Skip to content

Commit 0fea341

Browse files
author
Seth Weidman
committed
Make data downloading instructions, paths, filenames clearer
1 parent a4115b6 commit 0fea341

File tree

2 files changed

+33
-8
lines changed

2 files changed

+33
-8
lines changed

Makefile

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -90,8 +90,8 @@ download:
9090
unzip -q -o $(DATADIR)/wikitext-2.zip -d advanced_source/data/
9191

9292
# Download model for advanced_source/static_quantization_tutorial.py
93-
wget -N https://s3.amazonaws.com/pytorch-tutorial-assets/mobilenet_quantization.pth -P $(DATADIR)
94-
cp $(DATADIR)/mobilenet_quantization.pth advanced_source/data/mobilenet_quantization.pth
93+
wget -N https://download.pytorch.org/models/mobilenet_v2-b0353104.pth -P $(DATADIR)
94+
cp $(DATADIR)/mobilenet_v2-b0353104.pth advanced_source/data/mobilenet_pretrained_float.pth
9595

9696
# Download dataset for advanced_source/static_quantization_tutorial.py
9797
wget -N https://s3.amazonaws.com/pytorch-tutorial-assets/imagenet_1k.zip -P $(DATADIR)

advanced_source/static_quantization_tutorial.py

Lines changed: 31 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -304,15 +304,19 @@ def print_size_of_model(model):
304304
# ----------------------------------
305305
#
306306
# As our last major setup step, we define our dataloaders for our training and testing set.
307-
# The specific dataset we've created for this tutorial contains just 1000 images, one from
307+
#
308+
# ImageNet Data
309+
# ^^^^^^^^^^^^^
310+
#
311+
# The specific dataset we've created for this tutorial contains just 1000 images from the ImageNet data, one from
308312
# each class (this dataset, at just over 250 MB, is small enough that it can be downloaded
309313
# relatively easily). The URL for this custom dataset is:
310314
#
311315
# .. code::
312316
#
313317
# https://s3.amazonaws.com/pytorch-tutorial-assets/imagenet_1k.zip
314318
#
315-
# To download this data locally using Python, then, you could use:
319+
# To download this data locally using Python, you could use:
316320
#
317321
# .. code:: python
318322
#
@@ -326,11 +330,32 @@ def print_size_of_model(model):
326330
# with open(filename, 'wb') as f:
327331
# f.write(r.content)
328332
#
329-
#
330333
# For this tutorial to run, we download this data and move it to the right place using
331334
# `these lines <https://github.com/pytorch/tutorials/blob/master/Makefile#L97-L98>`_
332335
# from the `Makefile <https://github.com/pytorch/tutorials/blob/master/Makefile>`_.
333336
#
337+
# To run the code in this tutorial using the entire ImageNet dataset, on the other hand, you could download
338+
# the data using ``torchvision`` following
339+
# `here <https://pytorch.org/docs/stable/torchvision/datasets.html#imagenet>`_. For example,
340+
# to download the training set and apply some standard transformations to it, you could use:
341+
#
342+
# .. code:: python
343+
#
344+
# import torchvision
345+
# import torchvision.transforms as transforms
346+
#
347+
# imagenet_dataset = torchvision.datasets.ImageNet(
348+
# '~/.data/imagenet',
349+
# split='train',
350+
# download=True,
351+
# transforms.Compose([
352+
# transforms.RandomResizedCrop(224),
353+
# transforms.RandomHorizontalFlip(),
354+
# transforms.ToTensor(),
355+
# transforms.Normalize(mean=[0.485, 0.456, 0.406],
356+
# std=[0.229, 0.224, 0.225]),
357+
# ])
358+
#
334359
# With the data downloaded, we show functions below that define dataloaders we'll use to read
335360
# in this data. These functions mostly come from
336361
# `here <https://github.com/pytorch/vision/blob/master/references/detection/train.py>`_.
@@ -374,12 +399,12 @@ def prepare_data_loaders(data_path):
374399
return data_loader, data_loader_test
375400

376401
######################################################################
377-
# Next, we'll load in the pre-trained MobileNetV2 model. Similarly to the data about, the file with the pre-trained
378-
# weights is stored at ``https://s3.amazonaws.com/pytorch-tutorial-assets/mobilenet_quantization.pth``:
402+
# Next, we'll load in the pre-trained MobileNetV2 model. We provide the URL to download the data from in ``torchvision``
403+
# `here <https://github.com/pytorch/vision/blob/master/torchvision/models/mobilenet.py#L9>`_.
379404

380405
data_path = 'data/imagenet_1k'
381406
saved_model_dir = 'data/'
382-
float_model_file = 'mobilenet_quantization.pth'
407+
float_model_file = 'mobilenet_pretrained_float.pth'
383408
scripted_float_model_file = 'mobilenet_quantization_scripted.pth'
384409
scripted_quantized_model_file = 'mobilenet_quantization_scripted_quantized.pth'
385410

0 commit comments

Comments
 (0)