
Forward-mode Automatic Differentiation
4-
======================================
3+
Forward-mode Automatic Differentiation (Beta)
4+
=============================================
55
66
This tutorial demonstrates how to use forward-mode AD to compute
77
directional derivatives (or equivalently, Jacobian-vector products).
88
9+
The tutorial below uses some APIs only available in versions >= 1.11
10+
(or nightly builds).
11+
12+
Also note that forward-mode AD is currently in beta. The API is
13+
subject to change and operator coverage is still incomplete.
14+
915
Basic Usage
1016
--------------------------------------------------------------------
1117
Unlike reverse-mode AD, forward-mode AD computes gradients eagerly

0 commit comments

Comments
 (0)