Skip to content

Commit 0e3639d

Browse files
authored
Merge branch 'main' into issue_995
2 parents b8545de + dd6a55d commit 0e3639d

15 files changed

+104
-56
lines changed

.github/PULL_REQUEST_TEMPLATE.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,4 +8,4 @@ Fixes #ISSUE_NUMBER
88
- [ ] The issue that is being fixed is referred in the description (see above "Fixes #ISSUE_NUMBER")
99
- [ ] Only one issue is addressed in this pull request
1010
- [ ] Labels from the issue that this PR is fixing are added to this pull request
11-
- [ ] No unnessessary issues are included into this pull request.
11+
- [ ] No unnecessary issues are included into this pull request.

.github/scripts/docathon-label-sync.py

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -14,6 +14,9 @@ def main():
1414
repo = g.get_repo(f'{repo_owner}/{repo_name}')
1515
pull_request = repo.get_pull(pull_request_number)
1616
pull_request_body = pull_request.body
17+
# PR without description
18+
if pull_request_body is None:
19+
return
1720

1821
# get issue number from the PR body
1922
if not re.search(r'#\d{1,5}', pull_request_body):

beginner_source/basics/optimization_tutorial.py

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -149,6 +149,9 @@ def forward(self, x):
149149

150150
def train_loop(dataloader, model, loss_fn, optimizer):
151151
size = len(dataloader.dataset)
152+
# Set the model to training mode - important for batch normalization and dropout layers
153+
# Unnecessary in this situation but added for best practices
154+
model.train()
152155
for batch, (X, y) in enumerate(dataloader):
153156
# Compute prediction and loss
154157
pred = model(X)
@@ -165,10 +168,15 @@ def train_loop(dataloader, model, loss_fn, optimizer):
165168

166169

167170
def test_loop(dataloader, model, loss_fn):
171+
# Set the model to evaluation mode - important for batch normalization and dropout layers
172+
# Unnecessary in this situation but added for best practices
173+
model.eval()
168174
size = len(dataloader.dataset)
169175
num_batches = len(dataloader)
170176
test_loss, correct = 0, 0
171177

178+
# Evaluating the model with torch.no_grad() ensures that no gradients are computed during test mode
179+
# also serves to reduce unnecessary gradient computations and memory usage for tensors with requires_grad=True
172180
with torch.no_grad():
173181
for X, y in dataloader:
174182
pred = model(X)
Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,10 @@
1+
Finetuning Torchvision Models
2+
=============================
3+
4+
This tutorial has been moved to https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
5+
6+
It will redirect in 3 seconds.
7+
8+
.. raw:: html
9+
10+
<meta http-equiv="Refresh" content="3; url='https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html'" />

beginner_source/former_torchies/parallelism_tutorial.py

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,10 @@ def forward(self, x):
5353

5454
class MyDataParallel(nn.DataParallel):
5555
def __getattr__(self, name):
56-
return getattr(self.module, name)
56+
try:
57+
return super().__getattr__(name)
58+
except AttributeError:
59+
return getattr(self.module, name)
5760

5861
########################################################################
5962
# **Primitives on which DataParallel is implemented upon:**

beginner_source/introyt/introyt1_tutorial.py

Lines changed: 21 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -288,7 +288,7 @@ def num_flat_features(self, x):
288288

289289
transform = transforms.Compose(
290290
[transforms.ToTensor(),
291-
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
291+
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616))])
292292

293293

294294
##########################################################################
@@ -297,9 +297,28 @@ def num_flat_features(self, x):
297297
# - ``transforms.ToTensor()`` converts images loaded by Pillow into
298298
# PyTorch tensors.
299299
# - ``transforms.Normalize()`` adjusts the values of the tensor so
300-
# that their average is zero and their standard deviation is 0.5. Most
300+
# that their average is zero and their standard deviation is 1.0. Most
301301
# activation functions have their strongest gradients around x = 0, so
302302
# centering our data there can speed learning.
303+
# The values passed to the transform are the means (first tuple) and the
304+
# standard deviations (second tuple) of the rgb values of the images in
305+
# the dataset. You can calculate these values yourself by running these
306+
# few lines of code:
307+
# ```
308+
# from torch.utils.data import ConcatDataset
309+
# transform = transforms.Compose([transforms.ToTensor()])
310+
# trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
311+
# download=True, transform=transform)
312+
#
313+
# #stack all train images together into a tensor of shape
314+
# #(50000, 3, 32, 32)
315+
# x = torch.stack([sample[0] for sample in ConcatDataset([trainset])])
316+
#
317+
# #get the mean of each channel
318+
# mean = torch.mean(x, dim=(0,2,3)) #tensor([0.4914, 0.4822, 0.4465])
319+
# std = torch.std(x, dim=(0,2,3)) #tensor([0.2470, 0.2435, 0.2616])
320+
#
321+
# ```
303322
#
304323
# There are many more transforms available, including cropping, centering,
305324
# rotation, and reflection.

beginner_source/introyt/tensorboardyt_tutorial.py

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -64,6 +64,13 @@
6464
# PyTorch TensorBoard support
6565
from torch.utils.tensorboard import SummaryWriter
6666

67+
# In case you are using an environment that has TensorFlow installed,
68+
# such as Google Colab, uncomment the following code to avoid
69+
# a bug with saving embeddings to your TensorBoard directory
70+
71+
# import tensorflow as tf
72+
# import tensorboard as tb
73+
# tf.io.gfile = tb.compat.tensorflow_stub.io.gfile
6774

6875
######################################################################
6976
# Showing Images in TensorBoard

beginner_source/nn_tutorial.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -795,8 +795,7 @@ def __len__(self):
795795
return len(self.dl)
796796

797797
def __iter__(self):
798-
batches = iter(self.dl)
799-
for b in batches:
798+
for b in self.dl:
800799
yield (self.func(*b))
801800

802801
train_dl, valid_dl = get_data(train_ds, valid_ds, bs)

beginner_source/transformer_tutorial.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -149,7 +149,7 @@ def forward(self, x: Tensor) -> Tensor:
149149
# into ``batch_size`` columns. If the data does not divide evenly into
150150
# ``batch_size`` columns, then the data is trimmed to fit. For instance, with
151151
# the alphabet as the data (total length of 26) and ``batch_size=4``, we would
152-
# divide the alphabet into 4 sequences of length 6:
152+
# divide the alphabet into sequences of length 6, resulting in 4 of such sequences.
153153
#
154154
# .. math::
155155
# \begin{bmatrix}

intermediate_source/char_rnn_classification_tutorial.py

Lines changed: 15 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -4,11 +4,14 @@
44
**************************************************************
55
**Author**: `Sean Robertson <https://github.com/spro>`_
66
7-
We will be building and training a basic character-level RNN to classify
8-
words. This tutorial, along with the following two, show how to do
9-
preprocess data for NLP modeling "from scratch", in particular not using
10-
many of the convenience functions of `torchtext`, so you can see how
11-
preprocessing for NLP modeling works at a low level.
7+
We will be building and training a basic character-level Recurrent Neural
8+
Network (RNN) to classify words. This tutorial, along with two other
9+
Natural Language Processing (NLP) "from scratch" tutorials
10+
:doc:`/intermediate/char_rnn_generation_tutorial` and
11+
:doc:`/intermediate/seq2seq_translation_tutorial`, show how to
12+
preprocess data to model NLP. In particular these tutorials do not
13+
use many of the convenience functions of `torchtext`, so you can see how
14+
preprocessing to model NLP works at a low level.
1215
1316
A character-level RNN reads words as a series of characters -
1417
outputting a prediction and "hidden state" at each step, feeding its
@@ -32,13 +35,15 @@
3235
(-2.68) Dutch
3336
3437
35-
**Recommended Reading:**
38+
Recommended Preparation
39+
=======================
3640
37-
I assume you have at least installed PyTorch, know Python, and
38-
understand Tensors:
41+
Before starting this tutorial it is recommended that you have installed PyTorch,
42+
and have a basic understanding of Python programming language and Tensors:
3943
4044
- https://pytorch.org/ For installation instructions
4145
- :doc:`/beginner/deep_learning_60min_blitz` to get started with PyTorch in general
46+
and learn the basics of Tensors
4247
- :doc:`/beginner/pytorch_with_examples` for a wide and deep overview
4348
- :doc:`/beginner/former_torchies_tutorial` if you are former Lua Torch user
4449
@@ -181,10 +186,6 @@ def lineToTensor(line):
181186
# is just 2 linear layers which operate on an input and hidden state, with
182187
# a ``LogSoftmax`` layer after the output.
183188
#
184-
# .. figure:: https://i.imgur.com/Z2xbySO.png
185-
# :alt:
186-
#
187-
#
188189

189190
import torch.nn as nn
190191

@@ -195,13 +196,13 @@ def __init__(self, input_size, hidden_size, output_size):
195196
self.hidden_size = hidden_size
196197

197198
self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
198-
self.i2o = nn.Linear(input_size + hidden_size, output_size)
199+
self.h2o = nn.Linear(hidden_size, output_size)
199200
self.softmax = nn.LogSoftmax(dim=1)
200201

201202
def forward(self, input, hidden):
202203
combined = torch.cat((input, hidden), 1)
203204
hidden = self.i2h(combined)
204-
output = self.i2o(combined)
205+
output = self.h2o(hidden)
205206
output = self.softmax(output)
206207
return output, hidden
207208

intermediate_source/mario_rl_tutorial.py

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -711,17 +711,18 @@ def record(self, episode, epsilon, step):
711711
f"{datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%S'):>20}\n"
712712
)
713713

714-
for metric in ["ep_rewards", "ep_lengths", "ep_avg_losses", "ep_avg_qs"]:
715-
plt.plot(getattr(self, f"moving_avg_{metric}"))
716-
plt.savefig(getattr(self, f"{metric}_plot"))
714+
for metric in ["ep_lengths", "ep_avg_losses", "ep_avg_qs", "ep_rewards"]:
717715
plt.clf()
716+
plt.plot(getattr(self, f"moving_avg_{metric}"), label=f"moving_avg_{metric}")
717+
plt.legend()
718+
plt.savefig(getattr(self, f"{metric}_plot"))
718719

719720

720721
######################################################################
721722
# Let’s play!
722723
# """""""""""""""
723724
#
724-
# In this example we run the training loop for 10 episodes, but for Mario to truly learn the ways of
725+
# In this example we run the training loop for 40 episodes, but for Mario to truly learn the ways of
725726
# his world, we suggest running the loop for at least 40,000 episodes!
726727
#
727728
use_cuda = torch.cuda.is_available()
@@ -735,7 +736,7 @@ def record(self, episode, epsilon, step):
735736

736737
logger = MetricLogger(save_dir)
737738

738-
episodes = 10
739+
episodes = 40
739740
for e in range(episodes):
740741

741742
state = env.reset()

intermediate_source/tensorboard_profiler_tutorial.py

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@
1818
-----
1919
To install ``torch`` and ``torchvision`` use the following command:
2020
21-
::
21+
.. code-block::
2222
2323
pip install torch torchvision
2424
@@ -160,23 +160,23 @@ def train(data):
160160
#
161161
# Install PyTorch Profiler TensorBoard Plugin.
162162
#
163-
# ::
163+
# .. code-block::
164164
#
165165
# pip install torch_tb_profiler
166166
#
167167

168168
######################################################################
169169
# Launch the TensorBoard.
170170
#
171-
# ::
171+
# .. code-block::
172172
#
173173
# tensorboard --logdir=./log
174174
#
175175

176176
######################################################################
177177
# Open the TensorBoard profile URL in Google Chrome browser or Microsoft Edge browser.
178178
#
179-
# ::
179+
# .. code-block::
180180
#
181181
# http://localhost:6006/#pytorch_profiler
182182
#
@@ -287,7 +287,7 @@ def train(data):
287287
# In this example, we follow the "Performance Recommendation" and set ``num_workers`` as below,
288288
# pass a different name such as ``./log/resnet18_4workers`` to ``tensorboard_trace_handler``, and run it again.
289289
#
290-
# ::
290+
# .. code-block::
291291
#
292292
# train_loader = torch.utils.data.DataLoader(train_set, batch_size=32, shuffle=True, num_workers=4)
293293
#
@@ -316,7 +316,7 @@ def train(data):
316316
#
317317
# You can try it by using existing example on Azure
318318
#
319-
# ::
319+
# .. code-block::
320320
#
321321
# pip install azure-storage-blob
322322
# tensorboard --logdir=https://torchtbprofiler.blob.core.windows.net/torchtbprofiler/demo/memory_demo_1_10
@@ -366,7 +366,7 @@ def train(data):
366366
#
367367
# You can try it by using existing example on Azure:
368368
#
369-
# ::
369+
# .. code-block::
370370
#
371371
# pip install azure-storage-blob
372372
# tensorboard --logdir=https://torchtbprofiler.blob.core.windows.net/torchtbprofiler/demo/distributed_bert

prototype_source/README.txt

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
11
Prototype Tutorials
22
------------------
33
1. distributed_rpc_profiling.rst
4-
Profiling PyTorch RPC-Based Workloads
5-
https://github.com/pytorch/tutorials/blob/release/1.6/prototype_source/distributed_rpc_profiling.rst
4+
Profiling PyTorch RPC-Based Workloads
5+
https://github.com/pytorch/tutorials/blob/main/prototype_source/distributed_rpc_profiling.rst
66

77
2. graph_mode_static_quantization_tutorial.py
88
Graph Mode Post Training Static Quantization in PyTorch
@@ -21,8 +21,8 @@ Prototype Tutorials
2121
https://github.com/pytorch/tutorials/blob/main/prototype_source/torchscript_freezing.py
2222

2323
6. vulkan_workflow.rst
24-
Vulkan Backend User Workflow
25-
https://pytorch.org/tutorials/intermediate/vulkan_workflow.html
24+
Vulkan Backend User Workflow
25+
https://pytorch.org/tutorials/intermediate/vulkan_workflow.html
2626

2727
7. fx_graph_mode_ptq_static.rst
2828
FX Graph Mode Post Training Static Quantization

prototype_source/fx_graph_mode_ptq_static.rst

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -214,9 +214,9 @@ Download the `torchvision resnet18 model <https://download.pytorch.org/models/re
214214
float_model = load_model(saved_model_dir + float_model_file).to("cpu")
215215
float_model.eval()
216216
217-
# deepcopy the model since we need to keep the original model around
218-
import copy
219-
model_to_quantize = copy.deepcopy(float_model)
217+
# create another instance of the model since
218+
# we need to keep the original model around
219+
model_to_quantize = load_model(saved_model_dir + float_model_file).to("cpu")
220220
221221
3. Set model to eval mode
222222
-------------------------
@@ -408,4 +408,4 @@ Running the model in AIBench (with single threading) gives the following result:
408408
409409
As we can see for resnet18 both FX graph mode and eager mode quantized model get similar speedup over the floating point model,
410410
which is around 2-4x faster than the floating point model. But the actual speedup over floating point model may vary
411-
depending on model, device, build, input batch sizes, threading etc.
411+
depending on model, device, build, input batch sizes, threading etc.

0 commit comments

Comments
 (0)