|
| 1 | +import itertools |
| 2 | + |
1 | 3 | import numpy as np
|
| 4 | +import pytest |
2 | 5 | import scipy.special as sp
|
3 | 6 |
|
4 | 7 | import pytensor.tensor as at
|
5 | 8 | from pytensor import function
|
6 | 9 | from pytensor.compile.mode import Mode
|
| 10 | +from pytensor.graph import ancestors |
7 | 11 | from pytensor.graph.fg import FunctionGraph
|
8 | 12 | from pytensor.link.c.basic import CLinker
|
| 13 | +from pytensor.scalar import ScalarLoop, float32, float64, int32 |
9 | 14 | from pytensor.scalar.math import (
|
10 | 15 | betainc,
|
11 | 16 | betainc_grad,
|
12 | 17 | gammainc,
|
13 | 18 | gammaincc,
|
14 | 19 | gammal,
|
15 | 20 | gammau,
|
| 21 | + hyp2f1, |
16 | 22 | )
|
17 | 23 | from tests.link.test_link import make_function
|
18 | 24 |
|
@@ -89,3 +95,32 @@ def test_betainc_derivative_nan():
|
89 | 95 | assert np.isnan(test_func(1, 1, 2))
|
90 | 96 | assert np.isnan(test_func(1, -1, 1))
|
91 | 97 | assert np.isnan(test_func(1, 1, -1))
|
| 98 | + |
| 99 | + |
| 100 | +@pytest.mark.parametrize( |
| 101 | + "op, scalar_loop_grads", |
| 102 | + [ |
| 103 | + (gammainc, [0]), |
| 104 | + (gammaincc, [0]), |
| 105 | + (betainc, [0, 1]), |
| 106 | + (hyp2f1, [0, 1, 2]), |
| 107 | + ], |
| 108 | +) |
| 109 | +def test_scalarloop_grad_mixed_dtypes(op, scalar_loop_grads): |
| 110 | + nin = op.nin |
| 111 | + for types in itertools.product((float32, float64, int32), repeat=nin): |
| 112 | + inputs = [type() for type in types] |
| 113 | + out = op(*inputs) |
| 114 | + wrt = [ |
| 115 | + inp |
| 116 | + for idx, inp in enumerate(inputs) |
| 117 | + if idx in scalar_loop_grads and inp.type.dtype.startswith("float") |
| 118 | + ] |
| 119 | + if not wrt: |
| 120 | + continue |
| 121 | + # The ScalarLoop in the graph will fail if the input types are different from the updates |
| 122 | + grad = at.grad(out, wrt=wrt) |
| 123 | + assert any( |
| 124 | + (var.owner and isinstance(var.owner.op, ScalarLoop)) |
| 125 | + for var in ancestors(grad) |
| 126 | + ) |
0 commit comments