193
193
< div class ="pytorch-left-menu-search ">
194
194
195
195
< div class ="version ">
196
- < a href ='https://pytorch.org/docs/versions.html '> master (1.10.0a0+git6cf311c ) ▼</ a >
196
+ < a href ='https://pytorch.org/docs/versions.html '> master (1.10.0a0+git701771a ) ▼</ a >
197
197
</ div >
198
198
199
199
@@ -658,7 +658,7 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
658
658
< span class ="k "> return</ span > < span class ="n "> module</ span > < span class ="o "> +</ span > < span class ="n "> class_name</ span >
659
659
660
660
661
- < div class =" viewcode-block " id =" is_tensor " > < a class =" viewcode-back " href =" ../generated/torch.is_tensor.html#torch.is_tensor " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> is_tensor</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> ):</ span >
661
+ < span class ="k "> def</ span > < span class ="nf "> is_tensor</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> ):</ span >
662
662
< span class ="sa "> r</ span > < span class ="sd "> """Returns True if `obj` is a PyTorch tensor.</ span >
663
663
664
664
< span class ="sd "> Note that this function is simply doing ``isinstance(obj, Tensor)``.</ span >
@@ -675,19 +675,19 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
675
675
< span class ="sd "> True</ span >
676
676
677
677
< span class ="sd "> """</ span >
678
- < span class ="k "> return</ span > < span class ="nb "> isinstance</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> ,</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> Tensor</ span > < span class ="p "> )</ span > </ div >
678
+ < span class ="k "> return</ span > < span class ="nb "> isinstance</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> ,</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> Tensor</ span > < span class ="p "> )</ span >
679
679
680
680
681
- < div class =" viewcode-block " id =" is_storage " > < a class =" viewcode-back " href =" ../generated/torch.is_storage.html#torch.is_storage " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> is_storage</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> ):</ span >
681
+ < span class ="k "> def</ span > < span class ="nf "> is_storage</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> ):</ span >
682
682
< span class ="sa "> r</ span > < span class ="sd "> """Returns True if `obj` is a PyTorch storage object.</ span >
683
683
684
684
< span class ="sd "> Args:</ span >
685
685
< span class ="sd "> obj (Object): Object to test</ span >
686
686
< span class ="sd "> """</ span >
687
- < span class ="k "> return</ span > < span class ="nb "> type</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> )</ span > < span class ="ow "> in</ span > < span class ="n "> _storage_classes</ span > </ div >
687
+ < span class ="k "> return</ span > < span class ="nb "> type</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> )</ span > < span class ="ow "> in</ span > < span class ="n "> _storage_classes</ span >
688
688
689
689
690
- < span class ="k "> def</ span > < span class ="nf "> set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> ):</ span >
690
+ < div class =" viewcode-block " id =" set_default_tensor_type " > < a class =" viewcode-back " href =" ../generated/torch.set_default_tensor_type.html#torch.set_default_tensor_type " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> ):</ span >
691
691
< span class ="sa "> r</ span > < span class ="sd "> """Sets the default ``torch.Tensor`` type to floating point tensor type</ span >
692
692
< span class ="sd "> ``t``. This type will also be used as default floating point type for</ span >
693
693
< span class ="sd "> type inference in :func:`torch.tensor`.</ span >
@@ -708,10 +708,10 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
708
708
< span class ="sd "> """</ span >
709
709
< span class ="k "> if</ span > < span class ="nb "> isinstance</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> ,</ span > < span class ="n "> _string_classes</ span > < span class ="p "> ):</ span >
710
710
< span class ="n "> t</ span > < span class ="o "> =</ span > < span class ="n "> _import_dotted_name</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> )</ span >
711
- < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> )</ span >
711
+ < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> )</ span > </ div >
712
712
713
713
714
- < span class ="k "> def</ span > < span class ="nf "> set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> ):</ span >
714
+ < div class =" viewcode-block " id =" set_default_dtype " > < a class =" viewcode-back " href =" ../generated/torch.set_default_dtype.html#torch.set_default_dtype " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> ):</ span >
715
715
< span class ="sa "> r</ span > < span class ="sd "> """</ span >
716
716
717
717
< span class ="sd "> Sets the default floating point dtype to :attr:`d`. Supports torch.float32</ span >
@@ -754,9 +754,9 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
754
754
< span class ="sd "> torch.complex128</ span >
755
755
756
756
< span class ="sd "> """</ span >
757
- < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> )</ span >
757
+ < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> )</ span > </ div >
758
758
759
- < div class =" viewcode-block " id =" use_deterministic_algorithms " > < a class =" viewcode-back " href =" ../generated/torch.use_deterministic_algorithms.html#torch.use_deterministic_algorithms " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> use_deterministic_algorithms</ span > < span class ="p "> (</ span > < span class ="n "> mode</ span > < span class ="p "> ):</ span >
759
+ < span class ="k "> def</ span > < span class ="nf "> use_deterministic_algorithms</ span > < span class ="p "> (</ span > < span class ="n "> mode</ span > < span class ="p "> ):</ span >
760
760
< span class ="sa "> r</ span > < span class ="sd "> """ Sets whether PyTorch operations must use "deterministic"</ span >
761
761
< span class ="sd "> algorithms. That is, algorithms which, given the same input, and when</ span >
762
762
< span class ="sd "> run on the same software and hardware, always produce the same output.</ span >
@@ -871,15 +871,15 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
871
871
< span class ="sd "> ...</ span >
872
872
< span class ="sd "> RuntimeError: index_add_cuda_ does not have a deterministic implementation...</ span >
873
873
< span class ="sd "> """</ span >
874
- < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_deterministic_algorithms</ span > < span class ="p "> (</ span > < span class ="n "> mode</ span > < span class ="p "> )</ span > </ div >
874
+ < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_deterministic_algorithms</ span > < span class ="p "> (</ span > < span class ="n "> mode</ span > < span class ="p "> )</ span >
875
875
876
876
< span class ="k "> def</ span > < span class ="nf "> are_deterministic_algorithms_enabled</ span > < span class ="p "> ():</ span >
877
877
< span class ="sa "> r</ span > < span class ="sd "> """Returns True if the global deterministic flag is turned on. Refer to</ span >
878
878
< span class ="sd "> :func:`torch.use_deterministic_algorithms` documentation for more details.</ span >
879
879
< span class ="sd "> """</ span >
880
880
< span class ="k "> return</ span > < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _get_deterministic_algorithms</ span > < span class ="p "> ()</ span >
881
881
882
- < span class ="k "> def</ span > < span class ="nf "> set_warn_always</ span > < span class ="p "> (</ span > < span class ="n "> b</ span > < span class ="p "> ):</ span >
882
+ < div class =" viewcode-block " id =" set_warn_always " > < a class =" viewcode-back " href =" ../generated/torch.set_warn_always.html#torch.set_warn_always " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> set_warn_always</ span > < span class ="p "> (</ span > < span class ="n "> b</ span > < span class ="p "> ):</ span >
883
883
< span class ="sa "> r</ span > < span class ="sd "> """When this flag is False (default) then some PyTorch warnings may only</ span >
884
884
< span class ="sd "> appear once per process. This helps avoid excessive warning information.</ span >
885
885
< span class ="sd "> Setting it to True causes these warnings to always appear, which may be</ span >
@@ -889,13 +889,13 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
889
889
< span class ="sd "> b (:class:`bool`): If True, force warnings to always be emitted</ span >
890
890
< span class ="sd "> If False, set to the default behaviour</ span >
891
891
< span class ="sd "> """</ span >
892
- < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_warnAlways</ span > < span class ="p "> (</ span > < span class ="n "> b</ span > < span class ="p "> )</ span >
892
+ < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_warnAlways</ span > < span class ="p "> (</ span > < span class ="n "> b</ span > < span class ="p "> )</ span > </ div >
893
893
894
- < div class =" viewcode-block " id =" is_warn_always_enabled " > < a class =" viewcode-back " href =" ../generated/torch.is_warn_always_enabled.html#torch.is_warn_always_enabled " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> is_warn_always_enabled</ span > < span class ="p "> ():</ span >
894
+ < span class ="k "> def</ span > < span class ="nf "> is_warn_always_enabled</ span > < span class ="p "> ():</ span >
895
895
< span class ="sa "> r</ span > < span class ="sd "> """Returns True if the global warn_always flag is turned on. Refer to</ span >
896
896
< span class ="sd "> :func:`torch.set_warn_always` documentation for more details.</ span >
897
897
< span class ="sd "> """</ span >
898
- < span class ="k "> return</ span > < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _get_warnAlways</ span > < span class ="p "> ()</ span > </ div >
898
+ < span class ="k "> return</ span > < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _get_warnAlways</ span > < span class ="p "> ()</ span >
899
899
900
900
< span class ="c1 "> ################################################################################</ span >
901
901
< span class ="c1 "> # Define numeric constants</ span >
@@ -1120,9 +1120,9 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
1120
1120
< span class ="k "> del</ span > < span class ="n "> _torch_docs</ span > < span class ="p "> ,</ span > < span class ="n "> _tensor_docs</ span > < span class ="p "> ,</ span > < span class ="n "> _storage_docs</ span >
1121
1121
1122
1122
1123
- < span class ="k "> def</ span > < span class ="nf "> compiled_with_cxx11_abi</ span > < span class ="p "> ():</ span >
1123
+ < div class =" viewcode-block " id =" compiled_with_cxx11_abi " > < a class =" viewcode-back " href =" ../generated/torch.compiled_with_cxx11_abi.html#torch.compiled_with_cxx11_abi " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> compiled_with_cxx11_abi</ span > < span class ="p "> ():</ span >
1124
1124
< span class ="sa "> r</ span > < span class ="sd "> """Returns whether PyTorch was built with _GLIBCXX_USE_CXX11_ABI=1"""</ span >
1125
- < span class ="k "> return</ span > < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _GLIBCXX_USE_CXX11_ABI</ span >
1125
+ < span class ="k "> return</ span > < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _GLIBCXX_USE_CXX11_ABI</ span > </ div >
1126
1126
1127
1127
1128
1128
< span class ="c1 "> # Import the ops "namespace"</ span >
0 commit comments