diff --git a/docs/source/api/aesaraf.rst b/docs/source/api/aesaraf.rst index e55cb37ca6..f610fbba84 100644 --- a/docs/source/api/aesaraf.rst +++ b/docs/source/api/aesaraf.rst @@ -6,6 +6,7 @@ Aesara utils .. autosummary:: :toctree: generated/ + compile_pymc gradient hessian hessian_diag diff --git a/docs/source/conf.py b/docs/source/conf.py index 23aa4a0186..11f052e092 100755 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -81,6 +81,8 @@ "SMC_kernel": ":ref:`SMC Kernel `", "Aesara_Op": ":class:`Aesara Op `", "tensor_like": ":term:`tensor_like`", + "numpy_Generator": ":class:`~numpy.random.Generator`", + "Distribution": ":ref:`Distribution `", } # Show the documentation of __init__ and the class docstring diff --git a/pymc/distributions/continuous.py b/pymc/distributions/continuous.py index ef20c39ca6..8c0f58a091 100644 --- a/pymc/distributions/continuous.py +++ b/pymc/distributions/continuous.py @@ -1653,10 +1653,6 @@ class AsymmetricLaplace(Continuous): Location parameter. b : tensor_like of float Scale parameter (b > 0). - - See Also: - -------- - `Reference `_ """ rv_op = asymmetriclaplace diff --git a/pymc/distributions/discrete.py b/pymc/distributions/discrete.py index a16b824cf9..9bd7a7ceac 100644 --- a/pymc/distributions/discrete.py +++ b/pymc/distributions/discrete.py @@ -988,11 +988,11 @@ class HyperGeometric(Discrete): Parameters ---------- - N : tensor_like of integer + N : tensor_like of int Total size of the population (N > 0) - k : tensor_like of integer + k : tensor_like of int Number of successful individuals in the population (0 <= k <= N) - n : tensor_like of integer + n : tensor_like of int Number of samples drawn from the population (0 <= n <= N) """ diff --git a/pymc/distributions/timeseries.py b/pymc/distributions/timeseries.py index 6aa902bcc1..347ed90d0f 100644 --- a/pymc/distributions/timeseries.py +++ b/pymc/distributions/timeseries.py @@ -217,16 +217,17 @@ def rng_fn( class GaussianRandomWalk(distribution.Continuous): - r"""Random Walk with Normal innovations + r"""Random Walk with Normal innovations. Parameters ---------- - mu : tensor_like of float - innovation drift, defaults to 0.0 - sigma : tensor_like of float, optional - sigma > 0, innovation standard deviation, defaults to 1.0 - init_dist : unnamed distribution - Univariate distribution of the initial value, created with the `.dist()` API. + mu : tensor_like of float, default 0 + innovation drift + sigma : tensor_like of float, default 1 + sigma > 0, innovation standard deviation. + init_dist : Distribution + Unnamed univariate distribution of the initial value. Unnamed refers to distributions + created with the ``.dist()`` API. .. warning:: init will be cloned, rendering them independent of the ones passed as input. diff --git a/pymc/sampling.py b/pymc/sampling.py index 6827b49436..54bd27b41f 100644 --- a/pymc/sampling.py +++ b/pymc/sampling.py @@ -2277,14 +2277,14 @@ def draw( Parameters ---------- - vars : Variable or iterable of Variable + vars : TensorVariable or iterable of TensorVariable A variable or a list of variables for which to draw samples. draws : int, default 1 Number of samples needed to draw. - random_seed : int, RandomState or Generator, optional + random_seed : int, RandomState or numpy_Generator, optional Seed for the random number generator. **kwargs : dict, optional - Keyword arguments for :func:`pymc.aesara.compile_pymc`. + Keyword arguments for :func:`pymc.aesaraf.compile_pymc`. Returns -------