|
| 1 | +# Owner(s): ["oncall: distributed"] |
| 2 | + |
| 3 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 4 | +# All rights reserved. |
| 5 | +# |
| 6 | +# This source code is licensed under the BSD-style license found in the |
| 7 | +# LICENSE file in the root directory of this source tree. |
| 8 | + |
| 9 | + |
| 10 | +import unittest |
| 11 | +from copy import deepcopy |
| 12 | + |
| 13 | +import torch |
| 14 | +import torch.nn as nn |
| 15 | + |
| 16 | +from torch.distributed.optim import _apply_optimizer_in_backward |
| 17 | + |
| 18 | +# TODO (rohan-varma): Add FSDP & DDP tests once supported |
| 19 | + |
| 20 | +def _validate_params(params_list, fn): |
| 21 | + ref_params = params_list[0] |
| 22 | + for param_list in params_list[1:]: |
| 23 | + for p1, p2 in zip(ref_params, param_list): |
| 24 | + fn(p1, p2) |
| 25 | + |
| 26 | + |
| 27 | +class ApplyOverlappedOptimizerTest(unittest.TestCase): |
| 28 | + |
| 29 | + def _run_training_loop_and_validate(self, inp, models, optimizers): |
| 30 | + for i in range(6): |
| 31 | + for model in models: |
| 32 | + model(inp).sum().backward() |
| 33 | + for opt in optimizers: |
| 34 | + opt.step() |
| 35 | + |
| 36 | + with self.subTest(i): |
| 37 | + _validate_params( |
| 38 | + [model.parameters() for model in models], |
| 39 | + torch.testing.assert_allclose, |
| 40 | + ) |
| 41 | + |
| 42 | + for opt in optimizers: |
| 43 | + opt.zero_grad(set_to_none=True) |
| 44 | + |
| 45 | + def _test_apply_optimizer_in_backward(self, share_params) -> None: |
| 46 | + weight_optimizer_kwargs = {"lr": 1.0} |
| 47 | + bias_optimizer_kwargs = {"lr": 0.5} |
| 48 | + model = nn.Sequential(nn.Linear(10, 10), nn.Linear(10, 10)) |
| 49 | + if share_params: |
| 50 | + model[0].weight = model[1].weight |
| 51 | + |
| 52 | + # Use different optimizers for weights & biases. |
| 53 | + weights = [m.weight for m in model] |
| 54 | + biases = [m.bias for m in model] |
| 55 | + optim_weight = torch.optim.SGD(weights, **weight_optimizer_kwargs) |
| 56 | + optim_bias = torch.optim.SGD(biases, **bias_optimizer_kwargs) |
| 57 | + model_with_opt_in_bwd = deepcopy(model) |
| 58 | + |
| 59 | + # Apply different optimizer in backwards for weights and biases. |
| 60 | + _apply_optimizer_in_backward( |
| 61 | + torch.optim.SGD, |
| 62 | + [m.weight for m in model_with_opt_in_bwd], |
| 63 | + optimizer_kwargs=weight_optimizer_kwargs |
| 64 | + ) |
| 65 | + |
| 66 | + _apply_optimizer_in_backward( |
| 67 | + torch.optim.SGD, |
| 68 | + [m.bias for m in model_with_opt_in_bwd], |
| 69 | + optimizer_kwargs=bias_optimizer_kwargs |
| 70 | + ) |
| 71 | + |
| 72 | + _validate_params( |
| 73 | + [ |
| 74 | + model.parameters(), |
| 75 | + model_with_opt_in_bwd.parameters(), |
| 76 | + ], |
| 77 | + torch.testing.assert_allclose, |
| 78 | + ) |
| 79 | + |
| 80 | + self._run_training_loop_and_validate( |
| 81 | + torch.randn(4, 10), |
| 82 | + [model, model_with_opt_in_bwd], |
| 83 | + [optim_weight, optim_bias], |
| 84 | + ) |
| 85 | + |
| 86 | + def test_apply_optimizer_in_backward(self) -> None: |
| 87 | + self._test_apply_optimizer_in_backward(share_params=False) |
| 88 | + |
| 89 | + def test_apply_optimizer_in_backward_shared_params(self) -> None: |
| 90 | + self._test_apply_optimizer_in_backward(share_params=True) |
| 91 | + |
| 92 | + def test_multiple_optim_for_params(self) -> None: |
| 93 | + model = nn.Sequential(nn.Linear(10, 10), nn.Linear(10, 10)) |
| 94 | + opt_0_kwargs = {"lr": 0.03} |
| 95 | + opt_1_kwargs = {"lr": 0.01} |
| 96 | + opt_0 = torch.optim.SGD(model.parameters(), **opt_0_kwargs) |
| 97 | + opt_1 = torch.optim.SGD(model.parameters(), **opt_1_kwargs) |
| 98 | + model_with_opt_in_bwd = deepcopy(model) |
| 99 | + _apply_optimizer_in_backward( |
| 100 | + torch.optim.SGD, |
| 101 | + model_with_opt_in_bwd.parameters(), |
| 102 | + optimizer_kwargs=opt_0_kwargs, |
| 103 | + ) |
| 104 | + _apply_optimizer_in_backward( |
| 105 | + torch.optim.SGD, |
| 106 | + model_with_opt_in_bwd.parameters(), |
| 107 | + optimizer_kwargs=opt_1_kwargs, |
| 108 | + ) |
| 109 | + self._run_training_loop_and_validate( |
| 110 | + torch.randn(4, 10), |
| 111 | + [model, model_with_opt_in_bwd], |
| 112 | + [opt_0, opt_1], |
| 113 | + ) |
0 commit comments