213
213
< div class ="pytorch-left-menu-search ">
214
214
215
215
< div class ="version ">
216
- < a href ='https://pytorch.org/docs/versions.html '> master (1.12.0a0+git0b1f3bd ) ▼</ a >
216
+ < a href ='https://pytorch.org/docs/versions.html '> master (1.12.0a0+gitb68f227 ) ▼</ a >
217
217
</ div >
218
218
219
219
@@ -757,7 +757,7 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
757
757
< span class ="c1 "> # All strings are unicode in Python 3.</ span >
758
758
< span class ="k "> return</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> _tensor_str</ span > < span class ="o "> .</ span > < span class ="n "> _str</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> )</ span >
759
759
760
- < div class =" viewcode-block " id =" Tensor.backward " > < a class =" viewcode-back " href =" ../../generated/torch.Tensor.backward.html#torch.Tensor.backward " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> backward</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> gradient</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> retain_graph</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> create_graph</ span > < span class ="o "> =</ span > < span class ="kc "> False</ span > < span class ="p "> ,</ span > < span class ="n "> inputs</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ):</ span >
760
+ < span class ="k "> def</ span > < span class ="nf "> backward</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> gradient</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> retain_graph</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> create_graph</ span > < span class ="o "> =</ span > < span class ="kc "> False</ span > < span class ="p "> ,</ span > < span class ="n "> inputs</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ):</ span >
761
761
< span class ="sa "> r</ span > < span class ="sd "> """Computes the gradient of current tensor w.r.t. graph leaves.</ span >
762
762
763
763
< span class ="sd "> The graph is differentiated using the chain rule. If the tensor is</ span >
@@ -813,7 +813,7 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
813
813
< span class ="n "> retain_graph</ span > < span class ="o "> =</ span > < span class ="n "> retain_graph</ span > < span class ="p "> ,</ span >
814
814
< span class ="n "> create_graph</ span > < span class ="o "> =</ span > < span class ="n "> create_graph</ span > < span class ="p "> ,</ span >
815
815
< span class ="n "> inputs</ span > < span class ="o "> =</ span > < span class ="n "> inputs</ span > < span class ="p "> )</ span >
816
- < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> autograd</ span > < span class ="o "> .</ span > < span class ="n "> backward</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> gradient</ span > < span class ="p "> ,</ span > < span class ="n "> retain_graph</ span > < span class ="p "> ,</ span > < span class ="n "> create_graph</ span > < span class ="p "> ,</ span > < span class ="n "> inputs</ span > < span class ="o "> =</ span > < span class ="n "> inputs</ span > < span class ="p "> )</ span > </ div >
816
+ < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> autograd</ span > < span class ="o "> .</ span > < span class ="n "> backward</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> gradient</ span > < span class ="p "> ,</ span > < span class ="n "> retain_graph</ span > < span class ="p "> ,</ span > < span class ="n "> create_graph</ span > < span class ="p "> ,</ span > < span class ="n "> inputs</ span > < span class ="o "> =</ span > < span class ="n "> inputs</ span > < span class ="p "> )</ span >
817
817
818
818
< span class ="k "> def</ span > < span class ="nf "> register_hook</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> hook</ span > < span class ="p "> ):</ span >
819
819
< span class ="sa "> r</ span > < span class ="sd "> """Registers a backward hook.</ span >
@@ -915,14 +915,14 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
915
915
< span class ="s2 "> have forward mode AD gradients.</ span >
916
916
< span class ="s2 "> """</ span > < span class ="p "> )</ span >
917
917
918
- < span class ="k "> def</ span > < span class ="nf "> is_shared</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ):</ span >
918
+ < div class =" viewcode-block " id =" Tensor.is_shared " > < a class =" viewcode-back " href =" ../../generated/torch.Tensor.is_shared.html#torch.Tensor.is_shared " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> is_shared</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ):</ span >
919
919
< span class ="sa "> r</ span > < span class ="sd "> """Checks if tensor is in shared memory.</ span >
920
920
921
921
< span class ="sd "> This is always ``True`` for CUDA tensors.</ span >
922
922
< span class ="sd "> """</ span >
923
923
< span class ="k "> if</ span > < span class ="n "> has_torch_function_unary</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ):</ span >
924
924
< span class ="k "> return</ span > < span class ="n "> handle_torch_function</ span > < span class ="p "> (</ span > < span class ="n "> Tensor</ span > < span class ="o "> .</ span > < span class ="n "> is_shared</ span > < span class ="p "> ,</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,),</ span > < span class ="bp "> self</ span > < span class ="p "> )</ span >
925
- < span class ="k "> return</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> storage</ span > < span class ="p "> ()</ span > < span class ="o "> .</ span > < span class ="n "> is_shared</ span > < span class ="p "> ()</ span >
925
+ < span class ="k "> return</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> storage</ span > < span class ="p "> ()</ span > < span class ="o "> .</ span > < span class ="n "> is_shared</ span > < span class ="p "> ()</ span > </ div >
926
926
927
927
< span class ="k "> def</ span > < span class ="nf "> share_memory_</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ):</ span >
928
928
< span class ="sa "> r</ span > < span class ="sd "> """Moves the underlying storage to shared memory.</ span >
@@ -981,7 +981,7 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
981
981
< span class ="k "> return</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> stft</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> n_fft</ span > < span class ="p "> ,</ span > < span class ="n "> hop_length</ span > < span class ="p "> ,</ span > < span class ="n "> win_length</ span > < span class ="p "> ,</ span > < span class ="n "> window</ span > < span class ="p "> ,</ span > < span class ="n "> center</ span > < span class ="p "> ,</ span >
982
982
< span class ="n "> pad_mode</ span > < span class ="p "> ,</ span > < span class ="n "> normalized</ span > < span class ="p "> ,</ span > < span class ="n "> onesided</ span > < span class ="p "> ,</ span > < span class ="n "> return_complex</ span > < span class ="o "> =</ span > < span class ="n "> return_complex</ span > < span class ="p "> )</ span >
983
983
984
- < span class ="k "> def</ span > < span class ="nf "> istft</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> n_fft</ span > < span class ="p "> :</ span > < span class ="nb "> int</ span > < span class ="p "> ,</ span > < span class ="n "> hop_length</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="nb "> int</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
984
+ < div class =" viewcode-block " id =" Tensor.istft " > < a class =" viewcode-back " href =" ../../generated/torch.Tensor.istft.html#torch.Tensor.istft " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> istft</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> n_fft</ span > < span class ="p "> :</ span > < span class ="nb "> int</ span > < span class ="p "> ,</ span > < span class ="n "> hop_length</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="nb "> int</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
985
985
< span class ="n "> win_length</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="nb "> int</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> window</ span > < span class ="p "> :</ span > < span class ="s1 "> 'Optional[Tensor]'</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
986
986
< span class ="n "> center</ span > < span class ="p "> :</ span > < span class ="nb "> bool</ span > < span class ="o "> =</ span > < span class ="kc "> True</ span > < span class ="p "> ,</ span > < span class ="n "> normalized</ span > < span class ="p "> :</ span > < span class ="nb "> bool</ span > < span class ="o "> =</ span > < span class ="kc "> False</ span > < span class ="p "> ,</ span >
987
987
< span class ="n "> onesided</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="nb "> bool</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> length</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="nb "> int</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
@@ -994,7 +994,7 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
994
994
< span class ="n "> return_complex</ span > < span class ="o "> =</ span > < span class ="n "> return_complex</ span >
995
995
< span class ="p "> )</ span >
996
996
< span class ="k "> return</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> istft</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> n_fft</ span > < span class ="p "> ,</ span > < span class ="n "> hop_length</ span > < span class ="p "> ,</ span > < span class ="n "> win_length</ span > < span class ="p "> ,</ span > < span class ="n "> window</ span > < span class ="p "> ,</ span > < span class ="n "> center</ span > < span class ="p "> ,</ span >
997
- < span class ="n "> normalized</ span > < span class ="p "> ,</ span > < span class ="n "> onesided</ span > < span class ="p "> ,</ span > < span class ="n "> length</ span > < span class ="p "> ,</ span > < span class ="n "> return_complex</ span > < span class ="o "> =</ span > < span class ="n "> return_complex</ span > < span class ="p "> )</ span >
997
+ < span class ="n "> normalized</ span > < span class ="p "> ,</ span > < span class ="n "> onesided</ span > < span class ="p "> ,</ span > < span class ="n "> length</ span > < span class ="p "> ,</ span > < span class ="n "> return_complex</ span > < span class ="o "> =</ span > < span class ="n "> return_complex</ span > < span class ="p "> )</ span > </ div >
998
998
999
999
< span class ="k "> def</ span > < span class ="nf "> resize</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="o "> *</ span > < span class ="n "> sizes</ span > < span class ="p "> ):</ span >
1000
1000
< span class ="k "> if</ span > < span class ="n "> has_torch_function_unary</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ):</ span >
0 commit comments