187
187
188
188
189
189
< div class ="version ">
190
- < a href ='http://pytorch.org/docs/versions.html '> 1.8.0a0+ffe1744 ▼</ a >
190
+ < a href ='http://pytorch.org/docs/versions.html '> 1.8.0a0+ff32f65 ▼</ a >
191
191
</ div >
192
192
193
193
@@ -645,7 +645,7 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
645
645
< span class ="k "> return</ span > < span class ="nb "> type</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> )</ span > < span class ="ow "> in</ span > < span class ="n "> _storage_classes</ span > </ div >
646
646
647
647
648
- < span class ="k "> def</ span > < span class ="nf "> set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> ):</ span >
648
+ < div class =" viewcode-block " id =" set_default_tensor_type " > < a class =" viewcode-back " href =" ../generated/torch.set_default_tensor_type.html#torch.set_default_tensor_type " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> ):</ span >
649
649
< span class ="sa "> r</ span > < span class ="sd "> """Sets the default ``torch.Tensor`` type to floating point tensor type</ span >
650
650
< span class ="sd "> ``t``. This type will also be used as default floating point type for</ span >
651
651
< span class ="sd "> type inference in :func:`torch.tensor`.</ span >
@@ -666,10 +666,10 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
666
666
< span class ="sd "> """</ span >
667
667
< span class ="k "> if</ span > < span class ="nb "> isinstance</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> ,</ span > < span class ="n "> _string_classes</ span > < span class ="p "> ):</ span >
668
668
< span class ="n "> t</ span > < span class ="o "> =</ span > < span class ="n "> _import_dotted_name</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> )</ span >
669
- < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> )</ span >
669
+ < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> )</ span > </ div >
670
670
671
671
672
- < span class ="k "> def</ span > < span class ="nf "> set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> ):</ span >
672
+ < div class =" viewcode-block " id =" set_default_dtype " > < a class =" viewcode-back " href =" ../generated/torch.set_default_dtype.html#torch.set_default_dtype " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> ):</ span >
673
673
< span class ="sa "> r</ span > < span class ="sd "> """Sets the default floating point dtype to :attr:`d`.</ span >
674
674
< span class ="sd "> This dtype is:</ span >
675
675
@@ -697,9 +697,9 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
697
697
< span class ="sd "> torch.complex128</ span >
698
698
699
699
< span class ="sd "> """</ span >
700
- < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> )</ span >
700
+ < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> )</ span > </ div >
701
701
702
- < span class ="k "> def</ span > < span class ="nf "> set_deterministic</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> ):</ span >
702
+ < div class =" viewcode-block " id =" set_deterministic " > < a class =" viewcode-back " href =" ../generated/torch.set_deterministic.html#torch.set_deterministic " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> set_deterministic</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> ):</ span >
703
703
< span class ="sa "> r</ span > < span class ="sd "> """ Sets whether PyTorch operations must use "deterministic"</ span >
704
704
< span class ="sd "> algorithms. That is, algorithms which, given the same input, and when</ span >
705
705
< span class ="sd "> run on the same software and hardware, always produce the same output.</ span >
@@ -774,7 +774,7 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
774
774
< span class ="sd "> d (:class:`bool`): If True, force operations to be deterministic.</ span >
775
775
< span class ="sd "> If False, allow non-deterministic operations.</ span >
776
776
< span class ="sd "> """</ span >
777
- < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_deterministic</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> )</ span >
777
+ < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_deterministic</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> )</ span > </ div >
778
778
779
779
< div class ="viewcode-block " id ="is_deterministic "> < a class ="viewcode-back " href ="../generated/torch.is_deterministic.html#torch.is_deterministic "> [docs]</ a > < span class ="k "> def</ span > < span class ="nf "> is_deterministic</ span > < span class ="p "> ():</ span >
780
780
< span class ="sa "> r</ span > < span class ="sd "> """Returns True if the global deterministic flag is turned on. Refer to</ span >
@@ -926,14 +926,14 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
926
926
< span class ="c1 "> ################################################################################</ span >
927
927
928
928
< span class ="c1 "> # needs to be before the submodule imports to avoid circular dependencies</ span >
929
- < div class =" viewcode-block " id =" _assert " > < a class =" viewcode-back " href =" ../generated/torch._assert.html#torch._assert " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> _assert</ span > < span class ="p "> (</ span > < span class ="n "> condition</ span > < span class ="p "> ,</ span > < span class ="n "> message</ span > < span class ="p "> ):</ span >
929
+ < span class ="k "> def</ span > < span class ="nf "> _assert</ span > < span class ="p "> (</ span > < span class ="n "> condition</ span > < span class ="p "> ,</ span > < span class ="n "> message</ span > < span class ="p "> ):</ span >
930
930
< span class ="sa "> r</ span > < span class ="sd "> """A wrapper around Python's assert which is symbolically traceable.</ span >
931
931
< span class ="sd "> """</ span >
932
932
< span class ="kn "> from</ span > < span class ="nn "> .overrides</ span > < span class ="kn "> import</ span > < span class ="n "> has_torch_function</ span > < span class ="p "> ,</ span > < span class ="n "> handle_torch_function</ span >
933
933
934
934
< span class ="k "> if</ span > < span class ="nb "> type</ span > < span class ="p "> (</ span > < span class ="n "> condition</ span > < span class ="p "> )</ span > < span class ="ow "> is</ span > < span class ="ow "> not</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> Tensor</ span > < span class ="ow "> and</ span > < span class ="n "> has_torch_function</ span > < span class ="p "> ((</ span > < span class ="n "> condition</ span > < span class ="p "> ,)):</ span >
935
935
< span class ="k "> return</ span > < span class ="n "> handle_torch_function</ span > < span class ="p "> (</ span > < span class ="n "> _assert</ span > < span class ="p "> ,</ span > < span class ="p "> (</ span > < span class ="n "> condition</ span > < span class ="p "> ,),</ span > < span class ="n "> condition</ span > < span class ="p "> ,</ span > < span class ="n "> message</ span > < span class ="p "> )</ span >
936
- < span class ="k "> assert</ span > < span class ="n "> condition</ span > < span class ="p "> ,</ span > < span class ="n "> message</ span > </ div >
936
+ < span class ="k "> assert</ span > < span class ="n "> condition</ span > < span class ="p "> ,</ span > < span class ="n "> message</ span >
937
937
938
938
< span class ="c1 "> ################################################################################</ span >
939
939
< span class ="c1 "> # Import most common subpackages</ span >
@@ -976,9 +976,9 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
976
976
< span class ="k "> del</ span > < span class ="n "> _torch_docs</ span > < span class ="p "> ,</ span > < span class ="n "> _tensor_docs</ span > < span class ="p "> ,</ span > < span class ="n "> _storage_docs</ span >
977
977
978
978
979
- < span class ="k "> def</ span > < span class ="nf "> compiled_with_cxx11_abi</ span > < span class ="p "> ():</ span >
979
+ < div class =" viewcode-block " id =" compiled_with_cxx11_abi " > < a class =" viewcode-back " href =" ../generated/torch.compiled_with_cxx11_abi.html#torch.compiled_with_cxx11_abi " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> compiled_with_cxx11_abi</ span > < span class ="p "> ():</ span >
980
980
< span class ="sa "> r</ span > < span class ="sd "> """Returns whether PyTorch was built with _GLIBCXX_USE_CXX11_ABI=1"""</ span >
981
- < span class ="k "> return</ span > < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _GLIBCXX_USE_CXX11_ABI</ span >
981
+ < span class ="k "> return</ span > < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _GLIBCXX_USE_CXX11_ABI</ span > </ div >
982
982
983
983
984
984
< span class ="c1 "> # Import the ops "namespace"</ span >
0 commit comments