diff --git a/README.rst b/README.rst index 8503cddaca..555a91f174 100644 --- a/README.rst +++ b/README.rst @@ -78,6 +78,13 @@ Or via conda-forge: conda install -c conda-forge pymc3 +Plotting is done using `ArviZ `__ +which may be installed separately, or along with PyMC3: + +:: + + pip install pymc3[plots] + The current development branch of PyMC3 can be installed from GitHub, also using ``pip``: :: diff --git a/docs/source/notebooks/BEST.ipynb b/docs/source/notebooks/BEST.ipynb index cbf855fde7..20a7467db8 100644 --- a/docs/source/notebooks/BEST.ipynb +++ b/docs/source/notebooks/BEST.ipynb @@ -16,7 +16,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Running on PyMC3 v3.3\n" + "Running on PyMC3 v3.6\n" ] } ], @@ -69,9 +69,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEJCAYAAACAKgxxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGp9JREFUeJzt3XtwVOXhxvFn2SUhISEpkKTFKoZb\npUA6ymQwOMRqiEixVspMCQEs1FYdEG8oBQ0SjYgkIuVSBGPRQWsnQxht2joE0BawhSgBbUEBaatt\nEENCEnKFwOb8/mDYnymQ3Sx7OXn5fv5Kzl7eZw9nH86+++7GYVmWJQCAMbqFOwAAILAodgAwDMUO\nAIah2AHAMBQ7ABiGYgcAw1DsIbJnzx7deuut4Y4BhMT8+fO1Zs2aLnO/pqHYAcAwrnAHMNmaNWtU\nVFSk3r1765ZbbpEkrVq1SpWVlTp48KDuuOMONTQ06KuvvtLixYs9l5///cCBA5o/f75aW1v1wx/+\nUKWlpcrJydGoUaPC+bAAj7KyMi1evFijR4/Wn//8Z7lcLs+xfN6+ffuUl5en5uZmdevWTTk5ORo9\nerQk6a233tLatWslSSkpKVq8eLEiIiL07rvv6le/+pWam5vVv39/vfDCC+rdu7ckqbKyUtOmTdPR\no0f13e9+VwUFBYqOjtbBgweVm5ururo6RUZG6rHHHtOYMWNCu0NsgjP2IDly5Ihee+01bdq0ScXF\nxTp06JDnsu3bt+vll1/WjBkzOryPhQsXasqUKSotLVVMTIw+//zz4IYG/HDkyBGlpKSotLRUM2bM\nUG5ubrvLn3rqKd1zzz3avHmz7r33Xi1atEiSVFFRofz8fG3YsEGbN29WS0uLNmzYoGPHjmnBggVa\ntmyZ3n33XY0aNardfe7cuVMrV67Utm3bdPLkSW3cuFFtbW169NFHNW3aNG3evFnPPvus5s6dq8bG\nxhDuCfug2IPkww8/VGpqqvr27Sun06k777zTc9n3vvc9z9nHpZw6dUoHDhzQHXfcIUmaOnWq+PYH\n2FF0dLTGjx8vSbrtttv06aefqqWlxXP522+/7bl85MiR+u9//ytJ+utf/6rrr79eSUlJcjgcWrZs\nmWbMmKH33ntPI0aM0JAhQyRJU6ZM0XvvvSe32y1JSk9PV+/eveV0OpWZmamPPvpIFRUVqq6u1oQJ\nEyRJI0aMUL9+/fSPf/wjZPvBTpiKCZKTJ08qNjbW83uvXr08P8fFxfl0+6/frnv37urTp0+AUwKX\nr1evXnI4HJ6fJamhocFz+R/+8Adt2LBBTU1Namtr85yg1NbWtnteREZGem778ccf6/bbb/dcFhMT\no7q6Oklqd1IUGxur+vp61dTUKDY21pPjfJaamppAP9wugWIPkl69erU7uGtray96vW7duqmtrc3z\n+/lCj4mJkSQ1NjYqJiZGZ8+evWIPUtjb+cKV/v/4PX/yUllZqZycHG3cuFFDhw7V559/rnHjxkmS\nvvGNb2jfvn2e2zY2NurUqVNKTEzU6NGjtXLlyouOd34MSaqvr1dcXJz69OmjkydPyrIsT7nX1dVd\nsSdDTMUEyQ033KDy8nLV1NTI7XarpKTkotdLTEzU4cOH1dbWppqaGu3YsUOS1LNnTw0cOFBbtmyR\nJBUVFbU7GwHs4tSpU9q2bZskqbS0VMOHD/ecfdfU1Cg6OlrJyck6e/asioqKJJ0r8Ztvvll79+5V\nRUWFLMvSokWLVFxcrJtuukl79uzxTNn8/e9/17PPPusZb8eOHTp58qTcbre2bt2qkSNH6tvf/ra+\n+c1v6p133pEk7d27V9XV1UpJSQnlrrANztiD5LrrrlNWVpYmTpyo+Ph4TZgwQYcPH77gerfffrtK\nSko0duxYDRgwQOPHj1d1dbUkadGiRVq4cKF+85vf6Ec/+pFnLhKwk6uuukrl5eUqKCiQ0+nU888/\nrzfffFPSuedBenq6br31Vn3rW9/S/PnztXfvXmVnZ6ukpETPPPOMfvrTn8rpdGrEiBGaOXOmIiMj\nlZeXp9mzZ+vMmTPq2bOnnnjiCc94t9xyi+bMmaOKigoNHz5ckyZNksPh0IsvvqhFixZp9erVioqK\n0ooVKxQdHR2u3RJWDr6P3d6+/tLyxhtv1GuvvabrrrsuzKmAc8rKypSTk6OtW7eGOwq+hqkYG3vw\nwQdVWFgoSdq1a5csy9K1114b3lAAbI+pGBt76KGHtGDBAm3atEndu3dXfn6+evToEe5YAGyOqRgA\nMIxPZ+z5+fkqLy/X2bNndd9996msrEz79u1Tz549JUn33HOPvv/97wczJwDAR16Lfffu3frss89U\nVFSk2tpaTZw4UWlpaVq8eLGGDh16ydu1tLSqsfF0QMN2VkxMZFgzhHt8O2QI9PgJCbHer2QzVVUN\n3q/kp3D/+3pj93yS/TN2lO9SzwevxZ6amupZCxoXF6eWlhbV19d7DeNyOb1eJ9jCnSHc49shQ7jH\nN53d96/d80n2z+hPvk7NsRcVFWnPnj2qqalRjx49VF9fr6SkJOXk5Cg+Pr7dddva2uR2h3f63uns\nJre7zfsVDR3fDhkCPX737vZ+El5MMM/Y4+OjVVfXHLT7v1x2zyfZP2NH+fw+Yz9v27ZtKi4u1vr1\n67V7924NGjRIycnJeumll7Rq1SotXLiw3fXdbivsOyvc/2DhHt8OGQI9flecigFCzad17Dt37tTa\ntWtVWFio2NhYZWZmKjk5WZKUmZnZ7itpAQDh5bXYGxoalJ+fr3Xr1nmmW+6//359+eWXks598mzw\n4MHBTQkA8JnXqZh33nlHtbW1evjhhz3bJk2apDlz5ig6OlpRUVFasmRJUEMCAHzntdgnT56syZMn\nX7D9rrvuCkogwM74TAe6Ar5SAPCRv5/pAEKNYgd85O9nOoBQo9gBHzmdTs/3e2/cuFHp6emqqanR\n6tWrO/xMBxBqFHsApS7b4dftPpybHuAkCKbOfqYjJiYyaJ9udDq7KT7evn9Mwu75Bi/c3OnbfJZ3\nu/crBZA/+5BiBzrh/Gc6XnnlFc9nOs7LzMxUbm7uBbcJ5veQhPsDaN7YPZ8/Qv14/PnkKX9oA/AR\nn+lAV8EZO+AjPtOBroJiB3zEZzrQVTAVAwCGodgBwDAUOwAYhmIHAMNQ7ABgGIodAAxDsQOAYSh2\nADAMxQ4AhqHYAcAwFDsAGIZiBwDDUOwAYBiKHQAMQ7EDgGEodgAwDMUOAIah2AHAMBQ7ABiGYgcA\nw1DsAGAYih0ADEOxA4BhKHYAMAzFDgCGodgBwDAuX66Un5+v8vJynT17Vvfdd59GjBihefPmye12\nKyEhQQUFBYqIiAh2VgCAD7wW++7du/XZZ5+pqKhItbW1mjhxotLS0pSdna3x48crPz9fxcXFys7O\nDkVeAIAXXqdiUlNTtWLFCklSXFycWlpaVFZWpoyMDElSRkaGdu3aFdyUAACfeT1jdzqdio6OliRt\n3LhR6enpev/99z1TLwkJCaqqqrrI7RyKj48OcNzOcTq7hT2DL4KZMdz7INzjA1cin+bYJWnbtm0q\nLi7W+vXrNW7cOM92y7Iuen2321JdXfPlJ7wM8fHRYc/gi2BmDPc+CPT4CQmxAbsvwFQ+rYrZuXOn\n1q5dq8LCQsXGxioqKkqnTp2SJFVWVioxMTGoIQEAvvNa7A0NDcrPz9e6desUHx8vSRo9erRKS0sl\nSVu2bNGYMWOCmxIA4DOvUzHvvPOOamtr9fDDD3u2Pf/888rJyVFRUZH69eunu+66K6ghAbtg6S+6\nAq/FPnnyZE2ePPmC7a+++mpQAgF2xdJfdBV88hTwEUt/0VX4vCoGuNL5u/Q3JiZSLpczSJnsvZzU\n7vn8EerH488+pNiBTurs0t/GxtNByxLu5aze2D2fP0L9eDrah5da/stUDNAJLP1FV0CxAz5i6S+6\nCqZiAB+x9BddBcUO+Iilv+gqmIoBAMNQ7ABgGIodAAxDsQOAYSh2ADAMxQ4AhqHYAcAwFDsAGIZi\nBwDDUOwAYBiKHQAMQ7EDgGEodgAwDMUOAIah2AHAMBQ7ABiGYgcAw1DsAGAYih0ADEOxA4BhKHYA\nMAzFDgCGodgBwDAUOwAYhmIHAMNQ7ABgGIodAAzjU7EfPnxYY8eO1RtvvCFJysvL049//GNNnz5d\n06dP11/+8pdgZgQAdILL2xWam5uVl5entLS0dtsWL16soUOHBjUcAKDzvJ6xR0REqLCwUImJiZ5t\nTU1NQQ0FAPCf1zN2l8sll6v91ZqamrR69WrV19crKSlJOTk5io+Pb3cdp9Oh+PjowKbtJKezW9gz\n+CKYGcO9D8I9PnAl8lrsF5OVlaVBgwYpOTlZL730klatWqWFCxe2u47bbamurjkgIf0VHx8d9gy+\nCGbGcO+DQI+fkBAbsPsCTOXXqpjMzEwlJyd7fj506FBAQwF2xUICdAV+nbHff//9euqpp9SvXz+V\nlZVp8ODBgc4F2A4LCdBVeC32/fv3a+nSpTp69KhcLpdKS0s1ZcoUzZkzR9HR0YqKitKSJUtCkRUI\nq/MLCQoLCz3bWEgAO/Ja7MOHD9frr79+wfYf/OAHQQkE2JW/CwliYiLlcjmDksnub07bPZ8/Qv14\n/NmHfk3FADjHl4UEjY2ngzZ+uN8c98bu+fwR6sfT0T681GICvlIAuAwsJIAdUezAZbj//vv15Zdf\nShILCWAbTMUAPmIhAboKih3wEQsJ0FUwFQMAhqHYAcAwFDsAGIZiBwDDUOwAYBiKHQAMQ7EDgGEo\ndgAwDMUOAIah2AHAMBQ7ABiGYgcAw1DsAGAYih0ADEOxA4Bh+D52G0hdtsOv2304Nz3ASQCYgDN2\nADAMxQ4AhqHYAcAwFDsAGIZiBwDDUOwAYBiKHQAMQ7EDgGEodgAwDMUOAIah2AHAMBQ7ABjGp2I/\nfPiwxo4dqzfeeEOSdOzYMU2fPl3Z2dl66KGH1NraGtSQAADfeS325uZm5eXlKS0tzbNt5cqVys7O\n1ptvvqmrrrpKxcXFQQ0JAPCd12KPiIhQYWGhEhMTPdvKysqUkZEhScrIyNCuXbuClxAA0Clev4/d\n5XLJ5Wp/tZaWFkVEREiSEhISVFVVFZx0AIBO8+sPbTgcDs/PlmVd9DpOp0Px8dH+pQoQp7Nb2DME\nky+PLdz7INzjB9rhw4c1a9YszZgxQ9OmTdOxY8c0b948ud1uJSQkqKCgwHPSA4SLX8UeFRWlU6dO\nqUePHqqsrGw3TXOe222prq75sgNejvj46LBnCCZfHlu490Ggx09IiA3YfXVWR+83jR8/Xvn5+Sou\nLlZ2dnbYMgKSn8sdR48erdLSUknSli1bNGbMmICGAuyI95vQVXg9Y9+/f7+WLl2qo0ePyuVyqbS0\nVC+88ILmz5+voqIi9evXT3fddVcosgJh5e/7TTExkXK5nEHJZPepLrvn80eoH48/+9BrsQ8fPlyv\nv/76BdtfffXVTg0EmMiX95saG08HbfxwT7V5Y/d8/gj14+loH15qapJPngKX4fz7TZIu+X4TEGoU\nO3AZeL8JduTXqhjgSsT7TegqKHbAR7zfhK6CqRgAMAzFDgCGodgBwDAUOwAYhmIHAMNQ7ABgGIod\nAAxDsQOAYSh2ADAMxQ4AhqHYAcAwFDsAGIZiBwDDUOwAYBiKHQAMQ7EDgGH4QxuXkLpsR7gjAIBf\nOGMHAMNQ7ABgGIodAAxDsQOAYSh2ADAMxQ4AhqHYAcAwFDsAGIZiBwDDUOwAYBi+UgAAOsHfrxv5\ncG56gJNcGmfsAGAYih0ADOPXVMz+/fs1a9Ys9e/fX5I0ZMgQLVy4MKDBAAD+8avYm5ubNW7cOD35\n5JOBzgMAuEx+FXtTU1OgcwBdFq9gYTd+n7GXl5fr5z//uVpaWjRnzhzdeOONgc4GdAm8goXd+FXs\n1113nWbPnq2MjAz9+9//1syZM7VlyxZFRER4ruN0OhQfHx2woP5wOruFPUMw+fLYwr0Pwj1+KPAK\nFnbjV7EPHDhQAwcOlCQlJyerb9++qqys1NVXX+25jtttqa6uOTAp/RQfHx32DMHky2ML9z4I9PgJ\nCbEBu69A8fYKNiYmUi6XMyhj2/0/zlDlG7xwc9DHuFz+7gd/9qFfxV5cXKzm5mbdfffdqqqq0okT\nJ5SUlOTPXQFdnrdXsI2Np4M2drj/4/bG7vlCyd/90NE+vNSJjl/FnpmZqccee0ylpaVqbW1Vbm5u\nu2kY4EriyytYIJT8Kva4uDgVFhYGOgvQJfEKFnbDd8UAl4lXsLAbih24TLyChd3wXTEAYBiKHQAM\nQ7EDgGEodgAwDMUOAIah2AHAMBQ7ABiGYgcAw1DsAGAYih0ADEOxA4Bh+K4YAAiB1GU7/LrdZ3m3\nd/o2nLEDgGEodgAwDMUOAIah2AHAMBQ7ABiGYgcAw7DcEUE1eOHmTt/mw7npQUgCXDkodgC24e9a\nb7THVAwAGIZiBwDDUOwAYBiKHQAMQ7EDgGEodgAwDMUOAIYJyzp2f9aq8qGVC7Efuz5/123z74iO\ncMYOAIah2AHAMBQ7ABiGYgcAw/j95ulzzz2njz/+WA6HQ0888YRSUlICmQvoUng+wE78KvYPPvhA\nX3zxhYqKinTkyBEtWLBAGzduDHQ2oEvg+QC78WsqZteuXRo7dqwkadCgQaqvr1djY2NAgwFdBc8H\n2I1fZ+zV1dUaNmyY5/c+ffqoqqpKMTExnm3duzuVkBB70dt//vwEf4b1y6UyeBPKjCa7Evajt+dD\nR8dgIPaPv8d4qHQm35VwvPijs//Gfp2xW5Z1we8Oh8OfuwK6PJ4PsBu/ij0pKUnV1dWe348fP66+\nffsGLBTQlfB8gN34Vew33XSTSktLJUmffPKJEhMT203DAFcSng+wG7/m2G+44QYNGzZMWVlZcjgc\nWrRoUaBzAV0GzwfYjcP63wlCAECXxidPAcAwAfva3p07d+pvf/ubqqqq5HA4lJCQoDFjxigtLS1Q\nQ1zSmTNntGnTpouOP3HiRDmdzqBnkKT6+nrt3btXVVVVkqTExESNHDkypPOt4c4Q7vFNZpfj/FK2\nb9+um2++WdK542DlypU6dOiQhgwZotmzZ6t3795hzXc+l12Pz/9dTfXJJ5/o0KFDGjRokEaMGNGp\n+wrIVMzTTz+t2tpaZWRkeFYDVFZWasuWLerfv79++ctfXu4QHXrkkUfUr18/ZWRkKCEhQZZlqbKy\nUqWlpaqvr1d+fn5Qx5ekTZs26ZVXXlFqaqr69OnjybBv3z7NmTNHEyYEf31uuDOEe3zT2eE478jd\nd9+tDRs2SJLmzZunAQMGKDMzU2VlZdqxY4fWrl0b1nx2Pz6/vv9ef/11vfXWW0pLS1N5ebluvfVW\n3Xvvvb7fmRUAU6ZM8euyQJk6dapflwXST37yE+vUqVMXbG9sbLQmT558RWQI9/ims8Nx3pFp06Zd\n9GfLsqzp06eHOs4F7H58fn2fZWVlWU1NTZZlWdaZM2c6nS8gc+xtbW06cODABdvLy8tD8kENh8Oh\nLVu26MyZM55tra2tKikpUURERNDHlyS3262zZ89esN2yLLW1tV0RGcI9vunscJx3pLm5WQcPHtTB\ngwcVFxenL774QpJ07NgxNTc3hzmd/Y/Pr3dlYmKiunfvLklyuVxyu92duq+AzLHn5uZqyZIlqqio\nUFxcnKRzH7MePHiwnnnmmUAM0aGCggKtWLFC+fn5Onr0qLp3766kpCSlpaVp6dKlQR9fOvcyatKk\nSUpJSfHMJVZVVWn//v2aO3fuFZEh3OObzg7HeUeuv/56bdiwQQ0NDWpoaNCBAwfUv39/5eXl6ZFH\nHgl3PNsfn//61780adIkud1unThxQiUlJZo0aZLmz5+vkSNHduq+AlLs1dXVOn78uBITEzVv3jzN\nnz9fbW1tqqioUHV1tQYOHBiIYS6ppaVFtbW1ioqKUo8ePTRgwADV19ervr4+ZG8o3XnnncrMzNTH\nH3+sEydOyLIsJSUlKSUlRZGRkSHPUF1d7cnw3HPPhSRDuMc3nR2O845kZ2d7/tOpqKhQU1OTli9f\nrmHDhmno0KHhjmeL52hH3n//fUnnXvk0NzcrKipKkvSzn/1MQ4YM6dydBWJuKCsryzp+/Lh1+PBh\na9SoUdbBgwcty7KsioqKkMyxT58+3frPf/5jWZZl/fOf/7Ryc3Mty7Ks7du3W7/4xS+CPr5lWVZr\na6v1u9/9zpozZ441efJkKysry3rwwQetjRs3WmfPng1Jho4UFBQEfYzq6mqroKDAevLJJ61du3a1\nu+zpp58O+vims8Nx3hG757P7c/Tr+bKysqwpU6b4nS8gZ+wul0sJCQlKSEhQr1699J3vfEeSdNVV\nV4XkTKK1tVVXX321JOnaa6/VoUOHJEnp6elas2ZN0MeXzq0C6Nevn2bMmHHBioUFCxaEZMVCS0vL\nJS/76KOPgj7+448/royMDA0bNky//vWvtXfvXs2aNUuSdOTIkaCPbzo7HOcdsXs+OzxHQ5UvIMUe\nHx+v5cuXq7a2Vtdcc42eeuopjRkzRh999JH69OkTiCE6NGTIED366KNKSUnRzp07NWrUKEnSE088\noeTk5KCPL52bq1u+fHm7bddcc41SU1M1bdq0kGRITU1VYmJiu20Oh0OWZenEiRNBH//MmTOaOnWq\nJGncuHF6/PHHtXr1aj3wwAMXfAMiOs8Ox3lH7J7PDs/RjgQ0XyBeQjQ1NVlvvPGG9ac//cmyLMv6\n/e9/by1atMhav369Z8lOMLW1tVlbt261CgsLre3bt3u2f/rpp1ZbW1vQx7esc0uVSktLrdbWVs+2\n06dPWyUlJdbMmTNDkmHDhg3Wiy++eMl8wTZjxgxr8+bNnn3udrutefPmWTk5OdbEiRODPr7p7HCc\nd8Tu+ezwHO1IIPPxXTEB8tVXX2nFihX64IMP1NLSIofDoejoaKWlpemBBx644Ew6WN5++23ddttt\nio6Obrd93bp1uu+++4I69rFjx7RixQrl5uaqR48enu0lJSV6+eWX9cc//jGo4wMdsctzNBT5KPYQ\n+Ponyq7UDOEeH+iI3Y/PzuYL2HfFXOl++9vfXvKyysrKKyJDuMcHOmL34zOQ+Sj2AHnttdeUlpZ2\n0ZdLF/u0m4kZwj0+0BG7H58BzRfIyf8r2aFDh6zp06dbp0+fvuCyULxxaYcM4R4f6Ijdj89A5mOO\nPYBaWloUGRmpbt3afwXPgQMH2v0Ve5MzhHt8oCN2Pz4DlY9iBwDD8BeUAMAwFDsAGIZiBwDDUOwA\nYJj/A9HTzJ6+APkqAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAESCAYAAADUn+K+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAHLZJREFUeJzt3XuUZWV55/Fvd5V2aJpYXFpFdAQiPlkMEpdKFBVslXscMYIxQoDhEvFCdAZionFEUBMcgXARBhbBAQNogCEmEBk0XASyJgJCvMDgA95YIw0CQjsUjS1Izx971/Tpom7vqVNn71Pn+1mrV+/aZ586v35r9zlPvft9371k/fr1SJIkSZqbpU0HkCRJkgaJBbQkSZJUwAJakiRJKmABLUmSJBWwgJYkSZIKWEBLkiRJBSyg1ToR8caI+EnTOSRJ/RURF0bEfxmU76vhZQEtSZIkFRhtOoAEUPcMHA08AlxZ7zsB2Ab4HeBLwBjw4sw8quPxF2fmURHxKuDS+ttdDBwAfCgzv9G/f4UkaS4iYhVwJvDPwNuA5wLvmXTMrsBZwKbAM1Tv6dfWjx0KTPQo3wIclZnrImJ/4DP1c34AHJSZj9THbRMRNwLbAncAf5SZT0TEzsA5wJbAL4E/z8yvLcS/W4uHPdBqXETsCBwLvKb+s3PHw/sB+2Xm6bN8m/OAv87MHYBfAC9fiKySpJ7ZEbg1MwP4S6oittN5wMmZ+dvAZ4FzASJiW+AUYBUQVMXyhyJie+Ai4D2ZuT1ww8RzavsCBwLbA1sAR0XEUuDvgLPq1zkK+HJEbNbzf60WFQtotcHuwI2Z+bPM/DVVD/KEWzp6D6YUEZsArwa+XO86G1iyIEklSb0yDlxWb18BvBJY3vH4Kzsev5mq8AXYC/hfmbk6M9cDBwGnAfsA38jMO+vjzgXeHhEj9ddXZ+bD9efM3wO7AtsBL6QqosnMbwH3Abv08h+qxcchHGqDLah6jSc81rH96ByevzmwPjPXAGTmUxHxUA/zSZJ677G6AAZYU/891vH4wVQ9y5sBI2zoGNmq43gy85cAETEG7B4R3+/4Hr+gGpoB8PCk/ZsDK4E1HTmg+gx6frf/KA0HC2i1wWPA8zq+XjnNcb+mehOdsHn99/8FlkTE8sxcGxGjM3wPSVI7bNmxPfF+/ihARGwD/A3w2sz8dkTsANxTH/MI8PqJJ0bEbwKbAKuBazPzwMkvFBFQddZ0vt6jwM+ALSJiSUcRvWW9X5qWQzjUBv8KvDEiVtaX2v5omuMeAHaKiKURsRXV+Ggycxy4G/iD+rijgfVTfwtJUkssj4h31NsHAt+imsQHVSfIE8D3606R9wJExArgauANEbFtRCyhGqpxJPA1YLd6LDQR8bsRcUbH6+0bEZvXnzO/TzUs5CfAT4F31895PdWQjlsX5p+sxcICWo3LzG9TvQHeAdwO/Ms0h15O9Yb6Q6qJIpd3PPYB4OMRcRfVhJL7sYiWpDb7CVXnyT3AX1C9j0/4DlWhfA9VJ8tVwDep5sv8lKqgvr5+fD3VJPIHgD8GvhIRd1Ot4HFpx/e8imqs9Q+pepgvqHud/xA4pn7OmcC7MvOJBfkXa9FYsn69NYYWh85LcBHxMLBHZn6n4ViSpEnqZezOz8yXNZ1F6oY90FoUIuJy4M/q7bdQTTa5Z8YnSZIkdcFJhFosjgcuiIgjgV8Bh2Tmkw1nkiRJi5BDOCRJkqQCc+qBjojPAbvVx58EvJ3qxhU/rw85OTO/uiAJJUmSpBaZtYCOiDcDO2XmrhGxJfBvVDNfP5aZ/7TQASVJkqQ2mUsP9E1sWA9xDdUSYSPTH155+OHH169YsYzx8XXziDf4bAPbAGwDaHcbrFy5mbd+75OHH378WeMG23xuQPvzQfszmm9+zDc/3eab6bNh1gK6vmf8xHqIR1Kty/hrqjUTjwUeAo7JzEee9c1HZ62zFz3bwDYA2wBsA02v7edG2/NB+zOab37MNz8LkW/Oq3BExP5UBfRewGuAn9e31/wocAJwTOfxK1YsY2RkKWNjy3sYd/DYBrYB2AZgG0iSFo+5TiLcG/g4sE9m/gK4ruPhK4FzJj9nfHwdo6MjrFmztidBB9XY2HLbwDawDWh3G6xcuVnTESRJA2TWG6lExPOAk4G3Zeaj9b4rJu41D6wC7lywhJIkSVKLzKUH+t3AVsBlETGx7wLg0ohYC4wDhy9MPEmSJKld5jKJ8DzgvCke+mLv40iSBoH3B5A0zLyVtySpiPcHkDTsLKAlSaW6uj+AJC0WFtCSpCLzuT+AJC0GFtCat11Ovalvr3Xbcbv37bUkzaz0/gBQ3SNg8k0N2r5GeNvzQfszmq97O3zimr691r2f3qer57W5/WBh8llAS5KKdXN/AGDK2+m2eY1waH8+aH9G8w2Gbtug7e3Xbb6Z7hEw6zrQkiR18v4AkoadPdCSpFLeH0DSULOAliQV8f4AkoadQzgkSZKkAhbQkiRJUgELaEmSJKmABbQkSZJUwAJakiRJKmABLUmSJBWwgJYkSZIKWEBLkiRJBSygJUmSpAIW0JIkSVIBC2hJkiSpgAW0JEmSVMACWpIkSSpgAS1JkiQVsICWJEmSClhAS5IkSQUsoCVJkqQCFtCSJElSAQtoSZIkqYAFtCRJklTAAlqSJEkqYAEtSZIkFbCAliRJkgpYQEuSJEkFLKAlSZKkAhbQkiRJUoHRuRwUEZ8DdquPPwm4DbgIGAEeAA7JzHULFVKSJElqi1l7oCPizcBOmbkrsA9wOvAp4OzM3A34AXDEgqaUJEmSWmIuQzhuAt5Vb68BNgVWAVfW+64C9uh5MkmSJKmFZh3CkZm/Bp6ovzwSuBrYu2PIxkPA1gsTT5IkSWqXOY2BBoiI/akK6L2AezseWjLV8StWLGNkZCljY8vnl3DA2Qa9Naht6XlgG0iSFo+5TiLcG/g4sE9m/iIixiNik8x8EtgGWD35OePj6xgdHWHNmrW9TTxgxsaWD30b9NKgtqXnQbvbYOXKzZqOIEkaIHOZRPg84GTgbZn5aL37WuCAevsA4JqFiSdJkiS1y1x6oN8NbAVcFhET+w4Dzo+Io4H7gC8uTDxJUhu5vKmkYTaXSYTnAedN8dCevY8jSWq7zuVNI2JL4N+A66iWN708Iv6KannTc5rMKUkLxTsRSpJKubyppKE251U4JEmC+S1vumLFMkZHRzba1/YVWtqeD9qf0XyDods2aHv7LUQ+C2hJUldKlzeFaoWmydq8Qgu0Px+0P6P5BkO3bdD29us230wrNDmEQ5JUrGN5030z8xfAeERsUj885fKmkrRYWEBLkoq4vKmkYecQDklSKZc3lTTULKAlSUVc3lTSsHMIhyRJklTAAlqSJEkqYAEtSZIkFbCAliRJkgpYQEuSJEkFLKAlSZKkAhbQkiRJUgELaEmSJKmABbQkSZJUwAJakiRJKmABLUmSJBWwgJYkSZIKWEBLkiRJBSygJUmSpAIW0JIkSVIBC2hJkiSpgAW0JEmSVMACWpIkSSpgAS1JkiQVsICWJEmSClhAS5IkSQUsoCVJkqQCFtCSJElSAQtoSZIkqYAFtCRJklTAAlqSJEkqYAEtSZIkFRidy0ERsRPwj8BpmXlWRFwIvBr4eX3IyZn51YWJKEmSJLXHrAV0RGwKfB64btJDH8vMf1qQVJIkSVJLzWUIxzpgP2D1AmeRJEmSWm/WHujMfBp4OiImP3RMRBwLPAQck5mPdD64YsUyRkaWMja2vGdhB5Ft0FuD2paeB7aBJGnxmNMY6ClcBPw8M78dER8FTgCO6TxgfHwdo6MjrFmzdp4RB9vY2PKhb4NeGtS29DxodxusXLlZ0xEkSQOkqwI6MzvHQ18JnNObOJKkQeEEc0nDqqsCOiKuAD6SmT8CVgF39jKUJKndnGAuaZjNZRWOVwOnAtsCT0XEgVRvmpdGxFpgHDh8IUNKklpnYoL5nzcdRJL6bS6TCG+n6mWe7Iqep5EkDYRuJ5hL0mLQ7SRCSZImm3WC+YoVyxgdHdnoSW1foaXt+aD9Gc03GLptg7a330Lks4CWJPXEXCaYj4+ve9bz2rxCC7Q/H7Q/o/kGQ7dt0Pb26zbfTCs0zeVGKpIkzSoiroiI7esvV+EEc0mLlD3QkqRiTjCXNMwsoCVJxZxgLmmYOYRDkiRJKmABLUmSJBWwgJYkSZIKWEBLkiRJBSygJUmSpAIW0JIkSVIBC2hJkiSpgAW0JEmSVMACWpIkSSpgAS1JkiQVsICWJEmSClhAS5IkSQUsoCVJkqQCFtCSJElSAQtoSZIkqcBo0wGkErucelNfX++243bv6+tJkqT2swdakiRJKmABLUmSJBWwgJYkSZIKWEBLkiRJBSygJUmSpAIW0JIkSVIBC2hJkiSpgAW0JEmSVMACWpIkSSpgAS1JkiQVsICWJEmSClhAS5IkSQVG53JQROwE/CNwWmaeFREvAS4CRoAHgEMyc93CxZQkSZLaYdYe6IjYFPg8cF3H7k8BZ2fmbsAPgCMWJp4kSZLULnMZwrEO2A9Y3bFvFXBlvX0VsEdvY0mSJEntNOsQjsx8Gng6Ijp3b9oxZOMhYOsFyCZJkiS1zpzGQM9iyVQ7V6xYxsjIUsbGlvfgJQaXbTDYevWz8zywDRYj58dIGlbdFtDjEbFJZj4JbMPGwzuqA8bXMTo6wpo1a+cVcNCNjS0f+jYYZL362XketLsNVq7crOkIA2eW+TGXR8RfUc2POaeJfJK0kLpdxu5a4IB6+wDgmt7EkSQNCOfHSBpas/ZAR8SrgVOBbYGnIuJA4GDgwog4GrgP+OJChpQktYvzYyQNs7lMIrydqldhsj17nkaStFhMOz9mdHRko31tHx/f9nzQ/ozmGwzdtkHb228h8vViEqEkSTDH+TGTtXl8PLQ/H7Q/o/kGQ7dt0Pb26zbfTPNjvJW3JKlXnB8jaSjYAy1JKub8GEnDzAJaklTM+TGShplDOCRJkqQCFtCSJElSAQtoSZIkqYAFtCRJklTAAlqSJEkqYAEtSZIkFbCAliRJkgpYQEuSJEkFLKAlSZKkAhbQkiRJUgELaEmSJKmABbQkSZJUwAJakiRJKmABLUmSJBWwgJYkSZIKWEBLkiRJBSygJUmSpAKjTQfQwtjl1JuajiBJkrQo2QMtSZIkFbCAliRJkgpYQEuSJEkFLKAlSZKkAhbQkiRJUgELaEmSJKmABbQkSZJUwAJakiRJKmABLUmSJBWwgJYkSZIKeCtvSZIkscupN/XttW47bve+vdZCsAdakiRJKtBVD3RErAIuB+6qd30vM/+kV6EkSZKktprPEI4bM/PAniWRJEmSBoBjoCVJPeHVSUnDYj4F9I4RcSWwBXBiZv5zjzJJkgaXVyclLXrdFtD3AicClwHbAzdExMsy81cTB6xYsYyRkaWMjS3vQczBZRsMtl797DwPbANJ0uLRVQGdmfcDl9Zf/jAiHgS2AX48ccz4+DpGR0dYs2bt/FMOsLGx5UPfBoOsVz87z4N2t8HKlZs1HWEx8eqkpEWv21U4Dga2zsxTIuKFwAuA+3uaTJI0aOZ0dXJ0dGSjJ7X96kTb80H7My6mfDt84poFTjMc+nk+LMT51+0QjiuBL0XE/sBzgfd3vkFKkobPXK9OTtbmqxPQ/nzQ/ozm02T9bO9uf74zXZ3sdgjH48B/6Oa5kqTFyauTkoaFy9hJknrFq5OShoIFtCSpJ7w6KWlYLG06gCRJkjRILKAlSZKkAhbQkiRJUgELaEmSJKmABbQkSZJUwAJakiRJKmABLUmSJBWwgJYkSZIKWEBLkiRJBSygJUmSpAIW0JIkSVKB0aYDSJIkabjscupNfXutez+9T8+/pz3QkiRJUgELaEmSJKmABbQkSZJUwAJakiRJKmABLUmSJBWwgJYkSZIKWEBLkiRJBVwHWtKC6udanwC3Hbd7X19PkjR8LKAlSdJA6/cv6pJDOCRJkqQCFtCSJElSAQtoSZIkqYAFtCRJklTAAlqSJEkqYAEtSZIkFWjdMnb9XIrG9WI1G89HSZI0WesKaEmSOnkzHklt4xAOSZIkqYAFtCRJklTAAlqSJEkq0PUY6Ig4DXgdsB74cGbe1rNUkqSB5GeDpGHQVQ90RLwJ2CEzdwWOBM7saSpJ0sDxs0HSsOh2CMdbgX8AyMy7gc0j4jd7lkqSNIj8bJA0FLotoF8IPNzx9cP1PknS8PKzQdJQ6NU60Esm71i5crMl9d9F3+gnn/29HkVqj9I26IXF2I4aTJ6LQ23az4Yp9k/7TdpwDjXxPl6q7RkXMl8bzhG1W6/Pv257oFezca/Ci4AH5h9HkjTA/GyQNBS6LaC/DhwIEBGvAlZn5uM9SyVJGkR+NkgaCkvWr1/f1RMj4rPA7sAzwAcz8zu9DCZJGjx+NkgaBl0X0JIkSdIw6tUkQkmSFo2IWMGG8dwPZOYTTeaZTkSMAtsA92fm003nmTAo7QcQEUsy095EFelZD3RE7A3sAWxd71oNXJOZ1/fkBVouIp4DHMEUbQB8MTN/3VS2foqIMeANbNwGNw/TOEjboGI7aCoRcXhmXlBvvxQ4C9gJuJPqzoU/ajjfa6huADMGPEK1ksiLgPuphqR8r8F4RMQZmfnhensP4AvAg8Dzgfdl5tcaztf29vtYZp5Ub78S+FtgK6olF4/MzG81mQ/aX09ExL6Z+T/r7S2AE9nwf/jEzHyk4Xx9ab9uJxFuJCLOBg4Fbgf+O3ABVUN+KCJO6cVrDICLgH8HnErVFodRfTD8DlV7LHoRcQRwM/A2qrZ4KdWEotsi4g+bzNYvtkHFdtAMDunY/jxwMbAjcA7wN40k2tjpwBGZuWNm7p6Zu2XmbwH/CTi74WwAO3dsHw+8OTNfC+wKnNBIoo21vf327Ng+GXhvZr4IOBg4rZlIz9L2euIjHdtnAT8FPgD8b9qRry/t16shHDtn5m5T7P/biLi5R6/Rdltn5uTC4IfATRFxYxOBGvDHwC6Z+cvOnfWlvK8Df9dIqv6yDSq2g+biNzLz0nr76oj4yIxH98fSzPz+5J2ZeUdEjDQRaJLOy8aPTvTYZ+aDEfFUQ5k6tb39Oj2Vmd8EyMw7I6ItV4oHqZ54QWb+13r77oj4g0bTVPrSfr0qoJdGxKsy847OnRHxBjb+z76YPRMR7wSuysynACJiGVWv27pGk/XPCFOfU0vp0dWOAWAbVGwHTefFEfGBevs5EfHGzPyXiHgj8Nwmg9W+GRFXUt2SfOKuii+kei9vQ/GyU0RcRjU0YoeIeFdmXh4RxwFrGs4G7W+/l0XE5+rtrSaGI9RXxp5pMliH6eqJA2hHPbFVROxXb6+LiJ0z87sRsR2waZPBan1pv14V0O8HTqsb77F631bA3cB7e/QabXcI8Cng5IjYFniK6rLGtVSXEIbBGcC3IuJWNrxxbg28BvhoY6n6yzao2A6aziXAynr7G8DEVYoDgaObCNQpM4+NiN2BtwKvrXevBk7IzH9tLtn/965JX99b//0AcFCfszzLALTfJzq276LqmQR4CRsPL2rSRD1xSkQsr/eN05564nY2nIc/A7ast08G/qyRRBvrS/v1ZBJhROxF9YH5c6qxMRcDmwCPA0dn5jfm/SItFxEvpxpv81Jge6pfHjanOtGOzcz7G4zXN/XJ+lrgBfWu1cCtky/lL2YdbTAxA301cMswtQHYDlp8ImJZZrahB3BK5pP6p1eXUo8H3kzVe3Al8I56UP5ewKd79Bptdy7woczcGXg1VdH4MqoB65c0mqxP6pmvhwAfBP6k/nMMcFALx74tmMxcm5k3ZOaX6z83ZuYv6xtMDIWIeD7V+8JBwIOT2uGshuOppSLinKYzzOLCpgPM4sKmA8ziwqYDzCQivtJ0htlExCebzjCTYcrXqyEcv8rMB4EHI2LNxDI1mXlfiwblL7Rlmfnjevte6pnSmXlNRJzYXKy+uojqctgpwENUY/S2oRp3dAHtuPS0oDouF01l174Fad7FVGMgbwc+GRFvyMzP1I/t2FwstdwJTQeYSWa+p+kMMzHf/GTm7zedYQ7+oekAsxiafL0qoB+LiL+kGgfzg4g4F/ga8Dqq8THD4M6I+DJwK7A3cANARHyBapzVMBikmcMLZQ3Veqed1lP9MvGCZx++aD03M/8bQERcAVwUEcdn5qeo2kJDKiI+Clw01bC2zGz882IA1uB9PnAcsAXwpcy8oeOxszLzmMbCMRBrBJ8LnN+G9Z5nMsM6+t9pLtUGEfHbVDXfNyf9n3gJ0GjGyTfGiYhXAa8A7urlz71XQzgOpfrh3pCZ+1Kt/7onVfF8RI9eo+3eB1xK9UvJ6Zl5fL3/DODIxlL11zMR8c76AwioxrxFxEG0Y+ZwP/wpcElmbtfxZ/vM3A64pelwffRURBxQv5E9QzW057ci4jxgs4azqVmHA+dFxMTE87Zp+xq8FwP3US0H+cmI6JwU14arO21fI3hX4P0R8T8i4k1Nh5lK29fRj4jPUA3H+QvgOxHxio6Hj20k1Maum9iIiP8MnEf1f+P0+hf4nuhJD3R9i86zO76+hCEZ9zuh/m3nWZcGMvO7DcRpSufM14mlbB6nmvl6WGOp+igzz4yIQyJi0yluXfv1RkI14wiq+Q9XA0/WRfRhEXEw8PpGk6lpqzPz9yLircAZ9bCn66l6rR7KzNuajdf6K2mDdHWnjWsEP5qZR9YT/z8cEWdQXTmeOP8ubzYe0P519N+Sma8DqIvnSyLikLp3vA3nYGeGdwK7Z+baqG57fzPQk/lIvRrCIZGZP2WaKw4RcT3wlv4makZmXjTNQ3sCJ/UzS1My8/8A/3GK/ZdExLBckdHU1gNk5nXAdRHxImA/4O1UK7bs32A2aP+a/k9FxIHAFZn5TEQcAlzQoqs7E2sEL6GdawRPnH/3AB+sr5i+CdgFeDnQhgK67evoj0TE8nrC/Pci4gDg7yPi/bTj3h+dGe6b2MjMp3u5oIEFtHqm4+YIU9mmb0EaNEMbTEyoHAqeC5rBRj1Umbk6Ir6Qmec3FWiStq/pfzjV1Z2v1j2SSzLzsHqo3L9vNhpQTRw+kKoIXE+V6bvA52jHGsGPQDVOlup+FUsy81qqn29btH0d/b+mmvf1isx8IjPvjYh9gfOB3204G8BuETGxkMFvADdRDRu7hI7hHfNlAa1eOpbqTeiBKR57zhT7FiPboGI7aDonRcTdVIXBn1IN/9s6Isap7hvQ9DCJ5VQ3enkCeJINa/pvTlUUNm05VeF3C7Ad1dCIzYE7gDYMkfgs1UpME/dEWBkRn6YqrO+d6Yl98omIuIoq3+T2a8U9G+ordV+hpfdUyMxLI+LKzHyyY99PgX0iYocGo01kme4z5sT6ykNPWECrl94BnAl8ePJi+RGxqpFE/WcbVGwHTed4quFcW1DdifCt9SX+l1JNkNutwWxQrel/ZGb+OCKCan3/D0bEPlRze1Y1mq79+c6h/fmOyswftTRf5z0V9mTDKhz3A9dERBtWgnkOcGhETLlSTWPBajOtpBMRP+xV+7VhLI0Wicy8k2rW8FNTPHxcn+M0wjao2A6awa8y84HMvAtYMzHROjPvA9pw34Bp1/SnusNu08w3P8sy80f1dhvzwYaVYE6hKqQPpV0rwbR9pZq+5LMHWj2VmWun2X9Hv7M0xTao2A6aRtvvG9D2Nf3NNz9tzwftXwnGfFhAS5L661CqFVq+W4+lPJjqUvUPqCbvNe19VCuB7EC1pv819f4zgO81lmoD881P2/PB9CvBHEA7VoIxH7Bk/fo2rDgiSZKkiHgx1S+Tq9iw9N/EPRVOzMypJmf3jfkqFtCSJEkDICKuz8zW3lNhmPI5hEOSJKkl2r6OvvkqFtCSJEnt0fZ19M2HBbQkSVKbtH0dffPhOtCSJEmt0fZ19M1XcRKhJEmSVMAeaEmSJKmABbQkSZJUwAJakiRJKmABLUmSJBWwgJYkSZIK/D8TGDd7ZWhOQwAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -90,7 +90,7 @@ "y2 = np.array(placebo)\n", "y = pd.DataFrame(dict(value=np.r_[y1, y2], group=np.r_[['drug']*len(drug), ['placebo']*len(placebo)]))\n", "\n", - "y.hist('value', by='group');" + "y.hist('value', by='group', figsize=(12, 4));" ] }, { @@ -128,8 +128,8 @@ "μ_s = y.value.std() * 2\n", "\n", "with pm.Model() as model:\n", - " group1_mean = pm.Normal('group1_mean', μ_m, sigma=μ_s)\n", - " group2_mean = pm.Normal('group2_mean', μ_m, sigma=μ_s)" + " group1_mean = pm.Normal('group1_mean', mu=μ_m, sd=μ_s)\n", + " group2_mean = pm.Normal('group2_mean', mu=μ_m, sd=μ_s)" ] }, { @@ -173,9 +173,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD1CAYAAAC1BoUqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3X98VPWd7/HXmV+ZmcxkJj8mISH8\niAYrTQWXSn+YFdzl18re7bXWvaQ8YLddfKxeKY/t4+rV6tWFLggL9fq4ir3qIm5/WN0slNta2y2s\nlra0hKCIIEaB+CMEgsmEJEwmvyeZ+0dg5EdCICQ5yZn38/HIIzPne86Z78fB9zn5zpnzNeLxeBwR\nEbEkm9kdEBGR4aOQFxGxMIW8iIiFKeRFRCxMIS8iYmEKeRERC3OY3YELhcPNg97W50shGu0Ywt6M\nfslWs+q1vmSreajqDYX8fS631Jm8w2E3uwsjLtlqVr3Wl2w1D3e9lgp5ERE5n0JeRMTCFPIiIham\nkBcRsTCFvIiIhSnkRUQsTCEvImJho+7LUIP183dO8swfq/h8foBlX57INZmpZndJRMR0ljmTnzkx\nnfx0D7/74BR/99LbvHGs0ewuiYiYzjIhnxdwc/uNedwxbRwpDhvf3naID+pbzO6WiIipLBPyZ/lS\nHNw2NRu7zeCRX75PZ6zH7C6JiJjGciEP4HXZueXaTCrrW/jB3mNmd0dExDSWDHmASekeCjI8vPjm\ncRpbO83ujoiIKSwb8gCfnxCkvauHH+49bnZXRERMcVmXUK5du5YDBw5gGAYPP/ww06ZNS7Tt3r2b\nJ554ArvdzqxZs1i+fDkAGzZsYN++fcRiMe6++27mz5/P6tWr2b9/P6mpvZc3Llu2jFtvvXXoqzoj\n3eukMJTKlrdP8LdfyCfd6xq21xIRGY0GDPm9e/dSVVVFaWkplZWVPPTQQ2zZsiXRvmbNGjZv3kxO\nTg6LFy9mwYIF1NfXc/ToUUpLS2lsbOSrX/0q8+fPp7W1lccee4ypU6cOa1Hnmp6XxtFwCz975xO+\n+cWJI/a6IiKjwYDDNWVlZcydOxeAwsJCIpEI0WgUgOrqagKBALm5udhsNmbPnk1ZWRkzZ87kySef\nBCAQCNDW1kZ3dzctLSN/SWO610lewM3Wt2uI9cRH/PVFRMw0YMjX19eTnp6eeJ6ZmUk4HAYgHA6T\nkZGRaMvKyiIcDmO32/F6vQBs2bKFWbNmYbfbaWlp4emnn2bp0qXcf//9NDU1DXU9fSoa56Mu2snv\nPzg1Iq8nIjJaDDhcE4/HL3puGEafbUCiDeC1115j69atvPDCCwCUlJRQWFhIQUEBzzzzDBs3buTR\nRx89b3ufL2XQ02EZhoHb7bxo+XW5aeypauKX79Vxx0xrDdnY7TaCQa/Z3Rgxqtf6kq3m4a53wJDP\nycmhvr4+8byuro6srKw+22prawmFQgDs2rWLZ599lueffx6/v3eC2Xnz5iXWnTdvHqtWrbro9a5m\nQtt4PE57e1efbddmevlDZT2VJ5rISrXOB7DBoJemplazuzFiVK/1JVvNQ1XvoCfyLi4uZvv27QBU\nVFSQnZ2Nz+cDID8/n2g0yvHjx4nFYuzcuZPi4mKam5vZsGEDzz33HMFgMLGve+65h5qaGgDKy8uZ\nMmXKVRd2uQqzUumJw47360bsNUVEzDbgmfyMGTMoKiqipKQEwzBYuXIl27Ztw+/3J87G77vvPgAW\nLlxIQUFB4qqab3/724n9rF+/niVLlrBixQq8Xi8ej4d169YNX2UXSPc6Cflc/PLdWhZ/Pn/EXldE\nxExGvK+BdROFw82D3vbVw2FqTvV/Bc+hk82UfdzIv3/jJgoyrTHmpz9trS3Z6oXkq9n04RorKcj0\nAPCbo2GTeyIiMjKSKuRTXQ7G+VN47XD9wCuLiFhAUoU8wORMD5X1LRxrbDO7KyIiwy7pQr4go3cs\n/jdHNGQjItaXdCHvS3GQ7XPxO337VUSSQNKFPMCEoId3TzbrPvMiYnlJGfIT0z3Egd0fabJvEbG2\npAz5zFQnqS47uz7UkI2IWFtShrxhGOQH3ZR91EisWxN9i4h1JWXIQ++QTWtXN2+fiJjdFRGRYZO0\nIT8+4MZuMzRkIyKWlrQh77TbyE1LYZcupRQRC0vakIfeIZvqpnaqGpLnZkgiklySO+SDvTcs++NH\nDSb3RERkeCR1yPvdDjK8TnZ9oJAXEWtK6pAHyA+4efvEaVo7u83uiojIkFPIp3uI9cTZV91kdldE\nRIZc0of8OH8KTrtB2ce6xYGIWE/Sh7zdZpCb5uaPHzYwymZCFBG5akkf8gATgm5qIu1UN7Wb3RUR\nkSGlkAfyz1xKWaZLKUXEYhTyQJrbQdDjZLdCXkQsRiF/xvhACvuOn6a9S5dSioh1KOTPmBD00BHr\n4e0Tp83uiojIkFHIn5GbloLDZmi2KBGxFIX8GQ67jXFpKRqXFxFLUcifIz/opqqxjZrTupRSRKxB\nIX+OCWcupdzzsc7mRcQaFPLnCLgdBNwOjcuLiGU4LmeltWvXcuDAAQzD4OGHH2batGmJtt27d/PE\nE09gt9uZNWsWy5cvB2DDhg3s27ePWCzG3Xffzfz58zl58iQPPPAA3d3dhEIhvve97+FyuYanskEw\nDIO8gJu9xxrp6u7BadcxUETGtgFTbO/evVRVVVFaWsqaNWtYvXr1ee1r1qxh48aNvPzyy+zatYvK\nykr27NnD0aNHKS0t5fnnn2ft2rUAPPXUUyxevJiXXnqJ8ePHs3Xr1uGp6ipMCLpp6+rhYI0m+BaR\nsW/AkC8rK2Pu3LkAFBYWEolEiEajAFRXVxMIBMjNzcVmszF79mzKysqYOXMmTz75JACBQIC2tja6\nu7spLy9nzpw5AMyZM4eysrLhqmvQcgNu7Aa6ykZELGHA4Zr6+nqKiooSzzMzMwmHw/h8PsLhMBkZ\nGYm2rKwsqqursdvteL1eALZs2cKsWbOw2+20tbUlhmdCoRDhcPii1/P5UnA47IMqxjAM3G7noLY9\nyw3kBT2UH2vi0aD3qvY1Eux2G8Ex0M+honqtL9lqHu56Bwz5C2+/G4/HMQyjzzYg0Qbw2muvsXXr\nVl544YWL2vq7rW802nEZ3e6/r+3tXYPe/qxcfwp7jzVx9HgjIV/KVe9vOAWDXpqakmcictVrfclW\n81DVGwr5+1w+4HBNTk4O9fX1ied1dXVkZWX12VZbW0soFAJg165dPPvss2zatAm/v/fFPR4P7e3t\niXWzs7MHWc7wmhB0A1Cmq2xEZIwbMOSLi4vZvn07ABUVFWRnZ+Pz+QDIz88nGo1y/PhxYrEYO3fu\npLi4mObmZjZs2MBzzz1HMBhM7Ovmm29O7GvHjh3ccsstw1HTVUv3OvGn2CnT9fIiMsYNOFwzY8YM\nioqKKCkpwTAMVq5cybZt2/D7/cybN49Vq1Zx3333AbBw4UIKCgooLS2lsbGRb3/724n9rF+/nhUr\nVvDggw9SWlpKXl4et99++/BVdhUMwyAvzc2eqkZiPXEcNmPgjURERiEjPsrmvAuHmwe97auHw9Sc\nahmSfnx4qpXXj9TzfMl0po8PDMk+h4PGL60t2eqF5KvZ9DH5ZDU+4MZmwG5N8C0iY5hCvh8pDhs5\n/hRNCSgiY5pC/hLyAm7eq43S0NppdldERAZFIX8Jn96VUkM2IjI2KeQvISvViddlp0whLyJjlEL+\nEs7elXLPxw30jK6LkERELotCfgATAm6a2mK8Vxs1uysiIldMIT+A8UE3BugqGxEZkxTyA/A47WT7\nXRqXF5ExSSF/GfLS3Bw6GeF029Xf4VJEZCQp5C/DhHQPPXHYe6zJ7K6IiFwRhfxlCPlcuB02jcuL\nyJijkL8MtjOXUu7+uKHfyU5EREYjhfxlyg+6OdXSxdHw0NzlUkRkJCjkL9PZWxz84UMN2YjI2KGQ\nv0xel51sn4vfVtYPvLKIyCihkL8CkzI8vFcbpbZ58JONi4iMJIX8FZic4QXgd5WnTO6JiMjlUchf\ngaDHSbrHqSEbERkzFPJXaGK6h33VTUTa9e1XERn9FPJXaHJG77dfdZWNiIwFCvkrFPK5SHXZ+e1R\nDdmIyOinkL9ChmEwMd3D7o8bae/qNrs7IiKXpJAfhMkZHjpiPZRX6YZlIjK6KeQHITfNjdth4/Uj\nYbO7IiJySQr5QbDbeodsfld5io5Yj9ndERHpl0J+kK7N8tLa1c1u3X5YREYxhfwg5QXceJw2/vNw\nndldERHp12WF/Nq1a1m0aBElJSUcPHjwvLbdu3dz5513smjRIr7//e8nlh85coS5c+fy4osvJpat\nXr2aO+64g6VLl7J06VJ++9vfDk0VJrAZBpMyvPz+gwbadJWNiIxSjoFW2Lt3L1VVVZSWllJZWclD\nDz3Eli1bEu1r1qxh8+bN5OTksHjxYhYsWEBeXh6rV6/my1/+8nn7am1t5bHHHmPq1KlDX4kJrs30\n8n5tlD982MC8z4TM7o6IyEUGPJMvKytj7ty5ABQWFhKJRIhGowBUV1cTCATIzc3FZrMxe/ZsysrK\ncLlcbNq0iezs7PP21dJirQk3xqWlkOqy85/va8hGREanAUO+vr6e9PT0xPPMzEzC4d5LB8PhMBkZ\nGYm2rKwswuEwDocDt9t90b5aWlp4+umnWbp0Kffffz9NTWP7OvPeIRsPf/yogZbOmNndERG5yIDD\nNRfOaRqPxzEMo882INHWl5KSEgoLCykoKOCZZ55h48aNPProo+et4/Ol4HDYL6vzfb222+0c1LaD\nNTU3jYpPorx5Msp/nZ43oq8NYLfbCAa9I/66ZlG91pdsNQ93vQOGfE5ODvX1n96npa6ujqysrD7b\namtrCYX6H5ueN2/eeY9XrVp10TrR6OAn5IjH47SP8N0h01Ps+FLs/PTNamZPCo7oawMEg16amlpH\n/HXNonqtL9lqHqp6QyF/n8sHHK4pLi5m+/btAFRUVJCdnY3P5wMgPz+faDTK8ePHicVi7Ny5k+Li\n4n73dc8991BTUwNAeXk5U6ZMueJCRhvDMCjMSqW8qpHwVRygRESGw4Bn8jNmzKCoqIiSkhIMw2Dl\nypVs27YNv9+fOBu/7777AFi4cCEFBQUcOnSI9evXc+LECRwOB9u3b2fjxo0sWbKEFStW4PV68Xg8\nrFu3btgLHAlTQqm8fSLCr9+rY+nMCWZ3R0QkwYj3NbBuonC4edDbvno4TM0pc67geeVQLV6XndK/\n/fwlP5cYavrT1tqSrV5IvppNH66Ry1OY5eWjU60croua3RURkQSF/BC5NisVu83g1Xdrze6KiEiC\nQn6IpDhsTEz38Ov36ujq1p0pRWR0UMgPoetCqZxuj+nOlCIyaijkh1B+wI3Xaefnhz4xuysiIoBC\nfkjZbAZTQqn88cMG6pp1zbyImE8hP8Suz/HRE0dn8yIyKijkh1ia20F+0M3PDp6ku2dUfQVBRJKQ\nQn4YXJ/toy7aSdnH+gBWRMylkB8Gk9I9pLrsbDtw0uyuiEiSU8gPg8QHsB818Emk3ezuiEgSU8gP\nk89k+4jH4RV9ACsiJlLID5OzH8D+9MBJfQNWREyjkB9GReP8NLR28Zsj9QOvLCIyDBTywyg/6Cbo\ncfJv+0+Y3RURSVIK+WFkGAafzfFx6GQz756MmN0dEUlCCvlhNiU7FZfdoHR/jdldEZEkpJAfZi67\njSmhVP7zcJj6lk6zuyMiSUYhPwKKxvmJ9cTZdkBn8yIyshTyIyDgcTIx6GHL2zW0d3Wb3R0RSSIK\n+RFyQ56fprYYv3qvzuyuiEgSUciPkNy0FEI+Fy++cZyeuO5OKSIjQyE/QgzD4IZcP9VNbez64JTZ\n3RGRJKGQH0EFmV7S3A5+9MZxs7siIklCIT+CbIZB0Tg/B2siHKzRl6NEZPgp5EfYZ7JTcTtsvPhG\ntdldEZEkoJAfYU67jetzfPy28hTHGtvM7o6IWJxC3gRF4/zYDIOX9mlsXkSGl0LeBF6XncKQl18c\n+oTGVt3qQESGz2WF/Nq1a1m0aBElJSUcPHjwvLbdu3dz5513smjRIr7//e8nlh85coS5c+fy4osv\nJpadPHmSpUuXsnjxYv7hH/6Bzs7kDbhpeWl0dcf5t7d0G2IRGT4DhvzevXupqqqitLSUNWvWsHr1\n6vPa16xZw8aNG3n55ZfZtWsXlZWVtLa2snr1ar785S+ft+5TTz3F4sWLeemllxg/fjxbt24d2mrG\nkKDHyeQMD6X7a4h2xMzujohY1IAhX1ZWxty5cwEoLCwkEokQjUYBqK6uJhAIkJubi81mY/bs2ZSV\nleFyudi0aRPZ2dnn7au8vJw5c+YAMGfOHMrKyoa6njHlxvwALZ3dbHlbNy4TkeHhGGiF+vp6ioqK\nEs8zMzMJh8P4fD7C4TAZGRmJtqysLKqrq3E4HDgcF++6ra0Nl8sFQCgUIhwOX7SOz5eCw2EfVDGG\nYeB2Owe1rRny3U4mZXp5ad8J7v6zQryuAd+Oi9jtNoJB7zD0bnRSvdaXbDUPd70Dpkr8gvusxONx\nDMPosw1ItPXl3La+tgWIRjsG6lK/4vE47e1dg97eDNPG+fnFu7X8YNeHLP58/hVvHwx6aWpqHYae\njU6q1/qSreahqjcU8ve5fMDhmpycHOrrP52Iuq6ujqysrD7bamtrCYVC/e7L4/HQ3t6eWPfC4Zxk\nNC4thdy0FH78xnE6Yz1md0dELGbAkC8uLmb79u0AVFRUkJ2djc/nAyA/P59oNMrx48eJxWLs3LmT\n4uLifvd18803J/a1Y8cObrnllqGoYcz7k/EB6ls6ebWi1uyuiIjFGPH+xk3O8fjjj/Pmm29iGAYr\nV66koqICv9/PvHnzeOONN3j88ccBmD9/PsuWLePQoUOsX7+eEydO4HA4yMnJYePGjXR2dvLggw/S\n0dFBXl4e69atw+k8fww9HG4edDGvHg5Tc6pl0NubJR6P88qhWuw2g23LvoDD1v+Q14X0p621JVu9\nkHw1D/dwzWWF/EhKxpAHqGpoZcfher5722dY+Nmcy95O/0NYW7LVC8lXs+lj8jIyJqZ7yPA6eWHP\nMbp7RtVxV0TGMIX8KGEYBn+SH6CqsY0dhzVFoIgMDYX8KFKQ4SHT6+RfdlcR09m8iAwBhfwoYhgG\nMyYEON7Uzn/oShsRGQIK+VFmUrqHkM/FprIqYt26bl5Ero5CfpQxDIMZ+QFORjr4xbs6mxeRq6OQ\nH4UmBN3k+F08X1alb8GKyFVRyI9CZ8/m66Kd/PzQJ2Z3R0TGMIX8KDU+4GZcWgov7DlGe1e32d0R\nkTFKIT9KGYbB5/N772nz0wMnze6OiIxRCvlRLC/gZnzAzeY9x2hu1+xRInLlFPKj3BcmBYl2xPjh\nG9Vmd0VExiCF/CiXleri2iwvL+87Tm3z4CdUEZHkpJAfA26aEKS7B57748dmd0VExhiF/Bjgdzv4\n7Dgfr1bUUlk/Nm+lLCLmUMiPETeOT8Nlt/F/fvtBv/PjiohcSCE/RriddmbkByivauL3H5wyuzsi\nMkYo5MeQz47zkeF18r93fkCHbncgIpdBIT+G2AyDL01O52Skg5f2HTe7OyIyBijkx5jxATeTM7xs\n3nNMl1SKyIAU8mPQlyYF6e6J88TOD8zuioiMcgr5McjvdnDj+DR+c7Se19/TfLAi0j+F/Bg1PS+N\nTK+Tf/zFu0Q7dF8bEembQn6MstkM/vSaDMLNHXx/10dmd0dERimF/BiW7U9hWn6Anx44yYETp83u\njoiMQgr5Me5LBRn4Uhys+o/DtHZqchEROZ9CfoxzOWzMLszgxOl2Hv9NpdndEZFRRiFvAblpbqaP\nT+MX79by+pGw2d0RkVHEcTkrrV27lgMHDmAYBg8//DDTpk1LtO3evZsnnngCu93OrFmzWL58eb/b\nrF69mv3795OamgrAsmXLuPXWW4e+qiT0+fwAJyPtrNlxhKJxfsaluc3ukoiMAgOG/N69e6mqqqK0\ntJTKykoeeughtmzZkmhfs2YNmzdvJicnh8WLF7NgwQIaGhr63Ka1tZXHHnuMqVOnDmtRychmM7i1\nMJP/d/AT/tcv3+fZ/zYNp11/qIkkuwFToKysjLlz5wJQWFhIJBIhGo0CUF1dTSAQIDc3F5vNxuzZ\nsykrK+t3m5YW3Qt9OKW5nfzpNRkcrImw4fVK3ZJYRAYO+fr6etLT0xPPMzMzCYd7x33D4TAZGRmJ\ntqysLMLhcL/btLS08PTTT7N06VLuv/9+mpqahrIWAa7NSuXG8Wn87J1P+OmBk2Z3R0RMNuBwzYVn\ng/F4HMMw+mwDMAyj321KSkooLCykoKCAZ555ho0bN/Loo4+et67Pl4LDYb/iQs6+ttvtHNS2Y1Vf\nNf/plCya2mM8vvMDbpiUwRcLMvrZeuyx220Eg16zuzFikq1eSL6ah7veAUM+JyeH+vr6xPO6ujqy\nsrL6bKutrSUUCuFwOPrcZvLkyYll8+bNY9WqVRe9XjQ6+DsrxuNx2tu7Br39WOR2O/usefY1Gbxy\nqJZ7XtzHs4um85lsnwm9G3rBoJemplazuzFikq1eSL6ah6reUMjf5/IBh2uKi4vZvn07ABUVFWRn\nZ+Pz9QZGfn4+0WiU48ePE4vF2LlzJ8XFxf1uc88991BTUwNAeXk5U6ZMuerCpG8uh40FU0MYBnxr\n60E+bkie/2lE5FMDnsnPmDGDoqIiSkpKMAyDlStXsm3bNvx+f+Js/L777gNg4cKFFBQUUFBQcNE2\nAEuWLGHFihV4vV48Hg/r1q0b3uqSnD/FwV9MzeaX79Zx75aDPF9yI3kBXVopkkyM+Ci7BCMcbh70\ntq8eDlNzKrmu4OlvuOZcp1o6+VVFHQGPk6e/dgOTM8fueKf+lLe+ZKvZ9OEaGfsyU13cNjWb5vYY\nf/fy27qZmUgSUcgniSyfi7/6XA52G9y75SA7j9YPvJGIjHkK+SSS5nbwX4pyCHqcPPBKBRt//xGx\nnlE1WiciQ0whn2Q8Tjt/WZTD9Tk+fvRGNf/93w9QpwnBRSxLIZ+EHDaDW67J4M8KM3n3k2a+/qN9\nbH+vTrdBELEghXwSKwylcvsN43A7bDzyq/f5nz+voL6l0+xuicgQUsgnuaDHyV99LocvTgryx48a\n+OsX3uDf99fQrbF6EUtQyAs2w2BaXhpfnTaOgMfJ935Tyd+8+BYHayJmd01ErpJCXhKCHie3TQ0x\n57osak63s+zlt/mnXx+moVVDOCJj1WXNDCXJwzAMrsn0MiHoZv/xCL+sqOX1I/X83ZcmUjJjPCkO\nnReIjCX6P1b65LTb+MKkIF+bnkuWz8XTuz7ir//1DV47HNZVOCJjiEJeLinocbLg+hALp2bTGevh\noVff465/O8C7nwz+HkMiMnIU8nJZxgfd3D5tHLdck0FluIVv/GQ///ir96nVF6lERjWNyctlsxkG\n1+f4uCbTy4GaCDsOh/nN0XqW3JTP38ycgNc1uBm9RGT46ExerpjLYWPmxCB/PT2X8QE3m/cc447N\ne/nFoU90fb3IKKOQl0Hzux3MuS6Lr3wuB7vN4J+2H+HrP9rHzqP1+nBWZJRQyMtVy/Gn8JXP5fDn\nUzJpbO3igVcq+Nuf7Kf840aFvYjJNCYvQ8IwDK7NSqUg08vRcAv7j0f41k/f4cbxafzNzAkUX5OB\nzTDM7qZI0lHIy5CyGQafyfZRmJXKe7VRDp2M8D9+9i6TMzwsuSmfv5iaoy9UiYwghbwMC7vN4HO5\nfj6b4+PDU628c7KZNTuO8n//8DG33zCOvywax8R0j9ndFLE8hbwMK5vNoDCUyrVZXmoiHRyqaeZf\ny6t5obya6XlpLJiaza2FmYR8KWZ3VcSSFPIyIgzDYHzAzfiAm5aOGEfrW6gMt7Lh9Uo2vF5J0Tg/\nxddkcNOEIJ/L9eO0a0hHZCgo5GXEpaY4uHF8gOl5aTS1xfi4oZVjjW1s2l3Fv1BFisPGZ3N8TB3n\n5/ocH1Oz/UxI92C36YNbkSulkBfTGIZButdJujfAn+QH6Ij1cDLSTs3pdmoiHbxzsjkx0bjbYWNy\nhpfrxvnJ87uYnOFlUoaXCUGPPsgVuQSFvIwaKWeCfHKGF4CeeJym1i7qWzo51dJFU1sXvzsa5nRb\nLLGNzYDcNHdiu0kZHiame5iU7iEz1YWhyzYlySnkZdSyGQYZqS4yUl2JZW63k+aWDiLtMZraus78\nxHi/rpnyqsbEmT+A12nvDfwzwT8x3Xvmtwdfiv7pS3LQv3QZc5x2G5mpLjLPCX+AeDxOtLOb021d\nnG6Pcbqti0h7jD0fN7Lj/TDnfvc20+tkYoY3cdbf+9vL+KBbH/qKpSjkxTIMw8Cf4sCf4iD/grZY\nT5zm9hin27s43db7uzbSwZG6KC2d3Yn1bAbkpbmZmPHpmf/Zg0BmqksHABlzFPKSFBy2sx/yOi9q\n64j1EDkT/k1tXUQ6YlSGW3nzWBOd3effeyfVZSfd4zyzLxfpHidpbgd+d+/B5ezjtBQHfreTtBQH\nPrcDh64MEpNcVsivXbuWAwcOYBgGDz/8MNOmTUu07d69myeeeAK73c6sWbNYvnx5v9ucPHmSBx54\ngO7ubkKhEN/73vdwuVz9vazIiEhx2Aj5Ui76QlY8Hqe1q5vTbTEi7TFau7pp7+qmvauHhtYuaiId\ntHd10xHrOe+zgL54nDZ8KZ8eCALuTw8OaW4H/hTnBQeI3uWpfvdwli5JYMCQ37t3L1VVVZSWllJZ\nWclDDz3Eli1bEu1r1qxh8+bN5OTksHjxYhYsWEBDQ0Of2zz11FMsXryY2267jQ0bNrB161YWL148\nrAWKDJZhGKS6HKS6HOQFLr1urCdOZ6yHjrM/3T3nPe88Z9knkQ6qGtro7O65rAOE22HD73YQcDtI\nO3Nw8DjtpDhsZ37suM88djttuOw27DYDu83AZhjYjN6/ZGyGge3McrvR+8F27+NPlzvOLHOcXa+P\nx+c+103nRr8BQ76srIy5c+cCUFhYSCQSIRqN4vP5qK6uJhAIkJubC8Ds2bMpKyujoaGhz23Ky8v5\n7ne/C8CcOXP4wQ9+oJAXS3DYDBwu+6Bmx+ruifceCLrPOSCc+ek2oKU9llhWE2nn44beA0N3T5xY\nT5xYd5xuk27pbDtzsLjooHAtoDp7AAAGiklEQVT2YGE3cNpsZ34bOOw2HDYDp93AYet97LB/evBw\n2G2kepx0d3X3tp9pO/dQcuFx5bzWi9r63s64YMVLHavO34dxibZL7OOcxgtX83pdtLV14ktxcNvU\n7CH/3GfAkK+vr6eoqCjxPDMzk3A4jM/nIxwOk5GRkWjLysqiurqaxsbGPrdpa2tLDM+EQiHC4fBF\nr+fzpeBwDG4auS9ek0nr+AFOuSzGbrPR3dNjdjdGjOrtW3dPnM4zfyl0dffQE4/T3dP7XYPex3F6\n4meen33cEz/T3rt99znrdvf0rhc7u/zM48S6Z3/6WP/sPs49EPX+7qGnBzq647TGeoj1xOju6Uls\nnzhgnVn37POB/tKxihSHjVs/O45Q0Duk+x0w5C+c9CEejyeOSn1NCGEYRr/bnHs0628yiWh08BND\nTwn5aGpqHfT2Y1Ew6E2qmlWv9V1JzefmyIWJcm7ExPtruKDtwlg6v63/g82l9xHvtw0gEPBw+nQb\nDpuB28ag3+9QyN/n8gFDPicnh/r6+sTzuro6srKy+myrra0lFArhcDj63Mbj8dDe3o7b7aa2tpbs\n7OxBFSMiApceBrl4wYANpvC7nXS3dw3b/gcc/CkuLmb79u0AVFRUkJ2djc/nAyA/P59oNMrx48eJ\nxWLs3LmT4uLifre5+eabE8t37NjBLbfcMlx1iYgIl3EmP2PGDIqKiigpKcEwDFauXMm2bdvw+/3M\nmzePVatWcd999wGwcOFCCgoKKCgouGgbgBUrVvDggw9SWlpKXl4et99++/BWJyKS5Iz4KJtpORxu\nHvS2Gr+0PtVrfclW81DV29+YvL6jLSJiYQp5ERELU8iLiFiYQl5ExMJG3QevIiIydHQmLyJiYQp5\nERELU8iLiFiYZWaGutTEJlZw6NAh7r33XiZNmgTAddddx1133WXJSViOHDnCvffeyze+8Q2WLFnS\n72Qzr7zyCj/84Q+x2WwsWrSIO++80+yuD9qFNa9evZr9+/eTmpoKwLJly7j11lstU/OGDRvYt28f\nsViMu+++mxtuuMHS7/GF9ZaXl4/c+xu3gPLy8vjf//3fx+PxePzo0aPxO++80+QeDb3y8vL4mjVr\nzlv2ne98J/6rX/0qHo/H4+vXr4//5Cc/MaNrQ6qlpSW+ZMmS+COPPBL/8Y9/HI/H+66zpaUlPn/+\n/HgkEom3tbXFFyxYEG9sbDSz64PWX80VFRUXrWeFmsvKyuJ33XVXPB6PxxsaGuKzZ8+29HvcX70j\n9f5aYrimv4lNrKSlpeWiZeXl5cyZMwfonYSlrKxspLs15FwuF5s2bTrvDqV91XngwAFuuOEG/H4/\nbrebm266ibfeesusbl+Vvmru6/22Ss0zZ87kySefBCAQCNDW1mbp97iveiORyEXrDVe9lhiuudTE\nJlbR2trKvn37uOuuu2hra2PFihWXNQnLWONwOHA4zv9n2Ved9fX1F01YM1br76vmlpYWnn76aSKR\nCDk5OTzyyCOWqdlut+P19k6MsWXLFmbNmsUf/vAHy77HfdXb0NAwYu+vJUI+fomJTazi+uuvZ/ny\n5cyZM4ePPvqIb37zm8RisUT7hf8NrKSvyWas/p6XlJRQWFhIQUEBzzzzDBs3bmT69OnnrTPWa37t\ntdfYunUrL7zwAgsWLEgst+p7fG69e/bsGbH31xLDNZea2MQqrr322sSfswUFBWRlZRGJRGhvbwew\n9CQsZyebgU/r7Os9D4VCZnVxyM2bN4+CgoLE48OHD1uq5l27dvHss8+yadMm/H6/5d/jC+sdyffX\nEiF/qYlNrGLr1q386Ec/AiAcDnPq1CnuuOOOpJiEpa/JZqZPn84777xDJBKhpaWFt956i5tuusnk\nng6de+65h5qaGqD3M4kpU6ZYpubm5mY2bNjAc889RzAYBKz9HvdV70i+v5a5rcHjjz/Om2++mZik\n5Prrrze7S0Pq9OnT3H///bS2ttLZ2cm3vvUtpk6dyoMPPkhHRwd5eXmsW7cOp9NpdlevyqFDh1i/\nfj0nTpzA4XCQk5PD448/zne+852L6vz1r3/N5s2bMQyDJUuW8JWvfMXs7g9KXzV//etfZ/PmzXi9\nXjweD+vWrSMzM9MSNZeWlrJx48bEmSzAP//zP/PII49Y8j3uq96vfe1r/PjHPx6R99cyIS8iIhez\nxHCNiIj0TSEvImJhCnkREQtTyIuIWJhCXkTEwhTyIiIWppAXEbEwhbyIiIX9fw6JJG2dAcdGAAAA\nAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD5CAYAAADGMZVsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzt3Xl8XOV97/HPmX1Go12yZGsztuEBbAgx4IQsLTRp6M1CAiU3zW1uV0qSpskrTZu2t4EXJDc3tOlN0nubjTSQkpKkNMEsCYQ4cCEhARuwjfGCHyyMN+RFsixb+zIz948zMvJYskaypDMz5/t+vRxJ5zwj/Z6J+J6jc57zPE4mk0FEREpbwOsCRERk/insRUR8QGEvIuIDCnsRER9Q2IuI+IDCXkTEB0JeFzCVzs7eWY8JTSaj9PUNz2U5RUX993f/Qe+Bn/tfX1/uTLa9JM/sQ6Gg1yV4Sv33d/9B74Hf+z+Zkgx7ERE5lcJeRMQHFPYiIj6gsBcR8QGFvYiIDyjsRUR8QGEvIuIDBftQ1Ww9uPUQX/vVK1y0uII/u6IN05D0uiQREc+V3Jn9Za1VLKmK8/Sebv7o+5t5ePthr0sSEfFcyYX9ksoYb11Rx7tXNlAeC3HrI5Zf7T7qdVkiIp4qubAfl4gEuWZVA4lIkJse2kmnT+fJEBGBEg57gEgwwDtMHYOjKW5+aKfX5YiIeKakwx6gLhllZWM5Gw8c55m9x7wuR0TEEyUf9gCrmyuJBB2++Fg7mcysZ04WESlavgj7SCjA65sq2XtskCfau7wuR0Rkwfki7AEuaEwSDjrcuX6/16WIiCw434R9OBjggkVJdh7p48VDvV6XIyKyoPJ6gtYY0wJ8HbgCGAQeAD5lrR2ZpO31wE3AcmA38Flr7drsviTwJeB9QBywwM3W2kfOvivTW7WknK2HevnXp/fy5WtXLcSPFBEpCPme2a8FuoAVwFuANwGfy21kjLkYuBu4FagHbga+Z4wZT9Zv4h4EXgfUAj8A7jPGLJ59F/JXFgnRWhVnw95jDI6MLcSPFBEpCNOGvTHmMmA18GlrbY+1di/wBeBGY0zu628E1llr77fWDllrHwQeA27I7n8Q+Ii19pC1dhT4NhADzpuj/kzrgoYkI6kMP9pycKF+pIiI5/I5s78U2G+tnTiMZRNQjXuWntt2U862TcDlANba/7TWtgMYYyqBvwdeBp6deemz01QVIx4O8OC2Qwv1I0VEPJfPNftaIPdppO7sxzpgVx5t6yZuMMZsANYAW4B3W2sHcn9oMhmd9QrxTsAhGg0Ri0zevQsXV7BxXw+dwynObSif1c8oZMFggKqqhNdleMbv/Qe9B37v/2TyneLYmcH3nLattfYNxpgq4KPAk8aY1dbaU8ZE9p3FXDaZdIbh4TEC6ckfoDqnOs7GfT3c+eRu/vbt58765xSqqqoEPT2nHT99w+/9B70Hfu5/ff3kJ7D5XMbpxD1jn2j86yN5ts1tR/b6/224Z/6/n0cdc6Y6EaYqHuIXLx/VE7Ui4gv5hP1zQJMxpnHCtjW4Ab57kraX5WxbA6w3xsSMMe3GmCtz9qeB0fxLnhvn1pXR2TfCdo25FxEfmDbsrbWbgfXAF40xlcaYZbjj6L9qrc0YY3ZOCPDbgauMMdcaY6LGmPcDbwVut9YOAc8Dtxlj2owxEWPMh4FlwE/noW9ntLyuDIC1GpUjIj6Q7zj763FH33QAG4CHcYdfAhggCWCt3QF8ILvvBHALcN34CBzgT3Fvym4GjuIOybw2+7oFVR4LUZsI8/Sebl3KEZGS5xRq0HV29s66sDufPUDvwDDx8JlH82w+cJzn9h/n7v++GrOodNaq9fPNKVD/Qe+Bn/tfX18+6SAZ38yNM5m2mjgAP9GYexEpcb4O++p4mGQ0yK92d0/fWESkiPk67B3HYWlNnI4TQ3QcH/K6HBGReePrsAdYWpMgnYGHduhSjoiULt+HfUN5lEjQ4RftR70uRURk3vg+7AOOQ1t1nN1dA/QNLfizXSIiC8L3YQ+wtDbBaDrDoy9pfVoRKU0Ke6CpMkbAgZ/bTq9LERGZFwp73PVpl1TE2H6ol9QUM2WKiBQzhX1Wa02c/pEUmw8c97oUEZE5p7DPaqlyn6ZdZ0+bjVlEpOgp7LMqYiHKo0Ge3dvjdSkiInNOYT9Ba7X7NG3XWaySJSJSiBT2E7RUx0lnNCpHREqPwn6CxRUxgg784mU9TSsipUVhP0Eo4LC4IsbOw32MaQimiJQQhX2O1mp3CObzB3SjVkRKh8I+R0t1DIB1um4vIiVEYZ+jIhZ2h2Du05m9iJQOhf0kWqvjdBwf4mi/hmCKSGlQ2E+ipcodgvmo1SyYIlIaFPaTWFwRJeDALzUEU0RKhMJ+EqFggMUVUXYc1iyYIlIaFPZTaK1O0Dec4oUOzYIpIsVPYT+FlqrsEMydGoIpIsVPYT+FyniYZDTIM5oFU0RKgML+DFqr4xw4PkjP4IjXpYiInBWF/Rm0nhyCqUs5IlLcFPZnMD4E84l2DcEUkeKmsD8DdwhmjO0He8lkNARTRIqXwn4abdVx+kZSbHn1hNeliIjMmsJ+Gi3VWohcRIqfwn4a4wuRb9AQTBEpYgr7PLRWxznQM0jPgIZgikhxUtjnoXV8IfKXNAumiBQnhX0eGscXIm9X2ItIcVLY52F8IfJtB3tJp9NelyMiMmMK+zy11bgLkW/p0BBMESk+Cvs8NVeND8HU1AkiUnwU9nlyh2CG2LDnmNeliIjMmMJ+BlqrY7x6fIhjGoIpIkVGYT8DbdUJ0hldyhGR4qOwn4HGiijBgMMTuzQEU0SKi8J+BoIBhyUVUXYc7iOlIZgiUkQU9jPUWh1nYCTFpgNaiFxEiofCfobGZ8H82YuaBVNEiofCfobKoyGq4iHNgikiRUVhPwtLaxIc7h1m37EBr0sREcmLwn4WltbEyQA/3aFLOSJSHBT2s1BXFiEWCvCLl7UQuYgUh1A+jYwxLcDXgSuAQeAB4FPW2tMeJTXGXA/cBCwHdgOftdauze4LAH8P/DGwCHgJuNla+/DZd2XhOI5DW02cl7sG6B0aozyW19soIuKZfM/s1wJdwArgLcCbgM/lNjLGXAzcDdwK1AM3A98zxqzKNvlL4CPAtUANcBdwrzGmefZd8MbSmgRj6Qw/19O0IlIEpg17Y8xlwGrg09baHmvtXuALwI3ZM/WJbgTWWWvvt9YOWWsfBB4DbsjuTwF/ba19wVo7CvxLdvuauejMQlpSESXoODyqhchFpAjkc/3hUmC/tXbiHAGbgGrcSzW7ctr+LOf1m4C3AVhr/zlnXwMQAV6dQc0FIRQM0FQVZduhXsZSaUJB3f4QkcKVT0LVArnz+nZnP9bl2Ta3HcaYIHAH8Ki1dkMedRScpTUJBkfTPK1pj0WkwOV7Z9GZwfectq0xJgHcAzQCb5+sTTIZJRQKzuDHTigg4BCNhohF5vfG6bmN5fzy5W4e3dXFey5tmdefNRPBYICqqoTXZXjG7/0HvQd+7/9k8knDTtwz9onGv869YD1V25PtjDHVuJd6uoGrrLWTrvPX1zecR2mTy6QzDA+PEUhnZv098hEAFiUjPLX7KMeO9eM4Mzkmzp+qqgQ9Pf594Mvv/Qe9B37uf319+aTb87mM8xzQZIxpnLBtDW6A756k7WU529YA6wGMMVHgIdzr/O+eKuiLyfK6BD2DYzz/atF3RURK2LRhb63djBvWXzTGVBpjluGOo/+qtTZjjNlpjLky2/x24CpjzLXGmKgx5v3AW7PbAT6F+9fEH1prx+a6M15YWuP+qfjgtkMeVyIiMrV8h5Bcjzv6pgPYADyMO/wSwABJAGvtDuAD2X0ngFuA66y17dm2NwCvB/qMMUMT/t00F53xQjIaojYRZv2eY2Qy83vZSERktvK6g2mt7QDeM8U+J+frB3CfsJ2s7fKZFlgMltUmeHb/ceyRPs5vmPx6mYiIlzQ4fA6cU+teyrl/qy7liEhhUtjPgcp4mMpYiF/v7p6+sYiIBxT2c2R5XYJDvcPsPtrvdSkiIqdR2M+R8Us5D7ygSzkiUngU9nOkOh6mIhriifau6RuLiCwwhf0ccRyHFfUJOk4M097Z53U5IiKnUNjPoeV1ZQD8aMtBjysRETmVwn4OVcXDVMfD/LJdyxWKSGFR2M+xc+sTdPaPsPWg5soRkcKhsJ9j45dy1m7p8LgSEZHXKOznWDIaoj4Z4Ve7uzVXjogUDIX9PDg3O+3xhr1awUpECoPCfh4sqyvDAdZqVI6IFAiF/TyIh4MsqYyxfu8xRsbSXpcjIqKwny/nNyQZHE3z0xcPe12KiIjCfr60VscJBx3u01w5IlIAFPbzJBRwWF5bxouHe+k6i8XTRUTmgsJ+Hp3fUEY6A/ds1ph7EfGWwn4e1ZVFqIiFeOTFI16XIiI+p7CfR47jcP6iMg71DrPl1eNelyMiPqawn2fn1icB+P7GVz2uRET8TGE/zxKRIM2VMZ56pZuh0ZTX5YiITynsF8DKxeUMjaW5V5OjiYhHFPYLoLkqRiIcYO0WjbkXEW8o7BdAwHG4oLGcfT2DbNM89yLiAYX9Ajl/URIHuOuZ/V6XIiI+pLBfIIlIkNbqOE+90k3/8JjX5YiIzyjsF9DKxeWMpDL8xyYNwxSRhaWwX0BLKqIko0Hu26p57kVkYSnsF5DjOFy0uJzDvSM80d7ldTki4iMK+wVmFiUJBxy+s36f16WIiI8o7BdYOBjANCTZcbiP9s4+r8sREZ9Q2HvgosXlOMA3f73X61JExCcU9h5IRkMsrYnz61e66e4f8bocEfEBhb1HXtdUwVg6wx26di8iC0Bh75H6ZJT6ZISfbD+s2TBFZN4p7D10aXMlA6MpTaEgIvNOYe+h5qoY1fEw/7m5g9FU2utyRKSEKew95DgOl7ZUcGJ4TFMoiMi8Uth7bGlNgopYiLufO0AqrbN7EZkfCnuPOY7D6uYKugdGuXeL5swRkfmhsC8Ay+vKKIsE+c6G/Tq7F5F5obAvAAHH4bKWSrr6R/jhZp3di8jcU9gXiBX1ZVTEQtyxYa9G5ojInFPYF4iA4/CG1ip6Bsf4tw0ady8ic0thX0DaauLUJsJ8b+MBBka0dKGIzB2FfQFxHIc3tFXRP5Lim7/e43U5IlJCFPYFpqkqTmN5lHu3HORo/7DX5YhIiVDYF6A3nVPNSCrDPzza7nUpIlIiFPYFqLYswrn1CX7RfpQdh3q9LkdESoDCvkC9oa2aYMDh8+te8roUESkBoXwaGWNagK8DVwCDwAPAp6y1py2zZIy5HrgJWA7sBj5rrV07YX8c+ArwYeAqa+0TZ9mHkhQPB3l9cyXP7uvh4R2HeeeFDV6XJCJFLN8z+7VAF7ACeAvwJuBzuY2MMRcDdwO3AvXAzcD3jDGrsvsbgefI8yDjdxctLicZCfKVJ3YzrAVOROQsTBv2xpjLgNXAp621PdbavcAXgBuNMbmvvxFYZ62931o7ZK19EHgMuCG7vw73QPDJuepAKQsGHN68rJqewVG+/MRur8sRkSKWz5n9pcB+a23XhG2bgGrcSzW5bTflbNsEXA5grd1mrf3hLGv1pdbqBK3VMe7fepBdnX1elyMiRSqfyym1wLGcbd3Zj3XArjza1s20sGQySigUnOnLAHACDtFoiFikNK4Wvf2CBr67fh+3/uwlfvKxN+M4zhnbB4MBqqoSC1Rd4fF7/0Hvgd/7P5l80/DM6TL7tlPq65v9A0WZdIbh4TEC6cxclOK5IHBZayXr9/Twzcd38cHVzWdsX1WVoKdnYGGKK0B+7z/oPfBz/+vryyfdns9lnE7cM/aJxr8+kmfb3HYyQysby6lOhPn6k3voPIsDoYj4Uz5h/xzQlB1JM24NboDn3jV8DrgsZ9saYP2sKxTAnRXzqhU1DI+l+cxDL3pdjogUmWnD3lq7GTesv2iMqTTGLMMdR/9Va23GGLPTGHNltvntwFXGmGuNMVFjzPuBt2a3y1mqLYtySXMFmw+cYO2WDq/LEZEiku84++txR990ABuAh3GHXwIYIAlgrd0BfCC77wRwC3CdtbYdwBhzkzFmCHfMPsA6Y8yQMeamOeiLL6xurqQqHuIrT+zmSK8u54hIfpxMpjBvYnZ29s66sDufPUDvwDDx8OxG8xS67v4R7tt6iJWN5dzxwUtOG53j55tToP6D3gM/97++vnzSQTKaG6cI1ZRFWN1cydaDvXz3Wa1qJSLTU9gXqUuaKliUjPCNX+9l52E9bCUiZ6awL1KO4/Dbpp6gA391/zYGtYyhiJyBwr6IJSJBrlpRy5G+EW55xHpdjogUMIV9kWutSXBhQ5LHdx3lR89rOKaITE5hXwKuWFpNXVmE//34y2w7eMLrckSkACnsS0Ag4HD1+fWEAg5/ed92jmmhchHJobAvEYlIkHeYOo4PjfIn391IqkQmgRORuaGwLyGNFTGuaKtmW8cJbnl4J4X6wJyILLzSmPBdTlq5uJwTIyl+ZjtpqY7z4Tcv9bokESkAOrMvQVeeV0dzZYxvr9/Hj7cd8rocESkACvsS5DgOv31+PTWJMP9r3Us8tfuo1yWJiMcU9iUqFHB414WLiEeC/PUDO9i4r8frkkTEQwr7EhYLB7lmZQPhUIBPrN3K1o7jXpckIh5R2Je4smiIa1YuIhhw+PMfbmW7HroS8SWFvQ+Ux8K8Z2UDOHDjPS/w7L5jXpckIgtMYe8TlfEw71vVQDjo8PF7t/HErq7pXyQiJUNh7yPlsTDvu6iBskiQv/3xDtZuOeh1SSKyQBT2PpOIhHjfqgZqEhFue3QXX/p/7aT1pK1IyVPY+1A0HOS9qxpYWhPnPzZ38Mm12xgaTXldlojMI4W9TwUCDm8/r45Lmip4es8xfu+ujezp7ve6LBGZJwp7H3Mch8tbq3jbeXUc6RvmQ/++mXU7j3hdlojMA4W9sKw2wbUXNRIPB/jMQzu57ee7GE2lvS5LROaQwl4Ad2jmtRc1sqw2wdoXDvIHd2/mQM+g12WJyBxR2MtJoWCAt51Xx1vOqWZP9wAf+LeNrN3SoXnxRUqAwl5Oc0FjOddd3Eh5NMhtj7bziXu3cWxgxOuyROQsKOxlUpXxMNde3MjFS8p5Zt8xfvfOZ3lcT92KFC2FvUzJcRze0FbNu1c2AA5/8+AO/vK+bXT16yxfpNgo7GVaDeVR3v+6Ri5sTPLUK91cd8cz3PfCQV3LFykiCnvJSzAY4M3n1HDNqgbi4SBf+Pku/vQHz/PK0QGvSxORPCjsZUbqk1Guu7iRS5srefFwH79313P802Pt9A2PeV2aiJyBwl5mzHEcVrdU8v5LFtNcFec/n+/gvd9+hge2HtKkaiIFSmEvs5aMhrj6/HreeUE9AQc+v+4l/tt3N/LMXi2OIlJoFPZy1pqq4vzuxY2saa3k1eNDfOxHW/nwPVuwh/u8Lk1EshT2MicCgQCva6rkA69fwqrGcrYePMGH7t7E3z64XdMuiBSAkNcFSGmJBANccU41lzRVsH5fD79oP8oT7Ue5ZlUjN1zRRkN51OsSRXxJYS/zIh4JctWKWlY3VbB+bw8PbD3Ej7cf5pqVDfzJG1tprIh5XaKIryjsZV5VxsNcfX493f0jPLvvOPdvPcSD2w/znpUN/KlCX2TBKOxlQdSURbj6gnqO9o/w3P7jPLDtED/edph3XriIP1zTQltNwusSRUqawl4WVG1ZhKvPd0N/4/7jPLTjMD/Zfpg3Lq3mD9e0sLq5EsdxvC5TpOQo7MUTtWUR3nF+PSeGRtl84AQb9/fw9J5jLK9L8MHVTbzd1FMW0a+nyFzRf03iqYpYmN9cUcsbx6p44dVe2rv6+fy6XXzxsZf5rfPqeO+qRla3VBLQ2b7IWVHYS0GIhoJc3lbFpS0V7Dk2yK4jAzxqO3nkxSPUlUV423l1XLmijkuaKggF9XiIyEwp7KWgBAIBltWWsay2jMHRFC8e6mV/zxA/fL6DezZ3UBYJsrq5ksvbqrmspZJltWUEAzrrF5mOwl4KVjwcZHVLFatboH94jF1d/Rw6MczG/cd5cnc3ANFQgHPry1jZWI5ZlOS8RUkuSkQ8rlyk8CjspSiURUNc0lQJTZDOZDjcO8yBniGOD47R0TPEzsN9jKVfm3GzrixCW02cpTUJmipjNFfFaaqM0VQV041f8SX91kvRCTgOiytiLM4+kJXJZBgcTdHZN0JX/yjDqQzHB0Z4uWuArR0nGEmdOu1yRSzEksoYrdVxmqviNGcPAs2VceqSEd0MlpKksJei5zgOiUiItpoQbTUQi4UZGholk8kwmsrQOzzGsYFRjg+NMTiSon80RVffCHu7BxgaTTPxUBAOOjSWR2mpitNSHaelKs7S2gRLaxIsSkb0DIAULYW9lCzHcYiEHGpDEWrLTr+On8lkGB5N0z04Ss/gqQeDbQd7eWZfzymXhmLhAG3VCZbVJjgnewBYWpOgpSqmEUJS8BT24luO4xCLBFkSCbKk8tQ5ejKZDCNjaXqGxujqG+HE0Bj9I2Mc7R9m37EBfvpi+mTboOPQVBlzDwC1Cc6pSbC0Jk5bTYJkVP+JSWHI6zfRGNMCfB24AhgEHgA+Za0dmaTt9cBNwHJgN/BZa+3a7D4HuBX4EFALbAI+bq3dftY9EZlDjuMQDQdpCAdPmZY5k8kwls5wYmiMrv4RTgyO0TeSom94jE0HjvPk7qNM+GOA2rIw59QkaKtJsLgiRkN59OS/RcmI/iKQBZPvacdaYBuwAqgE7gM+B/zdxEbGmIuBu4HfAx4B3gHcY4y53Fq7Dfhz4I+Bd+EeCP4OeMgYc761dujsuyMyvxzHIRx0qC07/dLQaCrNwGiKo/2jHB8YPXkQaO/qZ0vHCUZzbhQ7QFUiTFX8tX8VsRCVsTCVsRCJSJB4OEg8HCAWfu3z+MnP3a91wJB8TBv2xpjLgNXAf7HW9gA9xpgvAN8yxvy9tTY9ofmNwDpr7f3Zrx80xjwG3AB8Evgo8M/W2q3Z7/054C+A3wHuR6SIhYMBKoMBKmNh9+/WrPEbxX3DY/QMjdE3NMbQWJrB0RRDo2kGR1IcHxzl5XSG0VSa4bH0KX8dTCeYvTcRDgYIBx0iwQCxcIhQwF1MJhJ0iIQChIMBItk2oWCAcOC114QC7sdw0CEcCBAKZvdNbHPya3dbKOBuCzkOwaDjfgy4/0KBUz8PBRwCjkMg4BBw0IgnD+RzZn8psN9a2zVh2yagGvdSza6ctj/Lef0m4G3GmDhwYfZrAKy1o8aYrcDlKOylRI3fKK4JRaiZ5EYxuAeEVNq9RDSWSjOcSjMylmE4lWY0lWY0lWEslSGVvYyUTrufj78mnXGfP0hnMqTSMJJKMTCSJpV2t2dO7ocM2fY5r5vJAWYujIe+exBwD1qnbHPIHhwcgtnPg9l9wcBrrwlmt7vb3LaxSIhUKv3adschGOC1z7M/08Fh4nHHwf3/y/04Yftk27KvdU62yW7N2eZkPzm57eT21xpO/N7l0RDvvWgx0dDc/sWWT9jXAsdytnVnP9ZxathP1bYO9+DgnGH/KZLJKKFQMI/yThcMBjgxkmYgtcC/vQUiMJwinfFn36EU+u9AMEgkCLN9FjjgOKe8B+mMe0DJZCBD9nNwv85+Pn4ASWcglU6TTsNYOk0qe2BIpTMnDwyZDKTdSslksh+zPysz/r8ZTh5Axms52SYz/jFbR3ZjZsK+8XaZ7KvGD0wZMmTG3O823p9Tvlf2NW7fTv08nbN9YlETf2NOqeGUPbn7Tt1xyveY4ntPJxx0uLCliresqJ/Bq6aX7zX7mfzNNV3bvL5XX9/wDH7kqd73usUcONI769cXu2R5jL5e/94C8Xv/wZ/vwcmDQQYSySi9vUMn/6I57QAHE4I496Ax/h0zkwb7a7szp+0b3zxZuGcmts89MEz4IhR0aE5E6OkZyKPXp6uvL590ez5h38kpVyBhwtdH8mx7BPcMPj3F/q151JG3ttoyKoP+vSZYVZWY9S9KKfB7/0Hvgd/7P5l8Lgo9BzQZYxonbFuDG+C7J2l7Wc62NcD67GibbRP3G2OiwOuA9TOsW0REZmDaM3tr7WZjzHrgi8aYj+Oeid8EfNVamzHG7AQ+Yq19Argd2GSMuRZ4GLgGeCvwsey3+xpwizHmIeAV4LNAB7BubrslIiIT5Xu793rcG6wdwAbcIP9Cdp8BkgDW2h3AB7L7TgC3ANdZa9uz+78FfBP4OdAFXAK821o7OhedERGRyTkTbxoUks7O3lkX5vfrdeq/v/sPeg/83P/6+vJJb1jq0TsRER9Q2IuI+IDCXkTEBwr2mr2IiMwdndmLiPiAwl5ExAcU9iIiPqCwFxHxgZJaIHMmyyeWAmNMBhjFnWBu3HestR81xvwm8I+4awh04C4a800PypxTxpiLgB8ASWvt0gnbz9hfY8yfAx8HmoAdwKettU8uYOlzYrL+G2OuBB4HcqeK/WNr7Q+ybUql/23Al4HfyG56HPiktbYj+978H9zFlrqB7+Iui5rJvnbKJVP9oNTO7NfiTsOwAngL8Cbc5RNL2TustbEJ/z6anbTux8BdQAPwJ8A/GmN+x9NKz5Ix5r/iLne5K2f7GftrjHkXcBvuSmqLgO8APzHGNCxc9Wdvqv6Py/k9iE0I+pLof9aPcU/klgMrcefq+lZ2caSHgKeBZuA9uL8HH4ZTlky9FagHbga+Z4xZtcD1e6Zkwn7C8omfttb2WGv34s7Rc6MxpmT6macPAXustd+w1g5aa58C/h34iMd1na0k7l9tj+Vsn66/HwXustY+aa0dstbeDuwHPrhQhc+Rqfo/nZLovzGmCndm3b+x1p6w1h4B/hX3LP9dQBlwi7W2z1q7Hfi/vPY7cHLJ1Ox78CDu+3jDgnfEI6V0GWcmyyeWkk8aY+7EPcN5APgE7nuxKafdJuDaBa5tTllr7wQwxuTumq6/lwI/mmT/5XNc4rw6Q//Jbr8b+G3ctTP+Bbgtu0Z0qfS/B/dsfaIW4FXcPm611o5N2LcJ9y+8GGdYMnWeyi04pXTGO93yiaVoA/Ak7p+zlwIX404zfablIUvRdP0t9ffjBPAU7rXE+MHpAAACVklEQVT8Ztwz9k+TvYRBifbfuEe9m4D/ydR9DOCe8JXkezATpXRmDzNbPrHoWWvfOOHLdmPM/8C9bvkYPnsvmKPlMIuRtXYT8OYJmx43xtwO/AHwjey2kup/9rLtQ8CXrLXfz96k9u3vQD5K6cx+Jssnlqo9uL/QR5h6echSdKblMPPZX4r2AEuyn5dU/40xV+Oe0NxqrR0fgDFVH1O4Z/Al9R7MRimF/UyWTyx6xpjXG2O+lLP5AtyhmM8zxfKQC1GbB6ZcDjPP/UXNGPN+Y8xHczZfwGu/9yXTf2PMG4B7gD+w1n5jwq7ngIuNMZEJ29YAm621w5TQezBbJXMZZ7rlE72tbl4cwR1p1Al8BWjDvXb5LeDfgM8YYz4G3AG8Efh94J3elDrv7sZd7nKq/n4NuNcY8z3c/+g/AtQA3/eg1vkwAnzJGPMy7rjzK3FvZP5Rdn9J9N8YEwLuxB1x80DO7oeBo8BnjTGfxx1+/Qngb7L7p1syteSV1KyXxpgluP+n/hYwgBt6f2etTXlZ13wxxvwG8A/ARbgP1NwFfMZaO2SMeTPu0LOVuKMVbrXW/rtnxc4BY4zFPagFcU9Uxh8iMrg3JqfsrzHmz4DPAI3AFuAvrLXPLlz1Z2+a/l8N/BXQChwCPm+tvWPCa0uh/28FfsnpD4+B+x4kcJc9XYN76eafrbX/NOH178X972UZ7ui8v7bWPjLfdReKkgp7ERGZXCldsxcRkSko7EVEfEBhLyLiAwp7EREfUNiLiPiAwl5ExAcU9iIiPqCwFxHxAYW9iIgP/H9URy/BRB1WzwAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -186,7 +186,7 @@ "with model:\n", " ν = pm.Exponential('ν_minus_one', 1/29.) + 1\n", "\n", - "pm.kdeplot(np.random.exponential(30, size=10000), shade=0.5);" + "pm.kdeplot(np.random.exponential(30, size=10000), fill_kwargs={'alpha': 0.5});" ] }, { @@ -254,15 +254,16 @@ "text": [ "Auto-assigning NUTS sampler...\n", "Initializing NUTS using jitter+adapt_diag...\n", - "Multiprocess sampling (2 chains in 2 jobs)\n", - "NUTS: [ν_minus_one_log__, group2_std_interval__, group1_std_interval__, group2_mean, group1_mean]\n", - "100%|██████████| 2500/2500 [00:03<00:00, 727.76it/s]\n" + "Multiprocess sampling (4 chains in 4 jobs)\n", + "NUTS: [ν_minus_one, group2_std, group1_std, group2_mean, group1_mean]\n", + "Sampling 4 chains: 100%|██████████| 10000/10000 [00:04<00:00, 2137.47draws/s]\n", + "The acceptance probability does not match the target. It is 0.8794089803204976, but should be close to 0.8. Try to increase the number of tuning steps.\n" ] } ], "source": [ "with model:\n", - " trace = pm.sample(2000, cores=2)" + " trace = pm.sample(2000)" ] }, { @@ -279,9 +280,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAIUCAYAAAD2edaGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XlcVPX+x/H3LKACBgioua+5Zy65\nYJpLZtstLVMzKc2r5pJl9jNSc7muuVQaWVaaprfUTMvKNisrr+m1JE3LFc0tEJVVFhmY3x9eJwlU\nGM4AM/N6Ph4+HnA458znM8czn/mc853vmOx2u10AAAAAgCIxl3QAAAAAAOAJaK4AAAAAwAA0VwAA\nAABgAJorAAAAADAAzRUAAAAAGIDmCgAAAAAMQHMFFEFSUpIGDx6s0aNHl3QoAABc1caNG9W7d2/1\n6dNHL730UkmHA3gkmiugCCZPnqzWrVuXdBgAAFxVenq65s2bp2XLlmn16tXaunWrDh06VNJhAR7H\nWtIBAK6SkpKi0aNHKyMjQz169NA777wjq9WqTp06KSQkRL169dL48eOVlZUlk8mkGTNmyGQyafTo\n0Vq3bp0k6f7779fChQsVFRUlPz8/xcTEKCEhQbNmzVLjxo01ffp07d27V7///vs147ntttvUp08f\nff7556pZs6aaNGni+Hn+/PmKi4vTxIkTdeHCBVksFk2fPl1VqlTR0qVL9cUXXygnJ0e33nqrRo0a\npVdeeUUpKSk6cuSIjh07pvHjx+vWW2919VMKAHCR4qhZGzZsUEBAgCQpKChIiYmJV4yHmgU4hztX\n8Fgffvih6tatq/fee08+Pj6SJJvNpk6dOmn48OFasGCBevfurRUrVqh///6Kioq66v5sNpuWLVum\nJ598Uq+++qokOYpUQeTk5Khx48b64IMPtHPnTlWtWlVr167Vzz//rOTkZC1YsECDBg3S8uXL9eij\nj2rRokWObd99912tWbNG69atU2pqqiQpNjZWb775piZMmKDVq1cX9ukBAJQixVmzDhw4oJMnT6p5\n8+ZX3J6aBTiH5goe6/Dhw2rVqpUkqWvXro7lN954oyRpz549atOmjSSpdevW+u233666v/DwcEnS\nTTfdpCNHjjgV04033iiTyaSQkBA1btxYklShQgWlpKQoOjpar7zyiiIiIrR48WLHFcWyZctqwIAB\neuSRR5SQkOBY3rJlS0lS5cqVlZKS4lQ8AIDSobhq1tGjRzV27FjNnz/f0cRdCTULKDyGBcJj2e12\nmUwmSZLZ/Nd1hEvFxGQyyW63S7p4hc5sNjvWv8Rmszl+zsnJcfz89/UKymKx5Puz3W6Xj4+PFixY\noIoVKzqWnzx5UsuWLdP69evl7++ve+65x/E3q5XTFwA8RXHUrNjYWI0cOVJz5sxRo0aNrhkTNQso\nPO5cwWPVqFFDe/bskSR9//33ef7erFkzbd++XZK0Y8cONW3aVAEBATp79qzsdrvi4+N1/Phxx/o7\nd+6UJEVHR6tu3bqGx9u8eXNt2rRJkvTjjz/q448/VkJCgipUqCB/f3/t3btXJ0+eVFZWluGPDQAo\nWcVRsyZMmKApU6aoSZMmRY6XmgXkj8sI8Fi9evXSiBEjFBERofDwcFksFmVnZzv+Pnr0aE2YMEFr\n1qyRj4+PZs6cqcDAQIWHh+uBBx5Qw4YNc13Zy8jI0LBhwxQbG6s5c+YoOztbAwcOVHJysuLi4hQR\nEaERI0aoffv2TsU7atQojR8/Xp9++qlMJpNmzZqlKlWqyN/fX/369VOrVq3Ur18/TZ061TF0BADg\nGVxds44cOaKffvpJCxcudKwzcOBAdevWzal4qVlA/kz2S/eYAQ9z8uRJxcTEqGPHjoqOjlZUVJSW\nLFni1L4iIyPVo0cPdenSxeAoAQCgZgGegjtX8Fjly5fXsmXLHLMkTZgwweWPuXv3bs2dOzfP8jvv\nvFP9+/d3+eMDANwTNQvwDNy5AgAAAAADMKEFAAAAABiA5goAAAAADOD0Z67i4/P/AriAgDJKTc10\nOiB35q25e2veErmTu/cpSu5hYeUNjqbgrlSz/s5dj627xi25b+zuGrfkvrG7a9yS+8burnFLRY/d\n2Zpl+J0rq9Vy7ZU8lLfm7q15S+Turcjdc7lrfu4at+S+sbtr3JL7xu6ucUvuG7u7xi2VXOwMCwQA\nAAAAA9BcAQAAAIABaK4AAAAAwAA0VwAAAABgAJorAAAAADCA01OxA8hfYLC/fK0Fv25xwZajpITz\nLowIAFBaUCMAz0ZzBRjM12rW7OgzBV4/skWoC6MBAJQmrq4RBW3eLn2HT1aOXT5mU4H3T7MHXB3N\nFQAAgIdwpnnjgiBgHKebq4CAMvl+OZfFYlZQkF+RgnJX3pq7t+YtGZe7Oz5/HHdyB+B6thy74y4T\ngNLP6eYqNTUz3+VBQX5KTExzOiB35q25e2veUv65O1ME3fH547iTe2HxBhEoPKvZxJ0lwI0wWyAA\nAAAAGIDmCgAAAAAMQHMFAAAAAAaguQIAAAAAA9BcAQAAAIABaK4AAAAAwAB8iTBQwgr7HSZZOXb5\nmE0FXv+CLUdJCeedCQ0AcA2Bwf7ytXKtGsBFNFfANVyrcBb1u3uc+Q4TvvMEAEoHX6uZ12QADjRX\nwDUUpnAe2faN/vvGLN0+dbGCq9eRJJ36dYd+XrVYJrNZ1W5qr5seGCRJSjgeo6/nPqtqwwZLTe7I\ns6+PIgfKt1yA4/dOT0yWf4UwSZLtQqbWPzNAN90/UPU7361tb7+o0wf3yKeMnySp6T/6q3rL8CLl\nDQAonY5s+0ZbXpupe6a/kafWRJcvI1P91o5as335AsUf2ivJpLYDn1JY3Ua59tWzZ08lqKzj96vV\nmtQzcRo48Bmlp2fKYrFq0qR/KSSEZhG4HM0VYJDY36J18pdtatCgQa7l25a9rNufe1H+FcL06eTh\nqtW2s/xDK2vb2y/q+qatr7rPOydH5bt817plKhtwneP3rIx0dRgaqZBaNxQ9EQBAqXWp1gTXqJtr\n+aVa869ujdTp3gdVq21nZSQnKjn2hO6Z9oYSTxzRD6/N1D9mvJlnnwWtNTvXvKFRffro5ps76oMP\n1mj16n9rxIgnjU0QcHM0V/A4Gzd+rF9+2anExEQdORKjoUOHa9OmL3T06BFNmjRd+/f/rq+++kwm\nk1kdO3bWQw8N0OnTcZo2bZIkyWazaeLEqapatZr69u2pHj1u1yc/bJevX3l1f3audn+0Qqd278j1\nmO0Hj1VI7RtUuXEL7X1xjGN5StxJlQm4TgGhlSRJ1VuG69Sen9Swey91j5yvXz9aecU8stLT8l1+\n+PBhJZ48qmotwq+5LgDANT78cL22bt2m9PRU7di7X636DlXM1q+UeOKobh01WWeO7FfMli9lMplU\n4+ZOanrPQzp/9rQiIsboWGqWcrKz1XH4BF1XuZrWPtlHNVp30ukDu/PUmr3lfXQsJUtS7lrz2dRR\njlgurzVms9lRazKSE1Xz5o6SpKBqtXXhfIoupJ2Xr5+/Y9vz5/P/TG7iyT/y1Jr2jz2jHm2q6Ny5\nNAUFBevAgX2ueGoBt0ZzBY90/PgxLVr0lj7++EOtXLlMS5f+W5999rFWrFiq8+fPa9GiJZKk4cMH\nq0uX25SQcFaDBg1Ry5at9cknH2nduvf1xBNjdOrUSd13332y3z5Yn0wconPHDql5r0fVvNejBYoj\nLfGcyl4X5Pi9XGAFpcSdlNlildly9dMvMzVZ370yRanxsarcpKVa9hkik8mkF154QW0intCh7z5z\nrGvLTNcvH7ytC6kp8gsJU7uBY1TmsquNAADjHT9+TO+/v1qPzX9buz9aoXtnv61Dmzdq14fvKCv9\nvO6a+pok6dNJj6tWuy5KT0rQyJEjtblMPR349hPt+2q92kQ8oZTTp1Sv0x1qEzEqT60pyOdsr1Rr\nMlKSFFKn4WXLg5WeeDZXc5WYmJhvrdmx8hW1G/R0rlrjU7acLBaLsrOztX79+xo48J9GPZWAx6C5\ngkdq2LCxTCaTQkJCVbdufVksFgUHh+jw4UOy2Wx64olhkqS0tPOKjT2l66+vopdfnqclSxYrJSVZ\nDRpcHJPu7++vhg0bStFn5FehorLSCjvrnj3v76aCzfTXqu8w1bnldll9y2jTvGf1x383y5aZoZY3\n3aTkilVyrdug230KqlZbgVVqaNf65Yp+/y21G/R0IWMFABTGpVrjFxSi4Bp1ZTZbVC6wghKOHVZO\ntk2f/+sJSVJWRppS42MVEHa9VqxYpF9PxCvzfIpCa18cRu5bzl8VataTJINrjT3vWn+rQWPGjNGh\nmh3y1Jqw+k1V/m+1RpKys7M1bdoktWzZWq1btylknIDno7mCR7JYLPn+nJycpG7dbte4cRNyrT9z\n5lS1bdtOPXv21rffbtLWrVvybCtJdrtdu9Yvz3dYYFC12nni8AsOU3riWcfv58+dUbmgkALl0PD2\nXo6fq7fsoIRjh5V48g8lpJ5W3Kdf6fy5eFmsPvIPqaiabW51rFvz5k7aumRegR4DAOC8y2uE2fzX\nz5mpyaodfps6DBmXa/0fXpuhAV1uUfWG3XV027c6vvM/kiTTVWrN34cFFqbWmC3WXMvTEs7IL6hC\nrm379+/vuDN2ea1JPX1KJ3b+J1etqdLsZj333HOqXr2GHntsaKGeK8Bb0FzBqzRo0Eg7d/6sjIwM\nlSlTRgsWzNfw4aOUmJioqlWryW63a8uW75SdnXPFfRRmWGD5itcrK/28Uk7/Kf+QMJ3Y+R91GjX5\nmttlJCfq+0XTdNszL8hstSr2t2jVatdFLR78p2OISPT7SxQQVllVmt2sTXPHqd2gpxUQWll//hbt\nmD0KAFD8Quo0UOzenbJlZsjiW0bbly9Q6/7DlZmSpBo1auio3a5jP/0ge861a01BhgVeXmtstiBH\nrclISdIva99Sw9t66uyRA/ILDpVPub+GBGYkJ2rIkOdUe+i0PLXmkstrzeEtX6iij48GDx5W9CcJ\n8FA0V/AqlSpVVufO3TRy5BCZzWZ16tRZZcqU1X333a+XX56nSpWuV+/efTVnzgz997/bCrXvA998\nrMM/fKHzJw4p5rUZCqxaS51GPq/2g/9P371ysaGq1b6bAqvU0JmYfdqxIkqp8X/qnZ/KKNPvE3Ud\nO1PHfvpBvn4BqtnmVl3fpKU+mTRUFquvKtSqr1ptOl/xsRvd/oC+fXGCrGXKyVq2rG55fMIV1wUA\nuFZASCXVattFG6eOkMlkUc2bO8rqW0YNut2n6dOnK7N8mBr16K2tb76gk7u2F2rfl2rNuT8Oaks+\ntebhpT6OWhMoKaR2Q33y/DCZzGa1f+zicPGDmz911Jq2bdtqaQFrze9frNMZnxyNGnXxrlWtWnX0\nzDORzj5NgEcy2e32vw/ULZD4+JR8lwcF+Skx0TtnLvPW3D0977Cw8i7/kl9Xr3+l87UoPP24Xw25\nO5d7Ub9wuyjS0y/IarVccz2LxXzVO9ellbvGLblv7Jfi9vGxlLrXfFevn5WVXeD1jeSu/1ck943d\nXeOWih67j8+1a0Z+uHMFAPB4qamZBVrPXRtnd41bct/YL8VdkhcNSkpJHS93/b8iuW/s7hq3VPTY\nnT23aa7gdQKD/eVrNZd0GAAAAPAwNFfwOr5Wc6GHQAAAAADXwuV7AAAAADAAzRUAAAAAGIDmCgAA\nAAAMQHMFAAAAAAZgQgsAAID/KcyMst44DTuAq6O5AgAA+B9mlL06W469UE3lBVuOkhLOuzAioHSh\nuYLb43urAAAoHlazieYTuAqaK7g9rjJeHVcZAQAAigfNFeDhuMoIAABQPJxurgICyshqteRZbrGY\nFRTkV6Sg3JW35u6teXuyghxPbz7u5O6duQMAcC1ON1epqZn5Lg8K8lNiYprTAbkzb829pPNmtibj\nFeR4lvRxL0nk7lzunKuA92FoOrwNwwIBAADgEgxNh7dhijUAAAAAMADNFQAAAAAYgOYKAAAAAAxA\ncwUAAAAABqC5AgAAAAAD0FwBAAAAgAForgAAAADAADRXAAAAAGAAmisAAAAAMADNFQAAAAAYgOYK\nAAAAAAxgLekAAAAAXCUw2F++Vq4lAygeNFcAAMBj+VrNmh19psDrR7YIdWE0ADwdl3IAAAAAwAA0\nVwAAAABgAJorAAAAADAAzRUAAAAAGIDmCgAAAAAMQHMFAAAAAAZgKnYAudhy7AoLK1+gdcPCyuuC\nLUdJCeddHBUAAEDpR3MFIBer2cR3wsDjBASUkdVqueZ6FotZQUF+xRCRsdw1bsm9Y4drXOn/gzv/\nX3HX2N01bqnkYqe5AgB4vNTUzAKtFxTkp8TENBdHYzx3jVtyfewFvROP0sGWY5ePz5UvhJjNuf/m\nLqMn3PUcdde4paLH7uxrB80VAAAASgVGT8DdMaEFAAAAABiA5goAAAAADEBzBQAAAAAG4DNXKHUC\ng/3la6XvBwAAgHuhuUKp42s182FWAAAAuB1uDwAAAACAAZy+c3WlL2R05y8bKypvzd1b88ZfvO34\ne/P/eW/OHQCAa3G6ubrSFzK685eNFZW35m503nzho/vxtv/33nquS0XLnXMbAODp+MwVAABwG0x6\nBKA0o7kCAABug0mPAJRmXPoBAAAAAAPQXAEAAACAARgWCKBIbDn2Qk1UcMGWo6SE8y6MCADgLahB\nKG1orgAUidVs4vMPAIASQQ1CacOwQAAAAAAwAHeu4HJMmwsAAABvQHMFl2PaXAAAAHgDbicAAAAA\ngAForgAAAADAADRXAAAAAGAAmisAAAAAMADNFQAAAAAYgNkCAQBAyTGbFRZWvqSjAABD0FwBAIAS\n42Mx8XUdADwGwwIBAAAAwAA0VwAAAABgAIYFAihWthx7oT5fccGWo6SE8y6MCADgLQpbgyTqEAqH\n5gpAsbKa+XwFAKBkFLYGSdQhFA7DAgEAAADAANy5QqEEBvvL15q3J2caXQAAAHg7misUiq/VzO10\nAAAAIB8MCwQAAAAAA9BcAQAAAIABGBYIAPB4AQFlZLVarrmexWJWUJBfMURkLHeNG3AXRT2/3PUc\ndde4pZKLneYKXs+ek6Otb81VwvEYWaw+av/P/1NQ1Zra9vaLOn1wj/aGBupYSpaa/qO/qtx4s76e\nF6nMlGS1eWS0KjVoJknaNPdZtX9srPxDKubad8rpP/XtyxN078yljmXR7y9RmfKBanxHb70/6gHt\nrllVJ9NylG27oCrNblbLPkOUcvpPfTguQqG1G8ouuyxWH7Xo809VrN+0WJ8bwFOkpmYWaL2gID8l\nJqa5OBrjuWvckndMiHR5ndkb7KeqfZ/KVWd8ylx8A5hfnVGLLpKKVmf8QyrKZLbkW2f23thMf6Rc\noM5cQ1HPL3c9R901bqnosTv72kRzBa937KcfdCEtVfdMW6zk2BPavnyBuj87V1kZ6eowNFJze4U7\nJvE4uWu7KjW4UXU79tDOVW+oUoNmOh69VRVq1stT8ArqzTff1CsH0mXPydEXM55S3L5d8qtQUYFV\naujOyVGSpOTYE/p6XqRu+78XJDFBCAC4k8vrTP+QNA0aNzlXnQmpdYNj3b/XGfXrUuQ60/25+fIp\n65dvnVmxYoVmR5/JVWfKV6pqVOqA1+EzV/B6ybEnFFavsSTpusrVlHomVjk52cpKz3u1IyMlSeUC\nK8gvKFQZKYnKycnWbxvXqNm9A4och8lsVmjdRkqOPZHnb9dVrqam/+ivXz/+d5EfBwBQvC6vMzVq\n1ChUncnOps4A7sTpO1dXGr/uzmMzi8qbc3dnwdXraO/G1Wp8Vx+lxJ5Q6ulTykxOki0zXb988LYi\n1r2mM75BajdwjPxDKurkL9uU9Ocx+YdU0sFvPlGdDt21+6MVSk84o0Y9ekt/m3o+6dQxfTZ1lOP3\n1Pg/1eSeh/LEYbuQqT/37lTdjj3yjTOkVn0d/OZjY5N3E6XtvPLmc92bcwecdXmdiYmJyVNnLqSm\nyC8kLN86s3bt2jx1JqT2Dbn2f3md2VveR4dijlFngBLidHN1pfHr7jw2s6i8IXdPHBtfrUV7xR34\nVZ9NGangGnUVWLWm7LKrQbf7FFSttmbd3VIPTZqv6PffUttHn9LBbz/RtmUv6eb+I7Tz/bfUvOcj\nSjl9Su0GPa3NCyZJ94fn2v/lw/uki2PhLzdkyBCdTMuRJDXodq+Cq9dRyuk/88SZY7PJZL72B/I9\nUWk7r7zhXL+SouTuia8fQEFcXmcyWzbJU2cCq9TQrvXL860zm754R9d17Zerztw2bk6u/V9eZyJb\nhKrv+Bdy/f2rWWMd9YM6U3i2HHuhXr8u2HKUlHDehRGhNOMzV4CkVn2HOn5eO/pBlbsuWDXb3OpY\nVvPmTtq6ZJ5MZrM6jpgoSYp+/y01+0d/pZ6JVUBoZVnLlM13iMe1XPrM1bWcidmnCrXqF3r/AICS\nd6nORLYI1acduxS4zowZPFhLdhwuUp259Jmra6HO5M9qNjk+e10QkS34bLQ34zNX8Hrn/jioLa/P\nlCSd+GWbQmo3kMls1qa545R6JlaS9Odv0QquXsexTdq5eCXHntD1TVqpXGAFnT8bJ1tmhiy+vi6J\nMTn2hPZ+ulpN7u7rkv0DAFzn8jrz/fffF6rOtGvXjjoDuBHuXHm5wGB/+Vq9u8cOrl5X9pwcffL8\nUPn6lXdcMWx0+wP69sUJinjnOp3KsuiWxyc4tvll3du6qfdgSVLlxi20d+NqffavJ9T8/kcNi+vS\nGPqcnGyZzGbdMnyCAkIrG7Z/AEDxuLzOHKpcQe0ee1bSX3XGWqacrGXLlkidiYiI0NGkDOoMYBCa\nKy/nazV7/a3uy4dgXK5q87aq2rytIluE5nmOwv85zvGz2WJV92fn5bvv8hWvz/XdI5LU4sHBjp8f\njPpA/v7+ktLzbBexbFNhU/FIjHUH4O4urzOX15RLdSY/RtaZK20XsWxTvjUOgPNorgCUaox1BwAA\n7sK7x4MBAAAAgEForgAAAADAAAwLBAAAhmGiJADejOYKAAAYhomS4O2uNBHTlSZnYiImz0JzBcCj\nMLsgAKAkMRGTd6O5AuBRKGoAAKCkMCgaAAAAAAxAcwUAAAAABmBYYBHFxBxSZORY9e3bX4MHD1Jc\nXKymTZuknJwchYSE6vnn/yVfX199+eVnWrPmPZlMJt133/265577cu1n4sRnlZiYIElKSUlW48bN\n9PjjI9W//wOqXbuuJCkoKFjTp7+gs2fPaMaMqcrMzFBwcLDGj58iPz+/Ys8dcEcJx2P09dxn1fiu\nvmp8R2/9+eefeuqpp/Ocs19//aVWrVopk8msVq1u1rBhI3PtZ8+e3Xr11QWyWq3y8fHV88//S8HB\nwbrvvh6qXr2mY70FC16TxWJRdPTPev75SD333CR16NCxuNOGG7m8rjzwQN8C1ZWHHuqnrl3vzLWf\nK2334Ycf6JNPPpKPj1V9+z6szp27yWazafbsaTp16qRsNptGjnxKzZvfVELPAOB5/l57Us/E6YdX\np8mek60/a1fRuHGTCvR+8Y8/jmrOnBkymUyqXr2Gxo6NlNVqzfe83rz5a7322isKC6soSbr55rZ6\n9NHBJZG+V6G5KoL09HS99NJctWrVxrFsyZLFuv/+Pura9TYtWrRAn366QXfccbfefvtNvfnmO/Lx\nsWrQoIfVqVNnXXddoGO76dNfcPw8c+ZU/eMf9yk9PV033niTZs2an+txV6xYpo4db1WvXr31+eef\nau3aVXrkkcckMQUucDVZGena9vaLur5pa8eylxcs0MCBj+jOO+/UnDlz9N13X6hXr156441XtWHD\nBvn7+6tPnz5KSopTvXr1dMGWI9ntWrXq35o4caqqVq2mpUvf0Mcfr1dExCCFhIQpKuqNXI978uQJ\nrV79b914I29WcXXO1pV//jNCrVuH56or+W3XuXNXrVq1UsuXr5IkPfnkcLVv30GbNn2psmXLadGi\ntxQTc1izZk3Vm2++U+z5A54ov9oT/f5batjjftVu11X6cqm+++4L9ezZU++8s0Rr166Vj4+Pevbs\nqV697lFQUJBju0mTFmnY8Md1Y9NWWrbsLX3zzSbdfHObfM/r9PR0PfBAH/Xp07/Yc/ZmNFdF4OPj\no3nzFmjlyuWOZdHRP+uZZ56TJN1yy61avfrfqlGjpho1aqKAgABJUvPmLbR79y7dckunPPs8duyo\nUlNT1bhxU8XEHMr3cU+cOKY77rhbktS2bXs9/3yko7liClzgyiw+PuoeOV+/frTSsWzHf/+r6+4f\nrV3RZxRXo7U2fbpKxxrdri7T31bUwQxJGTpr9lPUf4+qckqQIluEKisr23FBxG63Kz4+Xjfe2Fzp\n6enKycnJ87ghIaGaMWOuZs+eVlypwk05W1datmyVp67kt12DBg1Vo0YtlSlTRpJUr94N2rt3j3r0\nuEu33dZDkhQcHKykpCTHfrhoBxRNfrUn9rdohf/z/yRJ3W/rpudeXqxt2SEyV7tBrx7KlJQpn9pN\nNX7tZtVodYtju5/3x2jmTc1ls0lt2rTT+vVrVa1atXzP67Q0ZsItCTRXRWC1WmW15n4K09PT5evr\nK+niG6qzZ8/q7Nmzua46VKgQorNn82+A1qxZpd69+0qS0tLS9ccfRxUZ+bSSkhLVu3c/det2u+rU\nqacff9yihg0badu2rY7hhACuzmyxymzJe85afC6es+UCKygt4awkyaecv6SLQzlS42NVsX7TPPvb\ntm2rXn55nmrVqqUePe5SQsI5JSSc08SJ43TmzBl163a7Hnywn8qWLevizOApnK0roaGheepKfttV\nq1ZdMTGHlJiYKF9fX+3Zs1stWrTM9bhr1ryn7t3vcOyHi3ZA0eRXe2yZf9WesLAwpSWcVXriWZUt\n/9d5XS6wgtL/V5MuCa5eR998u1kP3N9Le/bsVGpqkpo3b6Q//oiRxZKlMmXKaN++Pbr11g4ym3P0\nww/fa8dP25R14eJw3/r1b3B9wl6OS1EGM5lMjp/tdrsu/mrPtc7F5Sb9XVZWln799Re1bHnxtnGl\nSpU0cOAQzZw5TzNnztPrr7+qM2fOKCJikI4ePaJRo4bq3LmzstvtefYFoGD+fi5e/nvSn8e1eeFk\n3frEZJmtea9FtWsXrvfe+0BXDURHAAAgAElEQVQ1atTSypXLVLZsWQ0Z8rgmTZquF1+M0meffax9\n+353eQ7wbM7Wlfy2u+66QI0Y8aQiI5/WjBmTVbt2nVw15IMP1mj//n0aNGiIS3IB8D95zk+T8pzX\nf1tPkm4eMEpffvG5br3/IX1/6rxiki/o9SM21X/wcd37yBD1enyMLoRU14dHkrU/uKFC73xEy95+\nW4MGDdH06ZNcnxdoroxWtmw5ZWZmSJLi408rJCRUoaFhOnv2rysPZ87EKyQk75W9X375WY0aNXH8\nHhZWUQ/2fUCVKgXqhhtqqnnzZkpKilOdOlW0aNErWr36Pd17712qXr2awsLKF+qLUwFcVK5cOdku\nZEqS0s7Fq1xQiCTp/NnT+mZ+pDqOmKiQWnmv9H333beSLr6B7dy5q3bv/kX+/gG6556e8vX1lZ+f\nn1q3bqPDhw8WXzLwSAWpK6dPx+WpK/ltJ0m9HrhPH3zwvt5443X5+lrUqFE9hYWV1+bNn2vHjq16\n663Fuv76YOoK4ELWMn/Vnri4OJULCpFfcJjSk8451kk7Fy+//9WkSwJCK2nx4sW68/lXVLF+EwWE\nVZYk1W7XVfdMW6yuT8+U3W5XQFhlhdVrrOubtJJ08SMpCQkJys7OLqYMvRfNlcFat26jzZu/kSR9\n9903ats2XE2aNNW+fb8pJSVFaWlp2r17l5o3b5Fn299//0316tV3/L59+49a+PKLmh19RtN+PK6t\nv+zVp+cDNWjeUg2c86ZmR5/RuNf+LVv9NpodfaZQwzYAXBQeHq4/tm+WJB3972ZVu6mtJGnL4llq\nP/j/FFq7Qb7bLV36hg4e3C9J+u23PapRo6YOHz6k6dMny263y2azaffuXapdu06x5AHPVZC6Eh0d\nnaeu5LedzWbT4EGPavr2k5r07X5tid6jjbbKmvD5Lr28dKVqD5mql35LcdQU6grgGlWatnbUni+/\n/FLVbmqrsPpNdObw78o8n6KsjDSd3v+rKjVqnmu76Pff0ubNF7c7uPlTVW95i3Kybfps6ijZLmQq\nLfGszh09qNA6DfXLB2/r6PaLFwJjYg4pKChIFoulONP0Snzmqgj27ftdUVEvKTb2T1mtVv3ww2ZN\nmDBVM2ZM0UcfrVPlytfrzjvvkdVq1eOPj9LTT4+SyWTSY48NUUBAgA4e3K/vv9+swYOHSZLOnj2j\nqlX/mk2sZcvW+vbbL7T9+WGy52Trxp4R8q8QphqtO+rbF8crZsuXCqxWWy37DS2ppwBwK2di9mnH\niiilxv8pk9WqP7Zv1prFC9Rv5NPav+lD+YdVVr1Odynp1DHF7dul6DVvObZtcndf+YdW0sIf3tXw\n4SP13HPPa/78F2SxWFSmTJn/TcVeQYGBgRo69FGZTGZ16NBRjRs31datW/Tuu+/o2LE/tH//71q7\ndpVeeunVEnwmUFr9va58++3Xmjx5+jXryvDhI/LUlcGDh2n69El5trvjjjsUNWmYrL5ldcvj42W2\nWHXgm4+VkZqsr2Y/44jl9gkvyWL1KcFnA/AM+dWeTk9M1pbXpmv/pg/V5oaaqtfjnzJbrWr90HB9\nOfNpmUzSTb0HydcvQGePHtCxHd+rxYP/VJ0O3RUVNUtxF0y6vnELVW8ZLkmq1a6LPv3beV234x3a\n8toMDdjykTIyMhUZ+XwJPxPegeaqCBo2bJRryuWgID8lJqbp5ZcX5Vm3S5fb1KXLbbmW1a/fQPXr\n/3VVfMyYcbn+7uPjo/nz5+e5clguMFh3TX3NiBQArxJap6HunByVa1mlSqHqMWFBrmWBVWrokXe+\nyXcfo3uFKysrWw0bNtbrry/N8/cnnng6z7Lw8FsUHn5LnuXA3/29rlxyrbpyqf5cXldCQ0Pz3e7h\nhx/W8cY9ci1r9dDjavXQ40akAOBv8qs9khy1J7JFqOO9Xq12XVSrXZdc64XUusExPD2wSk2tXbs2\nz3vDRj0eUKMeD+RaVr7i9bpzcpQiW4QqPj7FsHxwdTRXxYwpbQEAAADPRHNVzJjSFgBglMsv2DH5\nBID82HLshXp9uGDLUVIC35HlLJorACgEW45dPj4WChVKhcJesJO4aAd4G6vZxIX9YmSyO/klSVca\nu3lp3Lc3KkjuYWHlC/0f/FrrH96xRR/NGqf4o0z5DFxJWK36uu+5Oap7c+7PPhXkHCvK+pe28ZTx\n7kV5jS/JOysFff7drYYVtqZI1BWgOF2p9lzO1XXImfUvvWa622vi5Yoau7M1iw//eID1M8ZSAIFr\niD96UOtnjC3pMAC3QF0BjOGOtefSMMKwsPKOkRpX+xcY7F/SIZcqHj8ssLATSDB8B4DRGO/uvahB\nANwNwwiLxu2aK2dm2yvMf5BnmocU6k1QVo5dPmaT4/eSGPbSa8J8bZj9rE4fOVDsjw24i4q1b9C9\nkS+UyGMXtlAV9nWosG/IecPvvNJWg1yFugIYoyRrT3Fx9QVEd6tZTn/m6ko2b96szp07G7lLt+Gt\nuXtr3hK5k7v38fTc3TU/d41bct/Y3TVuyX1jd9e4JfeN3V3jlkoudsM/c/Xdd98ZvUu34a25e2ve\nErl7K3L3XO6an7vGLblv7O4at+S+sbtr3JL7xu6ucUslFzsTWgAAAACAASxTpkyZYvROa9WqZfQu\n3Ya35u6teUvk7q3I3XO5a37uGrfkvrG7a9yS+8burnFL7hu7u8YtlUzshn/mCgAAAAC8EcMCAQAA\nAMAANFcAAAAAYACaKwAAAAAwQIGaqwMHDui2227TypUrJUl//vmnIiIi1L9/fz355JO6cOGCJGnD\nhg164IEH9OCDD2rt2rV59nOl7Uozo3KfNm2a7r//fkVERCgiIkKbN28uzjScUtDck5KSNHjwYI0e\nPTrf/bjbcTcqb08+5hs3blTv3r3Vp08fvfTSS3n2427HXDIud08+7q+++qr69u2rPn36aNGiRXn2\nU9qPe05Ojp5//nn169dPEREROnz4sA4fPqyHH35YAwYM0MSJE2Wz2XJtc/78eY0aNUoRERHq16+f\nfvjhh2KN2V3rr5FxDxw4UAMGDNDAgQMVHx/vFnFf8sMPP6hBgwYujdno2LOysjR27Fj17t1bjz76\nqJKSktwi7h07duihhx5SRESEhg0b5vK4CxN7aXufZGTcxXl+Ghn7Ja44R6/ZXKWlpWnatGlq3769\nY9nChQvVv39/vfvuu6patarWrl2rtLQ0vfrqq1q2bJlWrFiht956S4mJibn2ld92pZmRuaelpWnG\njBlasWKFVqxYUeq/kK2guUvS5MmT1bp16yvuy52Ou5F5e+oxT09P17x587Rs2TKtXr1aW7du1aFD\nh3Lty52OuWRs7p563E+cOKH9+/dr9erVeu+99/Thhx8qLi4u175K+3H/+uuvlZKSolWrVmnGjBma\nM2eO5s2bp6FDh2rlypW6/vrr9dlnn+XaZv369apdu7ZWrFihBQsWaMaMGcUWr7vWXyPjfvnll9Wn\nTx+tXLlS3bt319tvv+0WcUtSZmam3njjDYWFhbksZlfEvmbNGgUHB2vt2rW666679NNPP7lF3LNm\nzXK89rZo0UKrV692WdyFiV0qXe+TjIy7OM9Po2OXXHeOXrO58vX11ZtvvqmKFSs6lm3fvl3dunWT\nJHXr1k0//vijdu3apWbNmql8+fIqW7asWrdurZ07d+baV37blWZG5n7+/Plijb2oCpq7JE2fPl0t\nW7a84r7c6bgbmbenHvNy5cppw4YNCggIkMlkUlBQUJ4i507HXDI2d0897tWqVdPChQslXbwiaDKZ\nFBAQkGtfpf24Hz16VDfeeKMkqUaNGjp16lSuZR07dtR//vOfXNsEBwc7jnFycrKCg4OLLV53rb9G\nxj158mT16NFDUu5jUdrjlqTXX39d/fv3l6+vr8tidkXs3377re69915JUt++fR37KO1xX/7/Iykp\nyeXnqru+TzIy7uI8PyVjY5dcd45es7myWq0qW7ZsrmXp6emOQMLCwhQfH68zZ86oQoUKjnVCQ0Pz\n3B7Mb7vSzMjcz58/r6ioKEVEROiZZ55x+X/Aoipo7pLyvMH6O3c67kbm7Q3H/MCBAzp58qSaN29e\noO1KKyNz9+TjLl0sWPfcc49GjBghf3//Am9XGtxwww3asmWLsrOzFRMTo+PHjys0NFTfffedpIvD\nQ86cOZNrm7vvvlunTp1S9+7dNWDAAD377LPFFq+71l8j4/bz85PFYlF2drbeffdd/eMf/3CLuI8c\nOaJ9+/bpzjvvdFm8lzMy9pMnT2rHjh0aPHiwxowZ49LXMCPjfu655zRy5Ej16NFDP//8s3r16uWy\nuAsTu1S63icZGXdxnp+SsbG78hx1akILk8nk+PnS12T9/euy7HZ7rvWutJ27cTb3fv366ZlnntGK\nFStUt25dvfLKK64P1mDOHj93P+7Oxu/px/zo0aMaO3as5s+fLx8fnwJv5y6czd3Tj/vEiRP12Wef\nacmSJTp+/HiBtysNbr31VjVr1kwPP/ywli9frjp16mjOnDn67LPP9Mgjj8hut+eJ+6OPPlKVKlX0\n1Vdfafny5Zo2bVoJRX+Ru9ZfZ+OWpOzsbI0bN07t2rXLNRyoODgb96xZs/Tcc8+5PsCrcDZ2u92u\n66+/XkuWLFH9+vW1ePFi1wd7GWfjnj59uqKiovTFF1+oVatWevfdd10f7N+46/ukojx+SZ6fkvOx\nu/Icdaq5KleunDIyMiRJcXFxqlixoipVqpTrit/p06fzjGHMbzt342zu3bt3V+3atR0/79+/v/iC\nNoizx8/dj7uz8XvyMY+NjdXIkSM1e/ZsNWrUqMDbuRNnc/fU4/7nn3/q119/lSQFBgaqZcuWjt+v\ntl1pM2bMGK1atUpTp05VcnKyKlWqpMWLF+udd95R8+bNVbVq1Vzr79y5U7fccoskqWHDhoqLi8sz\n6UVxctf662zc0sU7EjVr1tSoUaOKLd5LnIk7Li5OMTExeuaZZ9SnTx+dPn1aAwYMcIvYpYt3hS59\nVuWWW27J87lSV3M27v3796tVq1aSpPDwcO3Zs6f4gv4fd32fVJTHL8nzU3Iudlefo041V+Hh4fri\niy8kSV9++aU6duyo5s2b69dff1VycrLOnz+vnTt35vkgWX7buRtnc3/88cd16tQpSRfHh9avX7/Y\nYy8qZ4+fux93Z+P35GM+YcIETZkyRU2aNCnUdu7E2dw99bifO3dOU6ZMkc1mU3Z2tvbu3etoIq+2\nXWmyb98+x5XK77//Xo0bN1ZUVJRjRsd169apa9euubapWbOmdu3aJenicCl/f39ZrdZijfty7lp/\nnY17w4YN8vHxueaMX67iTNyVKlXSpk2btGbNGq1Zs0YVK1Z0zGxW2mOXpE6dOjlmxczvPC+tcYeG\nhjoawV9//VU1a9Ys1rivFLsrtzOKs49f0uen5Fzsrj5HTfZr3EPbs2ePXnjhBZ08eVJWq1WVKlXS\nvHnzFBkZqczMTFWpUkWzZs2Sj4+PPv/8cy1ZskQmk0kDBgzQvffeq99//11fffWVRo8erdOnT+vZ\nZ5/Ns11pZWTuW7Zs0UsvvSQ/Pz+VK1dOs2bNUkhISEmneEUFzd1sNmvgwIFKTk5WXFyc6tevrxEj\nRigoKMgtj7uReXvqMT9x4oR69uzpmARAkgYOHOgYOuVux1wyNndPPe4+Pj5avHixNm3aJLvdrs6d\nO2vUqFFu9Rqfk5Oj8ePH68iRIypfvrxeeOEFJSUlady4cfLx8VHbtm311FNPSbp4h2vWrFnKzs7W\n+PHjdfbsWdlsNj355JPFNvTFXeuvkXH369dPmZmZjs9P1K1bV1OmTCn1cV+ua9eu+uabb1wSsyti\nT09P14QJExQfHy9fX1+98MILCg0NLfVx79y5U3PmzJGPj48CAwM1c+ZMXXfddS6JuzCxl7b3SUbG\nXZznp9GxX87oc/SazRUAAAAA4NqcGhYIAAAAAMiN5goAAAAADEBzBQAAAAAGoLkCAAAAAAPQXAEA\nAACAAWiuAAAAAMAANFcAAAAAYACaKwAAAAAwAM0VAAAAABiA5goAAAAADEBzBQAAAAAGoLkCAAAA\nAAPQXAEGS0pK0uDBgzV69Gintt+xY4fOnj2bZ/no0aO1ffv2ooYHAEAuGzduVO/evdWnTx+99NJL\nhd6eugX8heYKMNjkyZPVunVrp7f/4IMP8i1SAAAYLT09XfPmzdOyZcu0evVqbd26VYcOHSrUPqhb\nwF+sJR0AUJxSUlI0evRoZWRkqEePHnrnnXdktVrVqVMnhYSEqFevXho/fryysrJkMpk0Y8YMmUwm\njR49WuvWrZMk3X///Vq4cKGioqLk5+enmJgYJSQkaNasWWrcuLGmT5+uvXv36vfff79mPG+88Ya+\n+uormc1mdenSRc2aNdOmTZt08OBBvfLKK/r000+1ceNG1apVS4mJia5+egAApUxx1K0NGzYoICBA\nkhQUFHTVekPdAq6OO1fwKh9++KHq1q2r9957Tz4+PpIkm82mTp06afjw4VqwYIF69+6tFStWqH//\n/oqKirrq/mw2m5YtW6Ynn3xSr776qiQ5ClRBLF26VO+9955WrVql6667Th06dFCjRo00a9YsBQQE\nOP42bdo0HTx40PnEAQBuqTjr1oEDB3Ty5Ek1b978ittTt4Cro7mCVzl8+LBatWolSeratatj+Y03\n3ihJ2rNnj9q0aSNJat26tX777ber7i88PFySdNNNN+nIkSOFjqdHjx4aNGiQ1qxZo3vvvTfX3/74\n4w/Vq1dPZcqUUUBAgJo0aVLo/QMA3Ftx1a2jR49q7Nixmj9/vqOJyw91C7g6mit4FbvdLpPJJEky\nm//673+pkJhMJtntdklSTk6OzGazY/1LbDab4+ecnBzHz39fryCmTp2qKVOmKD4+XgMGDMi1b7vd\nnivGS3EBALxHcdSt2NhYjRw5UrNnz1ajRo2uGg91C7g6mit4lRo1amjPnj2SpO+//z7P35s1a+aY\n2WjHjh1q2rSpAgICdPbsWdntdsXHx+v48eOO9Xfu3ClJio6OVt26dQsVS2pqqqKiolS3bl2NGjVK\nQUFBSk1Nlclk0oULF1SjRg0dPnxYWVlZSk1NdcQNAPAexVG3JkyYoClTplzzThN1C7g2JrSAV+nV\nq5dGjBihiIgIhYeHy2KxKDs72/H30aNHa8KECVqzZo18fHw0c+ZMBQYGKjw8XA888IAaNmyY66pe\nRkaGhg0bptjYWM2ZM0fZ2dkaOHCgkpOTFRcXp4iICI0YMULt27fPE0tAQIASEhLUu3dv+fn5qUWL\nFgoKClKbNm00ZswYLVq0SD179lTfvn1VrVo1NWvWrFieIwBA6eHqunXkyBH99NNPWrhwoWOdgQMH\nqlu3bnlioW4B12ayc88WXuTkyZOKiYlRx44dFR0draioKC1ZssSpfUVGRqpHjx7q0qWLwVECAHAR\ndQtwL9y5glcpX768li1b5pghacKECS5/zN27d2vu3Ll5lt95553q37+/yx8fAOC+qFuAe+HOFQAA\nAAAYgAktAAAAAMAANFcAAAAAYACnP3MVH59iZBwlJiCgjFJTM0s6DEOQS+njKXlI5FJauVMuYWHl\nS+yxjapZ7vR8FwZ5uRfyci+empfkubkFBJRRuXK+Tm3r9XeurFZLSYdgGHIpfTwlD4lcSitPysUd\neOrzTV7uhbzci6fmJXlubkXJy+ubKwAAAAAwgtPDAgMCynhEt2qxmBUU5FfSYRiCXEofT8lDIpfS\nypNyAQDA3TndXHnK+MqgID8lJqaVdBiGIJfSx1PykMiltHKnXEryM1cAABQHhgUCAAAAgAGcvnOF\n0ikw2F++1oL3zBdsOUpKOO/CiADA8/HaCwCQaK48jq/VrNnRZwq8fmSLUBdGAwDeobCvvc80DynU\nMEmaMQBwDzRXAACPZ9QkTEZNIGI1mwp9IcyVE5d46sQo5OVeyMv9eGpuFovzn5yiuQIAeDyjJmG6\n0gQixTFZhysnLnGniVEKg7zcC3m5H0/NLSjIT2azcxfkmNACAAAAAAxAcwUAAAAABqC5AgAAAAAD\n0FwBAAAAgAForgAAAADAADRXAAAAAGAAmisAAAAAMADNFQAAAAAYgOYKAAAAAAxAcwUAAAAABrCW\ndAAoPc6fT9W0aZOUmpqqnJwcjRs3QbVq1c61TlxcrMaP/z+1aNFKo0Y9JUk6duwPzZ07U5Jkt9v1\n7LMTVb16DcXFxWrKlAmy2bJ0ww0N9X//N77YcwIAFNw332zSrFlTtXjx26pTp16ev+dXA86ePaMZ\nM6YqMzNDwcHBGj9+ivz8/LRz5096/fUoWSxmVa9eU5GRz8ts5pouAM/GqxwcVq36t5o1a66oqDc0\nYMBALVmyOM86s2b9S61a3Zxr2YcfrtXgwcP0yiuLdffd9+rdd1dIkqKiXla/fgP05pvvyGy2KDY2\ntljyAAAUXnT0z9q27T+qW7f+FdfJrwasWLFMHTveqldffVO33HKr1q5dJUmaM2eGpk9/Qa+9tlRp\naWnavn2rS+MHgNKAO1el0MaNH+uXX3YqMTFRR47EaOjQ4dq06QsdPXpEkyZN1/79v+urrz6TyWRW\nx46d9dBDA3T6dJzGjJkqk0k6mpShjsMn6LrK1bT2yT6q0bqTTh/YLV+/8ur+7Fzt/miFTu3eIUna\nW95HFy7YNHZspAYMGOi4qhgUFKTk5KQ8sc2cOVebN3+jmJjDjmWjR491/BwXF6uKFSsqJydHu3dH\na8qUGZKksWOfdeVTBgAe4+DmTxX7+y/KTElSwokjatV3qB5f/J0OHDh41RowbdokSZLNZtPEiVNV\ntWo19e3bUx07dtavv+5SQEB5zZ37slaseFs7dmzP9ZhTp05RgwYN/3dHaugVY8uvBpw4cUx33HG3\nJKlt2/Z6/vlIPfLIY1qyZIX8/QMkSUFBwUpKyltTAMDT0FyVUsePH9OiRW/p448/1MqVy7R06b/1\n2Wcfa8WKpTp//rwWLVoiSRo+fLC6dLlNCQlnNXz4cHXoEK7HXlymfV+tV5uIJ5Ry+pTqdbpDbSJG\n6ZOJQ3Tu2CE17/Womvd6VJIU2SJU8fEpeR7//fdXqXv3HnmW+/n55xvvwYP7NX36ZJUpU1YLFrym\nxMQE+fsH6K23Xtevv+5S06Y3atiwkTKZTAY+SwDgmZJjT+iuKYt04JuPtfujFfrP5x/rnXfevWoN\nGDRoiFq2bK1PPvlI69a9ryeeGKNTp07qjjvu1qhRT2no0IE6fPigHn10sB59dHCuxwsK8lNiYto1\n48qvBtSpU08//rhFDRs20rZtW5WYmCBJjsbqzJkz+umn7Roy5PGiPi0AUOoxLLCUatiwsUwmk0JC\nQlW3bn1ZLBYFB4fo8OFDOnHiuJ54YpieeGKY0tLOKzb2lCpUCNHKlSv18MMPa+/G1cpMuXiF0Lec\nvyrUvDhu3q9CRWWlnb/mYy9atFA+Pj66556eBY63fv0GWr58le64424tXPii7Ha74uNP65577tOC\nBa/pwIH9+vHH/zj3ZACAlwmt00Amk0l+QSEKrlFXdpNZtWpV05Ejh3Xq1AmNHTtSY8eO1IULGcrI\nSFT9+jW1YcNaPfXU41q3brXSMy6+1vv7+6tevYvD/CpWrKjU1FTDY42IGKSjR49o1KihOnfurOx2\nu+NvCQnn9OyzY/T0088qMDDI8McGgNKGO1ellMViyffn5OQkdet2u8aNm5Br/Zkzp6pDhw4aMOBh\nPf7a+zq+82IjY7psW+nihBO71i/Pd1hg7dp19NZbrysxMUGRkc8XONatW7eoTZt2slqt6tKlm9at\nW6PAwCBVqlRZVatWkyS1bn2zjhw5rPDwWwr3RACAFzKZ/yrPZrNFVrNJaw8n6/S5RNUOv01Nhoxz\n/P1rST9MnqGwejep2T976ei2b2X542dJueuHdLEGLF++JN9hgSEhVZyKtXz58po69eKkRseOHdXP\nP/8k6eIkSWPHjtaQIcPVpk07p/YNAO6G5qqU8w8oo7JlfRQWVl6BgeXUtGlT7d4drYAAq8qWLasZ\nM2bomWeeUXp6qmrXriW73a5jP/0ge07OFfd5pWGBu3b9ot9+26t58xYUakanDRvWyWazqVOnztq7\nd4+qV68pq9WqKlWq6vjxY6pevYb27/9dt92Wd5ghAKDgQuo0UOzenbJlZsjiW0bbly9Q6/7DlZmS\npPKVqjpqgH+QzxX3UZRhgfnZsGG9cnKy1bNnb3366cfq0KGjpIuTGvXt21/t23dwar8A4I5orko5\nq8WsX89maHb0GR0/nKyzZSqoctdb1O3+vjKZLKp5c0e9/HuqLK3v1JiJU9WsTnXVDr9PW998QSd3\nbb/2A1xm/fr3dfp0rEaPvjgu/rrrAjVz5lwtWDBfDz7YTz4+Ppo6daLOnTurjIwM7dv3m8aOjdQT\nTzyt2bOnac2adx1TsUsXJ7qYO3eWLlzIVO3addShQyfDnx8A8CYBIZVUq20XbZw6wlEDrL5l1KDb\nfdq+7GUFhFVWox699d9lc/Xf/24r1L4/+eRDff75Rh06dEAzZ/5LNWvW0vPP/+uaNaBjx1s1YcI4\nffnl56pVq7aGDh2hjIwMff75pzp+/Jg+/vhDSVL37nfovvvud8XTAgClhsl++eDoQshvEgR3VJSr\ndc4IDPaXr7VwH3WbHX2mwOtGtggt9Pql8VgW93FxFU/JQyKX0sqdcgkLK19ij23U69yVnu+wsPIu\nf6125Wu7O/0/Kgzyci/k5X48NbegID/5+FiuvWI+nL5zFRBQRlarcw9amlgsZgUF+RXb4/lYzYUu\nkK5ky7EX6g1PVrZdusqQQ6MU93FxFU/JQyKX0sqTcgEAwN053VylpmYaGUeJKe6OuySv3ObHajYV\n/mroOdc/X55yJcRT8pDIpbRyp1xK2+sfAABG4zNXKJTC3umSpAu2HCUlXHsKeAAAAMCd0VyhUAp7\np0ty/dBGAAAAoDTgSzLk2k0AACAASURBVIQBAAAAwAA0VwAAAABgAJorAAAAADAAzRUAAAAAGIDm\nCgAAAAAMQHMFAAAAAAZgKnYAADxMYb+TMCvb7sJoAMB70FwBAOBhCvudhHwfIQAYg2GBAAAAAGAA\nmisAAAAAMADNFQAAAAAYgOYKAAAAAAxAcwUAAAAABqC5AgAAAAAD0FwBAAAAgAForgAAAADAADRX\nAAAAAGAAmisAAAAAMIC1pAMAAMDVAgLKyGq1FHk/FotZQUF+BkRUuthy7AoLK1/g9bOy7VJOjgsj\nMoanHi/yci+empfkublZLM7ff6K5AgB4vNTUTEP2ExTkp8TEtDzLC9OYlEZWs0mzo88UeP3IFqGK\nP5f3eShtrnS83B15uRdPzUvy3NyCgvxkNjt3QY7mCi5X2CuiF2w5kt3uwogAAAAA49FcweWcuSKa\nlZXtwogAAAAA4zndXBk1fr2keepYUXfnKcfFU/KQyKW08qRcAABwd043V0aNXy9pxT1W1N3H5ReX\n7OwcjxjD60ljkcmldHKnXHj9AwB4OqZiBwAAAAAD0FwBAAAAgAForgAAAADAADRXAAAAAGAAmisA\nAAAAMADNFQAAAAAYgC8RLqLAYH/5WulRAQDew5ZjL/DU+hdsOUpKOO/iiACgdKC5KiJfq1mzo88U\neP3IFqEujAYAANezmk0Frn3UPQDehFsuAAAAAGAA7lyh1LHl2OXjY2HICQAAANwKzRVKncIMN5EY\ncgIAAIDSgWGBAAAAAGAAmisAAAAAMADNFQAAAAAYgOYKAAAAAAxAcwUAAAAABqC5AgAAAAAD0FwB\nAADg/9u77/go6vyP4+8tSTCFJKTRe5EOKgiKFCWiHpY7ShDBclg4RCyABFBAPRAQRIQDKSoceoog\nYoNTUbAcgiBNQAFBSuhpJIGQkOz8/uDHSkhPZrPZzev5ePB4ZHe+u/P5fGd3vvthvjMDwAQUVwAA\nAABgAm4iDAAAXCbLYSgiIqjI7TOzHDqTdNaFEQGA61BcweMxcANA+WW3WjR5a3yR28e2DXdhNADg\nWhRX8HgM3AAAACgPOOcKAAAAAExAcQUAAAAAJqC4AgAAAAATlPicq8BAP9ntNjNjcQubzaqQEH93\nh4EyVlbb3Js+X+RSPnlTLgAAeLoSF1dpaRlmxuE2ISH+Sk4+V+LXF+cqdSg/SrPNi6O0n6/yhFzK\nJ0/Khf0lAMDbMS0QAAAAAEzApdivEBwaIF87NScAAACA4qG4uoKv3co9kwAAAAAUG4doAAAAAMAE\nFFcAAAAAYAKKKwAAAAAwAedcAQCAciPLYRTrsv2ZWQ6dSTrrwogAoOgorgAAQLlht1q4sBQAj8W0\nQAAAAAAwAUeuAABeLzDQT3a7rdTvY7NZFRLib0JEMFN+28Rbtxd5eRZvzUvy3txstpIff6K4AgB4\nvbS0DFPeJyTEX8nJ53I9X5xzhGC+vLaJlP/28nTk5Vm8NS/Je3MLCfGX1Vqy/5BjWiAAAAAAmIAj\nV6hwuBIVAAAAXIHiChUOV6ICAACAKzAtEAAAAABMQHEFAAAAACaguAIAAAAAE3DOlYczHA6tX/iK\nko4ckM3uoz7TJ0oK1oa3X9WpfTvl43fx3gMt7uyv6q3a6etpscpITVH7+4cpqklLSdKaV0ap49+H\nKyAsMsd7p546rrWvjdVdk95yPjdr1iztTvNRs9t6a9nQXgoIi5TFalN2Vqaqt2yna/o+otRTx7Xy\n2YEKr3e1DBnaWyVAIbfdr8hGLcqsXwAAuceIjg+PVEiNOrnGiA5PDVZ2QJNSjxFbl70pv6DgHGPE\nruBK+iPpbL5jhM3uo7Z9Hy7xGFHYRYquXMZFigC4ktcXV8GhAfK1F3yAzpPvT3J48/fKPJemni/N\nU8qJOE2dOlX1Bk/UhfPpuvHRWIXVbexse3T7RkU1aaUGN/XQlvfnK6pJS3377beqUqdhrkGzqKJH\nT5dPJX8ZDoe+mPiUTv62Xf5VIhVcvbZuHz9bktQ/7Jz6PPSouo+coqCoGqbkDQAo3JVjxMbFMxU9\n6pVcY0TXtuH6cNHnucaII1vXl3qMeL5jbb3886l8x4iUE3H6elpsiccILlIEoDzx+uLK12716p1u\nyok4RTRsJkmqXLWmfjl2THUc2bqQnvuGbudTz+iq4CryDwnX+dRkORzZWrx4sVo+8kKp47BYrQpv\n0FQpJ+LkXyXnIFy7dm21uLO/fvn0Xd3w8LOlXhcAoGiuHCPS4k/IUYwxYveqD3Tz8JdLHUdBY0Tl\nqjUZIwB4Da8vrrxdaK362rVqqZrd0VepJ+J05MgRXZNyRlkZ6dr24dvKTEuVf1iEOjz4tALCInV0\n2wadOX5YAWFR2vfNZ+r5l7/o/Y+XKD0pXk179FZYvcY53v/MscNa/cJQ52NbyinVjO6bK46szAwd\n37VFDW7qkWecYXUbad83n5qbfBnhvlgAPNWVY0TaqWPKyGOMGDz9pTzHiPo3RmtHMcaItNPH1bzn\nvbni8OYxAgAuR3Hl4Wq27aiTe3/R6gmPK7R2A9WvX1+GDDW55W6F1Kyn4Oq1tf2jxdq6bKGuf+Ap\n7Vv7mTYsmqF2/Ydoy7KFqtPtCVk271WHh57Rupnj1P3ZqTne//KpG5IU8MN72pT25/KvXh4ui9Um\nSWpyy10KrVVfqaeO54rTkZXlbOdpmHICwFNdOUYE16iT5xgxa9YsRd3xWK4xovU99yv11LEijxFb\nl72ZY/lXLw/X3uBKOpx6wWvHCAC4HMWVF7g25lHn32tG9tNVlUNVp30X53N12nXW+jenyWK16qYh\nz0mSti5bqJZ39texY8cUGF5Vdr9KeU4TKcylc64KE3/gN1Wp26jY7w8AKJ3Lx4jlw/rkOUbsWTpT\nLXrmHiPS4k+Ueox4vmPtQv+DijECgLfgUuweLvHQPv3wxiRJUty2DWrWrJksVqvWvPKs0uJPSJKO\n796q0Fr1na85l3haKSfiVK35tQoPD9fZhJPKyjgvm6+vS2I8fPiwdn2+VM3/EuOS9wcA5O3KMSKs\nXpM8x4hGjf4sbC4fI64KruLyMSLlRBxjBACvUeIjV4GBfrLbOYTvbqG1GshwOPTZ84/K1z9Iy+a+\nqgWHDTW9tZfWvjpWdr+rZK9USZ0Gj3W+ZtuKt9Wm9yBJUvv27RX/+nytfvEJtf7bA6bFdWkevsOR\nrZ2V/dTpH2MVGF7VtPcv70JCLh7Ns9mszr89HbmUT96UC8x35Rhx6cjUlWPEq/+argWHDUk5x4iq\nzdpq16qlLh0jLFZrhRsjAHivEhdXaWkZZsbhMp58mfWiuHyqnySFhYVJh+NVo/X1qtH6+jxfc/nV\nmOx2u6JHTcuzXVBktRz3L5GkJ554wjm9o8/sD/N93cBFa5yPY9uGF+ucJW+QnHxx+kxIiL/zb09H\nLuWTJ+Xi7fvj8ujKMeKSK8eIS2OHlHOMsNqKN0a07TPI+XdRxwgA8CZMCwQAAAAAE3BBCwAAUGFw\new0ArkRxBQAAKgxurwHAlZgWCAAAAAAmoLgCAAAAABNQXAEAAACACSiuAAAAAMAEXNACAAAgH1xd\nEEBxlFlxdeDA74qNHa6YmP7q1Ssmx7JPPvlIn332sWw2qxo0aKzhw0dpz57fNHr0cNWoUVOS1KBB\nQz399LM6dOigpk6dKIvFolq1amv48FjZ7dSIKD+uHIgv/Z2enq7Y2FglJCQoIyNDQ4YMUbdu3ZwD\n8aZNGzV//r9ktdrUseONevDBhyXl/d3hewCYo6CxKb/vJCqWol5dMOnIAX39yig99dgg9ehxd55t\n3nhjtnbu3KHZs+fL4XDolVde1h9/7JfdbtfIkWNUp05dSdLy5e9r1qwZWr16rfz9/c1MB4CLlcmv\nsfT0dM2Y8YquvbZ9rmXnz5/X119/qTlzFsput2vYsMHauXOHsrKy1LXrLXryyeE52s+d+7oGDHhQ\nHTveqEWLFuqbb9bo1ltvK4s0gCLJbyA+sH6Nzlapr5YPPq+00yf07ISn1CukpfMyvzNnTtP06bMU\nERGpIUMeVpcuN6tq1Wp5fnf4HgClV9DYJOX9nWzbtkUZRwlPcOF8uja8/aqqtbgu3zZ//HFA27dv\nkc128afX999/q7Nn0/TGG2/p6NE4zZw5TVOnvqbVqz9TQkKCwsMjyip8ACYqk3OufHx8NG3aTIWH\n575XRKVKlTRz5lzZ7XadP39eaWlpqlIlTOfOncvzveLijqhZs+aSpPbtO2jTpg0ujR0wS/0buqvl\nXfdJks4mnJR/2J8D59GjcQoKqqyoqKqyWq3q2PFG/fzzT/l+d/geAKVX0NiU33cSyIvNx0fRsdPl\nH5r/PbFmz35NjzwyxPk4Lu6wmja9uB+vUaOmTpw4ruzsbHXp0k2PPfa4LBaLy+MGYL4yKa7sdrv8\n/CoV2GbJkkWKiblbN9/cXTVq1FR6+jnt2LFNw4cP0+OPP6ItWzZLkurXb6j163+QJP300wYlJia6\nPH7ATJ89/5i+nfWCrr//SedziYkJCgkJdT4OCwtTQkJCvt8dvgdA6RU0NuX3nQTyYrXZZff1y3f5\nqlWfqk2ba1StWnXnc/XrN9RPP/2o7OxsHT58UMeOHdWZM8ny9w8oi5ABuEi5OUlj4MAH1bdvP40Y\n8aRatWqjhg0b66GHHlanTl10+PAhPfXUEC1dulKjx4zWxH++qDVrVqt9+/by8bEW60RTwN16vjRP\nCQf36rt/vai7pyxWlsNQcPBV8vOzOz/LgYGVFBDg53wcEOCnwMBKiogIUmaWQ48//qSmT5+s1as/\nU5s218gwDHemBHidK79TfMVQUikpZ7Rq1ad67bU5On36lPP5jh1v1C+/bNfQoY+oQYNGqlOnHvty\nwAu4vbhKSTmjAwf2q02ba+TnV0kdOtygX37Zrvvue0B169aTJNWuXUdhYWE6ffqUWre+WvUGT5Qk\n7dm+UacrHS7wRNNL57MA7hZ/4DdVqhyqwPAohdVtLEd2ts6nJMtujdCKeF9tP3Tc+Vneuu0P+QVW\n/vPx8XPyS/NR3NZ4xbYNV1RUVU2d+pokaePGH5WQUPjJ1gCKLiIiUomJfx6pOn36VJ7TB4HC/Pzz\nJiUnJ2nIkId14UKmjh49qtdfn65hw4br0Uf/nCbYt+/dCg2t4sZIAZjB7fe5ysrK0sSJLzjPsfr1\n112qXbuOPvvsYy1b9r4kKSEhXomJiYqIiNTrr7+uI1vWS5L2rftcta7p5LbYgeI4+es27fr8PUlS\nenKiss6nq1JQsCQpKLKaLqSfVeqp43JkZyluy/9Uo1XeJ9lL0ptvznNOC1y16hPdeGNn1ycAVCDV\nqlXX2bNndfz4MWVlZWn9+h/Url0Hd4cFD9StW3e9884yzZ+/SJMmTVPjxk00bNhw7du3V5MmvSBJ\n2rBhvRo3vlpWq9t/lgEopTI5cvXbb79q9uwZOnHiuOx2u9au/VqdOnVWtWo11KVLNz300MMaNmyw\nbDabGjZspE6duig1NVUvvvic1q37WpmZmRoxIlY+Pj7q2bOnlg59Rjs+XqJqzdqq1jU3lEUKQKk1\nif6r/vfGy1o1/h/KupChDn9/Rr9/t1pfJVaXwtuq46CR+nbWeElS3Y63KLh6bcUf+E2blsxW2unj\nstjtOrRxnQYvekPR0T300kvjtGTJ27rmmut0ww38JwNQXIWNTSNGxGrChLGSpJtvjlbt2nXcHDHK\nq8v31Ys3+emLL77QzTffrJo1ayo6OtrZLiMjQL6+F6eAh4W11SefLNPjjw9S5cqVNWXKFIWFBWnu\n3Llav369EhMTNHr002rTpo2effZZSdxDC/AEZVJcXX11U82ePT/f5XfccafuuOPOHM9VrlxZ06a9\nnqtt/fr1defEhabHCLia3ddPXYZNyPV8dNtw/bw1XlWbtlHPl3J+T8LrX63bx8/O8Vxg5WBde22I\nVq78qEjrZTAG8lbY2NSmzTWaN+/tMowInuryfXVs23BN3hqvk5JOSvo5x6kLldT8mRnOKd8hMSP0\nwf+3X3DYkA7HSx36qHmHPmr+/69wSM72nOoAlH9uP+cKQPEU9YaWlzAYAwAAlA23F1fBoQHytTPH\nGAAAoCBZDsN5FdmiXCmZmQtA2XN7ceVrt/K/8AAAAIUo7syFEa3DinW7GooxoPTcXlyVxv5NP+jj\nl5/V6YP78m0zupjvSXtz25fFOjyhfUTdRrp79FQ1aFf2F564/H86i4LBFcjthx++06hRz2jfvr2m\nvJ8n7LfMal+eYnFFe3fu3wvDNHKg7Hl0cfXRxOFKOHzA3WEAhTp9cJ8+mjhcI1ZuLPN1M7gCpTdi\nxJM6cGC/u8NAOeTO/TuA8sejiysA5ivoSFdez3OkCwAqpuKeN894gYrAo4urv46drk8mj9KpP8yZ\npgG4SmS9xrordoq7wygS5vQDuU2bNlOxscO1d+8ed4eCcsaT9u+FKe40ckmmjxeXL7/gMORjtRT5\n/RlfUB54dHHVoF0nPf3h/wpsc+l+E0VFe3Pbl8eYylt7T+fqYqy4g2tR21+KgcEYRdGpU2f98MMm\nhYT4Kzn5XK7lERFB5Wq/Up7al6dYyqK9J3P1NPKSvL+rxpeKVrhxlLHsWAzDMNwdhDutW7dOXbt2\ndXcYpiCX8sdb8pDIpbzyplw8gbf2N3l5FvLyLN6al+S9uZUmrwp/g6lvv/3W3SGYhlzKH2/JQyKX\n8sqbcvEE3trf5OVZyMuzeGtekvfmVpq8KnxxBQAAAABmsE2YMGGCu4Nwt7p167o7BNOQS/njLXlI\n5FJeeVMunsBb+5u8PAt5eRZvzUvy3txKmleFP+cKAAAAAMzAtEAAAAAAMAHFFQAAAACYoEIVV3v3\n7lX37t31zjvv5Fp2zz33aODAgc5/J0+edEOERTN16lTFxMSoV69e+vLLL3MsW79+vXr37q2YmBj9\n61//clOERVdQLp60TdLT0/Xkk09qwIAB6tOnj9auXZtjuSdtl8Jy8aTtIknnz5/XLbfcohUrVuR4\n3pO2ySX55eJp28RTFDRmeOLn55KC8tqwYYP69u2rfv36afTo0XI4HG6IsGQKyuuS6dOna+DAgWUY\nVekVlNfx48d17733qnfv3ho3bpwboiu5gvJ69913FRMTo3vvvVcTJ050Q3Ql502/0S5XUF6evN8o\nKK9Lir3fMCqIs2fPGgMGDDCee+45Y8mSJbmW33333W6Iqvh+/PFH4+GHHzYMwzASExONLl265Fh+\n++23G8eOHTOys7ONmJgYY9++fW6IsmgKy8VTtolhGMbnn39uzJ8/3zAMw4iLizNuvfXWHMs9absU\nlosnbRfDMIxXX33V+Nvf/mZ8+OGHOZ73pG1ySX65eNo28QSFjRme+PkxjMLzio6ONo4fP24YhmE8\n8cQTxrp168o6xBIpLC/DMIx9+/YZMTExxoABA8o4upIrLK9hw4YZX375pWEYhjFhwgTj6NGjZR1i\niRSUV2pqqtGtWzfjwoULhmEYxkMPPWRs3brVHWEWmzf9RrtcYXl56n6jsLwMo2T7jQpz5MrX11cL\nFixQZGRknsvPnvWMu1C3a9dOM2fOlCQFBwcrPT1d2dnZkqQjR44oODhY1apVk9VqVZcuXfTjjz+6\nM9wCFZSL5DnbRJLuuOMOPfLII5Iu/k9iVFSUc5mnbZeCcpE8a7vs379fv//+e64bAXraNpHyz0Xy\nrG3iKQoaMzzx83NJYWPhihUrVLVqVUlSlSpVlJSUVJbhlVhheUnS5MmT9fTTT5dhVKVXUF4Oh0M/\n//yzbr75ZknS+PHjVb169bIOsUQKysvHx0c+Pj46d+6csrKylJ6eruDgYDdEWXze9BvtcoX9XvPU\n/UZheUkl229UmOLKbrerUqVK+S5PTk7W8OHD1a9fP82YMUNGOb2Ios1mk7+/vyRp2bJl6ty5s2w2\nmyTp9OnTqlKlirNteHi4Tp8+7ZY4i6KgXCTP2SaX69evn0aMGKExY8Y4n/O07XJJXrlInrVdpkyZ\notjY2FzPe+I2yS8XybO2iacoaMzwxM/PJYWNhYGBgZKkU6dOaf369erSpUtZhVYqheW1YsUKtW/f\nXjVq1CjDqEqvoLwSExMVGBio119/XQMGDND06dM95rtfUF5+fn56/PHH1b17d918881q06aN6tWr\nV8YRlow3/Ua7XGG/1zx1v1FYXiXdb1SY4qowTz/9tF544QUtWbJEu3fvznfeZXmxZs0aLV++PMcc\n67x2qhaLpSzDKpG8cpE8b5tI0vvvv6+5c+dq5MiRzu3hqdslr1wkz9kuK1euVJs2bVSrVq1cyzxt\nmxSUi+Q528RbeNrnp7gSEhI0ePBgjRs3TqGhoe4Op9SSk5O1YsUKPfTQQ+4OxVSGYejkyZPq1auX\nFi9erN27d+vbb791d1illpaWpnnz5um///2v1qxZo23btum3335zd1jF4k2/0S6X3+81ybP3G3nl\nVZr9BsXV/+vfv78CAwPl4+Ojrl27as+ePe4OKV/ff/+93njjDS1YsEBBQUHO56OiohQfH+98fPLk\nSUVERLgjxCLLLxfJs7bJzp07dfz4cUlS06ZNlZ2drcTEREmet10KykXynO2ybt06ff311+rbt6+W\nLVumOXPmaP369ZI8b5sUlIvkOdvEW3ja56c40tLS9Mgjj+jJJ59Up06d3B2OKTZs2KDExETdd999\nGjp0qHbt2qVJkya5O6xSCw0NVbVq1VS7dm3ZbDZ17NhR+/btc3dYpbZ//37VqlVLVapUka+vr667\n7jrt3LnT3WEVmTf9RrtcQb/XPHm/kV9epdlvUFzp4qH1Rx55RBcuXJAkbdq0SY0aNXJzVHlLTU3V\n1KlTNW/ePIWEhORYVrNmTaWlpSkuLk5ZWVlau3atbrzxRjdFWriCcvGkbSJJmzdv1ltvvSVJio+P\n17lz55z/c+Np26WgXDxpu7z22mv68MMP9cEHH6hPnz4aMmSIbrjhBkmet00KysWTtom38LTPT3FM\nnjxZDzzwgMdM6ymK2267TatWrdIHH3yg2bNnq3nz5rmmO3siu92uWrVq6eDBg5KkXbt2ecz0uYLU\nqFFD+/fv1/nz52UYhnbu3Km6deu6O6wi8abfaJcrKC/Jc/cbBeVVmv2G3RXBlkc7d+7UlClTdPTo\nUdntdn3xxRe6+eabVbNmTUVHR+v6669XTEyMfH191axZM/Xo0cPdIedp1apVSkpK0lNPPeV87vrr\nr1eTJk0UHR2tCRMmaPjw4ZIuXpigPO9oC8vFU7aJdPH8pLFjx6p///46f/68xo0bp5UrVyooKMjj\ntkthuXjSdrnSihUrPHKb5OXyXDx5m5RXhY0Znvr5KSivTp06aeXKlTp06JCWL18uSerZs6diYmLc\nHHXhCttenqqwvMaMGaPx48crIyNDjRo1cl7corwrLK9Bgwbp/vvvl81mU9u2bXXddde5O+Qi8abf\naJcrKC9P3m8Utr1KymJ4ytmPAAAAAFCOMS0QAAAAAExAcQUAAAAAJqC4AgAAAAATUFwBAAAAgAko\nrgAAAADABBRXAAAAAGACiisAAAAAMAHFFQAAAACYgOIKAAAAAExAcQUAAAAAJqC4AgAAAAATUFwB\nAAAAgAkorgAAAADABBRXQCFWrFihr776yt1hAAAAoJyzGIZhuDsIAAAAAPB0dncHALjKnXfeqbff\nflvh4eFauXKl9uzZo1GjRuVqN3DgQF1//fX63//+J6vVqnvuuUcfffSRbDabFi1apDlz5ig0NFSN\nGjXSu+++K4vFogMHDqhHjx4aOnSoBg4cqOeff16NGzfWO++8o6SkJD344IN66qmnlJmZqczMTI0b\nN07NmzfPM84TJ05ozJgxunDhgiwWiyZOnCiLxaLY2FjVqlVLe/bsUdOmTTVx4kSdPHlSzz33nDIz\nM2Wz2fTPf/5T1atXd3VXAgAAoAiYFgiv1b17d3333XeSpPDwcCUkJOTbNiIiQu+9956ys7N15swZ\n/ec//1F2drb27t2bo92OHTs0efJkvf/++1qyZEm+7/fjjz8qKipKS5Ys0bRp0xQfH59v25kzZ6p3\n795asmSJ+vfvr9mzZ0uSdu3apWeeeUbLly/Xt99+q5SUFM2cOVMPPfSQFi9erAceeEBz5swpTpcA\nAADAhSiu4LWio6O1bt06SdKxY8dUv379fNu2atVKkhQZGalmzZpJuliQpaam5mjXrFkzXXXVVQoI\nCChw3W3atNG2bds0btw4HTp0SF26dMm37c6dO9W+fXtJ0nXXXafdu3dLkmrXrq2IiAhZrVZFRkYq\nNTVVW7du1axZszRw4EDNmzdPycnJBXcCAAAAygzTAuG1mjVrpoMHD+rChQtau3atRo4cmW9bm82W\n599XnpJotxf8lcnKypJ0sUj7+OOPtXHjRr333nvatm2bhg4dmudrLBaLcz0Oh0NWqzVXHJdi8fHx\n0cyZMxUZGVlgHAAAACh7HLmCV+vYsaPeffddVapUqcAjV6URGBio06dPS5K2bNkiSVq/fr3Wr1+v\nTp066fnnn9fOnTvzfX3Lli21ceNGSdKmTZvUokWLfNu2bt1aa9askXRx6uGnn35qVhoAAAAoJY5c\nwatFR0frscce0yeffOKydcTExOjFF19UnTp1VLt2bUkXp/SNHDlSCxculMVi0bBhw/J9/bBhwzR2\n7Fh98MEH8vHx0aRJk3ThwoU82w4dOlRjxozR559/LovFopdfftklOQEAAKD4uBQ7AAAAAJiAI1eo\nEI4dO5bnZdjbtWtX4FEls2RmZmrQoEG5nq9Xr55efPFFl68fAAAArseRKwAAAAAwARe0AAAAAAAT\nlHha4OnTqYU3khQY6Ke0tIySrgYFoG9di/51LfrXdcpr30ZEBLk7BAAAXMrlR67sdlvhjVAi9K1r\n0b+uRf+6Dn0LAIB7MC0QAAAAAExAcQUAAAAAJqC4AgAAAAATUFwBAAAAgAlKfJ+r9PTMIp00bbNZ\nlZ3tKMkqUAj6M0DhMwAAFrBJREFU1rXoX9eif12nvPatjw8X2gAAeLcSX4q9qJf5DQnxV3LyuZKu\nxusEhwbI1170A4aZWQ6dSTqb5zL61rXoX9eif12nvPYtl2IHAHi7EhdXKBlfu1WTt8YXuX1s23AX\nRgMAAADALJxzBQAAAAAmoLgCAAAAABNQXAEAAACACSiuAAAAAMAEFFcAAAAAYAKKKwAAAAAwAcUV\nAAAAAJiA4goAAAAATEBxBQAAAAAmsLs7AE8XHBogXzs1KgAAAFDRUVyVkq/dqslb44vcPrZtuAuj\nAQAAAOAuFFdeIC0tTS+8MFZpaWm66ip/TZjwT1WuHJyjzZtvztOGDetlt9s0ePAwtW7dRgcO7NeM\nGVMlSVarTaNGjVX16jU0f/4cbd26WQ6Hoc6du+q++x5wR1oAAACAR2E+mxf44IP/qG3bazV37pvq\n1Kmz3nlncY7le/f+pk2bNuqNN97SlCmv6Y03XpckvfXWPA0Y8KBmzZqnv/zlLr377mIdOPC7tmzZ\nrLlz39LcuW9q1apPlZBQ9CNzAAAAQEXFkSsT7Vv3uU78uk0ZqWeUFPeHro15VAfWf6XkuIPqMnS8\n4v/Yo35TvtGxc9mq3a6zWvS8V2cTTum7f70oSXJkZ+umf4xV5ao1tfzJvqp9XWf1fXm3KleurPnz\n52vevHlav359jnWOHz9eO3Zs0aRJkxQREaQ7et6uIYMH52hz5MgRNWlytWw2mypXrqyAgEAdP35M\nwcEhOnPmjCQpNTVFwcEhCggIVGZmhjIzM+VwOGSxWFWpUqWy6UAAAADAg1FcmSzlRJzumDBHe7/5\nVDs+XqK7Jr+t39et0vaV/9aF9LNat+I9Td4ar8/HDVbdDt2UfiZJbXo9pGrNr9XetZ/pt68+UvuB\nTyj11DE17Hybpt4zQZ3+8leN+niDwjr0UfMOfXKsb3mqtDfupBbHGfJNjNfTLSKUlJSgiIggZ5vr\nrmuld999W4GBdp09e1b79++TYZzXqFEj1KtXLy1evFDZ2dlasODfCgoKUrdu3dW7951yOLL14IMP\nKyAgsKy7EQAAAPA4FFcmC6/fRBaLRf4hYQqt3UBWq01XBVdR0uH9cmRn6f7779fh1Au6cP6c0k6f\nUGBENW1c+W9tXfamMs6mKrxeE0mS71UBqlKnoSTJv0qkLpw7m+86DRnOv20W6WyWccVFNkIUesNf\nFN1ngIKiqsu3egMt3pOkvXP/rWeeeUYdO3bThx8u1aJFC/S3v/XVd9+t1QcffKysrCwNHvx33XLL\nrQoNreKS/gIAAAC8BcWVySzWP7vUarU5/85IS1G9G7pryZypOQqf7+dOVI1W7XV19F91cMNaHdny\nv4vvY/vztZJkGIa2f7RYx3ZsyvF8x0HDFRAaofTkBPn6B+rkyZO6KjQsV1zNbuutZrf1liR99vyj\nCoyoplN7ftFNLz+nrCypXbvrNWXKRP322241a9bCORWwQYOGOnBgv669luIKAAAAKAjFVRkJq99E\nJ3ZtUXp6ugzD0MbFM3Vd/38oI/WMgqJqyDAMHd78vQyHI9/3aP3XB9T6r7mv3Fe9VTv9sWGt2vzt\nQX355Zeq0bpDjuXnU5L03Zx/KnrUNCXH/SHDYcg/JEyVq9bUjh071KzZNfr1192qWbOWatSopQ8+\neE8Oh0MOh0MHDvyu6tVrmN4fAAAAgLehuCojgWFRqnt9N9133306ed5QnXY3ye7rpya33K2Ni15T\nYERVNe3RW+sXTNHR7RuL9d7Nbu+j72a/qFXj/6Fm1cPUcmCsJGnj4tfU7Pa+CoqsrrA6jfTp2EHy\n8fNX58eflyRdd9/jWrjwNWVmZsnX11fPPvucqlatqvbtO2jIkIdlGIbuvPMeVatW3fT+AAAAALyN\nxTAMo/BmuZ0+nVqkdiEh/kpOPleSVXiEiIigYt9EuLy1L+q2rGi8/bPrbvSv65TXvr38QjsAAHgj\n7nMFAAAAACaguAIAAAAAE1BcAQAAAIAJSnxBi8BAP9nttkLb2WxWhYT4l3Q1KANsn7zx2XUt+td1\n6FsAANyjxMVVWlpGkdqV1xOrzeINJ2h78/YpDW//7Lob/es65bVvvWF/CQBAQbgU+xWCQwPka2e2\nJAAAAIDiobi6gq/dWuxLmQMAAAAAh2gAAAAAwAQUVwAAAABgAoorAAAAADABxRUAAAAAmIDiCgAA\nAABMQHEFAAAAACaguAIAAAAAE1BcAQAAAIAJKK4AAAAAwAQUVwAAAABgAoorAAAAADABxRUAAAAA\nmIDiCgAAAABMQHEFAAAAACawuzsAuFeWw1BERFCR22dmOXQm6awLIwIAAAA8E8VVBWe3WjR5a3yR\n28e2DXdhNAAAAIDnYlogAAAAAJiA4goAAAAATEBxBQAAAAAmoLgCAAAAABNQXAEAAACACSiuAAAA\nAMAEJb4Ue2Cgn+x2W6HtbDarQkL8S7oalEMVZXvy2XUt+td16FsAANyjxMVVWlpGkdqFhPgrOflc\nSVdT5opzQ92KypO2Z2l42mfX09C/rlNe+5b9KwDA23n9TYSDQwPka2f2IwAAAADX8vriytdu1eSt\n8UVuH9s23IXRAAAAAPBWHNIBAAAAABNQXAEAAACACSiuAAAAAMAEFFcAAAAAYAKKKwAAAAAwAcUV\nAAAAAJiA4goAAAAATEBxBQAAAAAmoLgCAAAAABNQXAEAAACACSiuAAAAAMAEFFcAAAAAYAK7uwOA\nZ8lyGIqICCrWazKzHDqTdNZFEQEAAADlA8UVisVutWjy1vhivWZE67BiFWQUYwAAAPBEFFdwueIW\nZLFtw10YDQAAAOAanHMFAAAAACaguAIAAAAAE1BcAQAAAIAJKK4AAAAAwAQUVwAAAABgAoorAAAA\nADABxRUAAAAAmKDE97kKDPST3W4rtJ3NZlVIiH9JV4MKqjx8Zvjsuhb96zr0LQAA7lHi4iotLaNI\n7UJC/JWcfK6kqym1iIggt60bJefOz8wl7v7sejv613XKa9+yPwYAeDumBQIAAACACSiuAAAAAMAE\nFFcAAAAAYAKKKwAAAAAwAcUVAAAAAJiA4goAAAAATEBxBQAAAAAmoLgCAAAAABNQXAEAAACACSiu\nAAAAAMAEFFcAAAAAYAKKKwAAAAAwgd3dAQBXynIYiogIKnL7zCyHziSddWFEAAAAQOEorlDu2K0W\nTd4aX+T2sW3DXRgNAAAAUDRMCwQAAAAAE3jckavg0AD52j27JjQcDq1f+IqSjhyQze6jjg+PVEiN\nOtrw9qs6tW+nfPz8JUkt7uyvzOa36cvJw5WRmqL29w9TVJOWkqQ1r4xSx78PV0BYZI73jouL0ydj\nhuiuSW85n9u67E35BQWr2W29tWxoLwWERcpitSk7K1NXRXeROt+n1FPHtfLZgQqvd7UMGbLZfdS2\n78OKbNSi7DoGAAAA8GAeV1z52q0eP2Xs8ObvlXkuTT1fmqeUE3HauHimoke9ogvn03Xjo7EKq9vY\n2Xbjxo2KatJKDW7qoS3vz1dUk5Y6snW9qtRpmKuwKqro0dPlU8lfhsOhLa+PVJXIFvKvEqng6rV1\n+/jZkqSUE3H6elqsuo+coqCoGqbkDQAAAHgzzz4E5KFSTsQpomEzSVLlqjWVFn9CDke2LqSfy9U2\nOTlZVwVXkX9IuM6nJsvhyNbuVR+o5V0DSh2HxWpVy5YtlXIiLteyylVrqsWd/fXLp++Wej0AAABA\nReBxR668QWit+tq1aqma3dFXqSfilHbqmDJSzigrI13bPnxbmWmp8g+LUIcHn1bVqlWV+v12nTl+\nWAFhUdr3zWeqf2O0dny8ROlJ8Wrao7fC6jXO8f5njh3W6heGOh+nnT6u5j3vzRVHVmaGft64UfUH\njswzzrC6jbTvm0/NTR4AAADwUhRXblCzbUed3PuLVk94XKG1Gyi4Rh0ZMtTklrsVUrOegqvX1vaP\nFmvrsoV6/rV/6tz8d7Vh0Qy16z9EW5YtVOt77lfqqWPq8NAzWjdznLo/OzXH+18+vU+6eM7V5b56\nebgsVpskaeh9fbW/Vn2lnjqeK05HVpazHQAAAICCUVy5ybUxjzr/Xj6sj66qHKo67bs4n6vTrrPW\nvzlNVqtVNw15TpK0ddlCtbyzv9LiTygwvKrsfpXynEpYmEvnXElSn7bh+Z7DFn/gN1Wp26jY71/W\nuC8WAAAAygOKKzdIPLRPu1cvU6fBYxS3bYPC6jWRxWrVmleeVYeHnlFgeFUd371VobXqO19zLvG0\nUk7EqW2fh3Xsl006+dt2ZWWcl83X1yUxppyI067Pl6rHc6+55P3NxH2xAAAAUB5QXLlBaK0GMhwO\nffb8o/L1D3IemWp6ay+tfXWs7H5XyV6pkjoNHut8zbYVb6tN70GSpKrN2mrXqqVa/eITav23B0yL\n69K5Wg5HtixWqzr9Y6wCw6ua9v4AAACANytxcRUY6Ce7vfDzcWw2q0JC/Eu6Gq9kuWyq3+VqtL5e\nNVpfn+drbnj4WeffVptd0aOm5dmuZs2aOe5xJUlt+wxy/t1n9od5vi4ospoGLlpTaOzeoiifST67\nrkX/ug59CwCAe5S4uEpLyyhSu5AQfyUnF/+8oPwU59waID9F+Uya/dlFTvSv65TXvmX/DQDwdtzn\nCgAAAABMQHEFAAAAACaguAIAAAAAE1BcAQAAAIAJKK4AAAAAwAQUVwAAAABgAoorAAAAADBBie9z\nBXiqLIdR5PvtREQEKTPLoTNJZ10cFQAAADxdkYurSZMmafv27bJYLBozZoyqVavnXJaRkaGpUyfq\n4ME/9OabS5zPHzjwu8aMGak+ffqpV68Y5/PLl7+vWbNmaPXqtfL39zcpFaBo7FaLJm+NL7Rd0pED\n+vqVUXrqsUHq0ePuHMu+/36dFi9+Sz4+Pure/Vb16hWjzz5bqf/+d5WzzZ49v+qrr77XL79s16xZ\nM+Tj46NWrdroscceNz0nAAAAuF+RiquffvpJhw4d0tKlS/X7779r9OjRmjPnLefyOXNmqnHjJjp4\n8A/nc+np6Zox4xV16NAhx3utXv2ZEhISFB4eYVIKgPkunE/XhrdfVbUW1+Va5nA4NGPGK3rzzXcU\nHBysESOG6aabuqpnz3vUs+c9kqStW3/WN9+skSRNmzZZEyZMVL169fXyyy/ql1+2q2XL1mWaDwAA\nAFyvSOdc/fjjj+revbskqWHDhkpJSdHZs2nO5Y899rg6d+6W4zU+Pj6aNm2mIiJyFlFdunTTY489\nLovFUtrYAZex+fgoOna6/EPDcy07cyZZgYGBCg0NldVq1bXXttPmzT/laLNo0UI9+OAgSVJCQrzq\n1asvSWrfvqN++mmD6xMAAABAmStScRUfH6/Q0FDn47CwMCUkJDgf+/sH5HqN3W6Xn1+lXM/n1RYo\nb6w2u+y+fpKkbOPiOVqX/jVqVFsZGed19myCQkIqaefObcrISHMuPxJ3QJGRUQoLu1iYVatWXdu2\nbZFhGNq8eaOSkhLdmRoAAABcpEjTAg3DyPWYI0+oKGyW3OdotRo0WvcPGykf/0AFhkdp3bGzSvz/\nNuc++lC3397T2Xb06Oc1c+Z0Wa1WNWrUWGfPcnEMAAAAb1Sk4ioqKkrx8X/+uDx16pTCwsJcFhRQ\n3lVt1lZ3vDBXkrT5vbkKjKjmXLZx40Y999xz8vX1lSRFRLTVf/7zjiTp/fffV0pKSo6rFXI1QgAA\nAO9QpOLqxhtv1KxZs9SvXz/t3r1bkZGRpk3vCw4NkK+d223Bs3z58nB1fvw52Xwr6cjP/1OLv9wr\nSTqXeFoBAQF6dVeKs+0Pb0xSs9v7KqRWPa3+z4e64eGROY6EjWgdVuRLw0sUYwAAAOVVkYqra665\nRs2bN1e/fv1ksVg0fvx4rVr1qQICAtWlSzc999wonTp1UocPH9LQoY/qrrv+ptq162j27Bk6deqE\nrFab1q79WpMmvaKPPlquTZs2KjExQSNGDFO7dtfKEf33Igcc2zb3BQYAs8Uf+E2blsxW2unj+vdm\nP2X4f6Za13VSUEQ11WnfRY1vuVNfTHxKdr+rdE3Mo6pUOUSSdC45QVWqVMnxXo269dT3cyfK7uun\nBp16KLRW/RzLi3pp+Ev4DgAAAJRPRb7P1YgRI3I8Dgur4fz7n/+ckudrZs+er5AQfyUnn3M+98AD\ng/TAA4OcjyMigor1wxIoC+H1r9bt42dLuljMXPkZrdu+q+q275rn66YtXJijfVSTVrp78tsujRcA\nAADux3w8AAAAADABxRUAAAAAmKDI0wIBlA9ZDoMLYAAAAJRDbi+u1q5dq1f//phOH9xXpPaji/n+\ntHdv+7JYh9ntI+o20t2jp6pBu07FfOeywQUwAAAAyie3F1ePPVb0wgooC6cP7tNHE4drxMqN7g7F\nFBzpAgAAKBtuL64AuFZxj3S5+r5bl9/brijrodgDAACewu3F1bx589Rv0GCd+mOvu0MBJEmR9Rrr\nrti8by9QEbi6GJNU4aY1Fvdm6RSUAAB4JothGIYrV7Bu3Tp17drVlauosOhb16J/XYv+dR36FgAA\n93D5pdi//fZbV6+iwqJvXYv+dS3613XoWwAA3IP7XAEAAACACVxeXHXp0sXVq6iw6FvXon9di/51\nHfoWAAD3cPk5VwAAAABQETAtEAAAAABMQHEFAAAAACaguAIAAAAAE7isuJo0aZJiYmLUr18/7dix\nw1WrqbD27t2r7t2765133nF3KF5p6tSpiomJUa9evfTll1+6OxyvkZ6erieffFIDBgxQnz59tHbt\nWneH5JXOnz+vW265RStWrHB3KAAAVCh2V7zpTz/9pEOHDmnp0qX6/fffNXr0aC1btswVq6qQzp07\np5deekkdO3Z0dyheacOGDdq3b5+WLl2qpKQk/fWvf9Wtt97q7rC8wtq1a9WiRQs98sgjOnr0qP7+\n97+rW7du7g7L68ydO1chISHuDgMAgArHJcXVjz/+qO7du0uSGjZsqJSUFKWlpSkwMNAVq6twfH19\ntWDBAi1YsMDdoXildu3aqVWrVpKk4OBgpaenKzs7Wzabzc2Reb477rjD+ffx48cVFRXlxmi80/79\n+/X777+ra9eu7g4FAIAKxyXTAuPj4xUaGup8HBYWptOnT7tiVRWS3W5XpUqV3B2G17LZbPL395ck\nLVu2TJ07d6awMlm/fv00YsQIjRkzxt2heJ0pU6YoNjbW3WEAAFAhueTI1ZW3zjIMQxaLxRWrAlxm\nzZo1Wr58ud566y13h+J13n//ff36668aOXKkPvnkE/YPJlm5cqXatGmjWrVquTsUAAAqJJcUV1FR\nUYqPj3c+PnXqlMLDw12xKsAlvv/+e73xxhtauHChgoKC3B2O19i5c6fCwsJUrVo1NW3aVNnZ2UpM\nTFRYWJi7Q/MK69at05EjR7Ru3TqdOHFCvr6+qlq1qm644QZ3hwYAQIXgkuLqxhtv1KxZs9SvXz/t\n3r1bkZGRnG8Fj5GamqqpU6dq0aJFXBTAZJs3b9bRo0c1duxYxcfH69y5czmmEKN0XnvtNeffs2bN\nUo0aNSisAAAoQy4prq655ho1b95c/fr1k8Vi0fjx412xmgpr586dmjJlio4ePSq73a4vvvhCs2bN\nohAwyapVq5SUlKSnnnrK+dyUKVNUvXp1N0blHfr166exY8eqf//+On/+vMaNGyerldvtAQAA72Ax\nrjxBCgAAAABQbPyXMQAAAACYgOIKAAAAAExAcQUAAAAAJqC4AgAAAAATUFwBAAAAgAkorgAAAADA\nBBRXAAAAAGCC/wPyfhtxSE2pNAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdoAAAKeCAYAAACyHKnKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3Xd8VfX9x/HXvdmD7B0IMxwgbERQEFBwIKDg1rZWra3aqhVt/dXWVWu1tbZ2aLXujQtEQYYouBCQPRI4zCyyNyE7ub8/bsIIM2Sce5P38/Hgccm9597zPkfM95zP/Q6bw+FARERERERERERERETOjN3qACIiIiIiIiIiIiIi7kyFdhERERERERERERGRVlChXURERERERERERESkFVRoFxERERERERERERFpBRXaRURERERERERERERaQYV2EREREREREREREZFW8LQ6gIicGcMwQoA3gMuA803T/MraRCIiInIyhmFEA38FpgBBwFbgIdM0l1saTERERDqcq9zTG4bxKPCgaZqqEYq0knq0i7ghwzBGAOuB/lZnERERkVMzDMMbWAIMA64DzgZ2AYsMwxhoZTYRERHpWB11T28Yxg7DMCa15z5E5DAV2kXc00PA+8DPrA4iIiIip+VCYDhws2ma35mmuQP4BVALXG1pMhEREelo7X5PbxhGKOqcJ9KhNCxE5DgMw+gJvAScBxQCfwH6AdNN0+xnGIYDuA+YBYwGgk3TrDYM45fA3UAfoBRnz7XfmKaZ2/i5qcAXpmneesS+XgAuMU2zV+PPDmA2MAC4HvAAPgV+YZpmeePbfmua5h7DMMa24hgnASuA84FHgDFAGnAL4A38u/GY1wE/NU0ztfF9wcDfcBYMYoAdwMOmaS444rMnAI81npsGYBvwQNNQuCP2fQ5wP84h9AeBOcB9pmk6zvS4RESk63Lx9nsp0N00zf1Nn2GaZo1hGMVARAuO8SbgNWAU8D9gMJDSuM+hwJM42+evcLbfRY3viwf+DowHwoCNjce46ojPngX8HhgCVOLsaXefaZqbm+17APAcMBYoAv5jmubfTvcYRERE2puLXxNA29zT23Hey/8EiAOKgc8a9x0O7GvcdIVhGGmmafYyDCMMeBGYirOtf6PxUUTagHq0ixzfB4ABTGv8M6Px8Ui/BN5s3K7GMIzbcRan/w0MAq7BOSx8oWEYthbu/zc4i95n4Sx8z8R5YQCAaZp7Wvh5J/Pnxs8eDdQArwAPAjfjLML3BR49YvuPcTbKd+Hsmfc58LFhGOfCoUL8IiAdGAGMBLYAnxiGEdVs3/8BPmr8nGdwXhBc2YbHJiIiXYvLtt+madYdWWQHMAxjGNADWNPC/QA8jrMQcB4QDbyD80Z7JnA5zjb87sb9eANfAknAj3C2+buBZYZh9GncxgA+BJYDA4FxQDnwaeP7j/QCznZ7GDAPeMowjLPO4BhERETai8teE0Cb3dPfCtyLs73vD1yL87rgGSCDw8d7Jc62H+C/wCSco+nOBaoaP0dE2oB6tIs0YxhGIs7G9MdNi5MZhnEVkAnkH7HpPtM0XzriffcC75um+d/Gp3YbhnEXzh5sY4DVLYiRZprmk41/32UYxhScjeadZ3JMpzDPNM2lAIZhvAk8DdxqmuaGxuc+xtlYYxjGGJw37rNM01zY+P7/MwxjMs4G/nugAmdxPds0zQON73sS5/D4sTi/yW8y3zTNdxu3eRp4GOe5/6gdjlNERDoxd2u/DcPoBryFc9TX+y3YR5NXmnqjN7bVd3K4x3yyYRgrcH6RDc7eegYwwjTNTY3v+TnO0Wm/5HAxYAiw1zTN6sZt/olzBNoAnF+aN3nZNM3PGrd5Avg1znO/7gyOQ0REpE252zVBKwxv3E/TvXm6YRiXAN6madYbhlHU+HyRaZr5hmEEAlfgHJG+qPG1PxiGcQEtGF0nIiemHu0ix+rb+Li16YnGgvHKZtttaPqLYRhBQCKwqtk2PzQ+jmxhhuYN+AYgwjAM/xZ+zuk48sa5qSHe1Oy54Ma/j2l8XN7sM76i8WbeNM1aIAH40DCM/YZhHACSG7cLa/a+tU1/MU2zAeeQvtCWH4KIiIj7tN+Nc6YuAyKBK0zTrGvhfuDY9ju/WY/55u13cVORHZzT1uD8gryp/a7CWWhfZhhGrmEY5ThHqMFJ2m8OFyzUfouIiKtwm2uCVloEDDIMY7FhGDcYhhFtmuY+0zTNE2zfD/Di6Pv942UVkTOkHu0ixwpvfCxt9nxRs58PHPH3oMbHshNsE0TLNN930zxuITh7jLelI+djcwCYplnR7LmmYXJNx5HlHGF+iBfOxdwwDONsnN/4L8T5jX0uznPa/IIFjj2WI/clIiLSEm7RfhuGEYmzyB4CTDRNc1cL99Gkeft9sjY1CAhpLJ4fyQcwG3NdhbNn/SvAb3F++T0c53QyzR3al2majsZrArXfIiLiKtzimqC1TNNcaBjGxThHlr0M+BqG8Tlwm2maacd5S7fGx+b7b359ICJnSIV2kWNVNT76Nns+vPmGR2hqjIObPd/0c1Mje7xCcuBxPi+g2c9NDWLxSTJ0hKbjGANUn2Cba3E23NccMfT8eMcoIiLSlly+/TYMIwBYjHPR8XNN08w6Sba2VIqzcH7OcV6rbXy8HtgJ/LxpUXLDMIZ0TDwREZE25fLXBG3FNM1lOEej+eJcS+0ZnF+cH2+R1YONj8171Ye0ZSaRrkxTx4gcq6ln2aimJwzDiKBxnvLjMU2zDOfN6bhmLzXd0DYNsS7jiKHVjauEj+ZYzfc1CsgwTdPq1cCbhs2FmKa5u+kPzpv0nMbXvIEDTUX2Rj9qfFRvNxERaS/u0H6/hHMO1As6sMgOzvY7DKhp1n7D0e13YVORvZHabxERcUfucE3QaoZhXGQYxiBwTgFnmubHwL9wLn5+pKZ2fDdQf5y8k9sqk0hXpx7tIsfainMY9SOGYaTi/Nb3aZyrdnud5H1PAf8zDOMeYAHOeeH+DXxtmmbT4mDrgasbF0LJAO6icbqWZnoZhvEgzm+iR+C80f1H04uGYcQ0/rVpztSwxufqTdPMp52YprnGMIxvgJcbF4XZjXOuuudxFg8eBNYAdxqGcQvOBdRuwFlUqAFGG4bxSXvlExGRLs2l22/DMMbh7DX+k8afY454X41pms2Hs7elT4A9wHuGYfwGyMK5uPl/gHtwDjdfAzxsGMY0nIWGu4CSxvefYxjG+nbMJyIi0pZc+poA2uye/mZgqGEYd+K8N4/Fef/9dePrTb3nLzIMowTn3OyLgLsMw/gB50Lot9LyaXFE5ATUo12kmcaeXFfhbJRWAB8BrwPrODwE7XjvewVnI3sHsAN4C/gSmHnEZg/hnKt8Ps7GLxt47zgf9zIQg/Om91Wc86P++YjXsxv/fNb489zGn49cnKy9XA58B7yLs6fA33FefDzc+Poc4L/A33BehPTCeU7+C9wC/L4DMoqISBfjBu33lMbHtzjcjjf9mdeCQ22xxoVOJ+MsCHyGs/2+H7jPNM2XGzf7J87riXdxtvMHgV80ZnsEuKk9M4qIiLQVN7gmgLa5p78N58Lm7+L8Qn0ezi8Zbmk8HhPn/flsYAnOGuDPcS5+Oh/n4rAeOK8BRKQN2ByO433xJtK1Nc6h6mmaZukRz60G8k3TnNHO+3YAD5mm+Xh77kdERKSzUfstIiIioGsCEbGGpo4ROb4VgLdhGLcDecCVOBcAnWVpKhERETkZtd8iIiICuiYQEQuo0C5yfLNwzp+2AOeK3HuAW0zTnG9pqtNgGMYLwI9Psdm3pmlO7Yg8IiIiHcid2+/FnGSRtkZvm6Z5e0fkERERcXPufE2ge3oRN6WpY0Q6GcMwojj1YiaVpmnu74g8IiIicmqGYcQDfqfYrMw0zbyOyCMiIiLW0D29iPtSoV1EREREREREREREpBVOe+qY/PwDbV6RDwz0oby8uq0/tlPROTo1naNT0zk6NZ2jU9M5OrWWnqPIyG62dowDtE/73V46+78xHZ976+zHB53/GHV87s2Vjq8j2u+WaIu23pXOr9V0Lg7TuThM5+IwnYvDdC4O64zn4kzae3t7BDldnp4eVu7eLegcnZrO0anpHJ2aztGp6Rydms5R63T286fjc2+d/fig8x+jjs+9dfbjs5rO72E6F4fpXBymc3GYzsVhOheH6Vw4WVpoFxERERERERERERFxdyq0i4iIiIiIiIiIiIi0ggrtIiIiIiIiIiIiIiKtoEK7iIiIiIiIiIiIiEgrqNAuIiIiIiIiIiIiItIKKrSLiIiIiIiIiIiIiLSCCu0iIiIiIiIiIiIiIq2gQruIiIiIiIiIiIiISCuo0C4iIiIiIiIiIiIi0goqtIuIiIiIiIiIiIiItIKn1QFEpOM5HA5SiypJK6ogq6wKT7uNQB9P+kYEkBgZgN1mszqiiIiINONwOMg9UE1yzgFyD1RT3+DA28NOr3B/EiMDCPP3tjqiiIh0MnkHqtldcJDcA9WUVdXh5WHD18uDnqF+9A0PIMTfy+qIIiIuQ4V2kS4kp6yKDzdl8+XOfPaXVh13mzB/L85PjOD6kfH0DPPv4IQiIiLSXHpxJZ+l5LJkex5ZJ2i/AUbEB3HxwCimDYrG18ujAxOKiEhnsrfwIPO35LA6rZh9hRUn3bZ/ZADj+4QxLSmGhFC/DkooIuKaVGgX6QKKK2r4x4o9zN2cRYMDRieE8NOze2BEBRIX7IvD4aC0so5tOWWsTi1mwbYc5m3OZnL/CGZP6ktUNx+rD0FERKTLySqt4sXvU1mUkofNBmf3DOVHo7qTFNuNHiG+eHnYOVhTz77Cg2zeX8bnZj5/+WI3r6xO57ZzezI9KQYPu0apiYjI6UnOLuO571JZm16Cp93G+H4RXD44hqSYbsQE+RDs50V9g4Py6jpSiyrYkVvO96nFvPFDBq+tyWB8nzBuHpPAkLggqw9FRMQSKrSLdHJrUot57POdFJZXM31wDLeOTSAmyPeY7UL9vekV7s/0pBiKKmp4f2MW76zLZFVqMXdP7MOsITHYNKWMiIhIu6trcPDW2gxeWpWG3Wbjx2d154ZR8UQEHvvFt5+XBxEB3oxOCOVnYxPYtL+M/3yzl8c/38XC5Fz+OHUAccHHtvsiIiJNiho7Zi3dkU+Yvxd3ntebGYOj6RMXQknJsT3aA308iQnyZWyvMG4ak0DBwRrmbspi7uZsbpmziSn9I7hzQm/ig9XDXUS6FhXaRTqpBoeDF1am8tqaDPpGBvCPmUkYUYGn9d4wf2/uGNeLGUnR/HnZLp5ctost+0t54ML++HhqDWUREZH2kllSyR8+20FKzgEm94/g3haMLLPZbIzoHswr1w9nUUoef1u+mxveXM9DF/dncv/Idk4uIiLuaOW+Ih5bYlJeXcctYxO4cXR3ArxbViqKCPDmtnG9+MnoHry9LoO31mby3d4i7prQm6uGx2kNMBHpMlQxE+mEqusaePCzHby2JoPLh8Tw8e3nnnaR/UjdQ/x47qoh3HZuTz5LyeMX72+mqKKmHRKLiIjIqtQibnx7I5kllTwxfSB/mTHojKZvs9lsTEuK5t0bR9EnPIDfLdjO2+sycTgc7ZBaRETckcPh4MXvU7ln3jbC/L1540cjuWNcrxYX2Y/k7+3BL87txYc3n8WI7sH8bfke7vxoq+4hRaTLUKFdpJOpqq3n1/O2sszM567zevOHCxPx8z7zBdHsNhu3ntOTv102iD0FB7n9gy0UHNSFkoiISFt6f8N+7pm3jZggH9740QguNFrfAz0u2JfnrxnK5P4R/Ovrvfzz670qtouICLX1DTy6xOSlVelMS4rm9R+NoF9kQJt9fkyQL/+6YjB/uDCRLVll/OStDWzLLmuzzxcRcVUqtIt0IjV1Dfz20xQ2ZJTy2KUGN57do83mVZ+UGMG/rhhMTlkVt72/mYLy6jb5XBERka7M4XDw/Hf7eHrFHib0DeeV64fTPaTt5rT18bTzxPSBXDsijnfX7+c/3+xTsV1EpAurqWvg/k9TWJSSx+3jevLIxe0zPajNZmPm0FheuW44nnYbv3h/M1+Y+W2+HxERV6JCu0gnUd/g4MFFO1idWsyDF/dn6sDoNt/HqB4h/OfKIRSU13D3vG2UV9e1+T5ERES6igaHg6e+3M2razKYOSSGv8wYhJ/XmY9COxG7zcZ95/flqmGxvLUuk/99n9bm+xAREddXW9/A7xdu57u9RfxuSj9+NrZnm3XMOhEjOpA3fjySQdHd+P3C7czZsL9d9yciYiUV2kU6iWe/3ceKXQXcd35fLhsc0277GRYfzFOXDWJvYQX3zU+muq6h3fYlIiLSWTUV2T/anM1PzurO7y9MxMPefsUOm83Gbyf34/LBMbyyOp15m7PabV8iIuJ6HA4Hf1xi8vWeQn57QT+uHBbXYfsO8fPi2auGMLFfOP9YsYdXVusLXxHpnFRoF+kEPt2Ww9vrMrlmeBzXjYxv9/2N6RXKI5f0Z0NmKX9aamoIuoiISAs4Govsczdn89Oze3DXhN7t3qMQnD3bf3dhIuN6h/HUl7tZua+o3fcpIiKu4cXv01i6I59fju/FNSM6rsjexNfLg7/MGMSlg6J4YWWaiu0i0imp0C7i5rZll/Hksl2M6RnC7PP7dth+pw6M5o5xvVi6I5+31mZ22H5FRETc3X+/S2VuY0/2X43v1SFF9iaedhtPTB9Iv8hAfr9gO/sKKzps3yIiYo3F23N5eXU6lw2O5qaze1iWw8Nu4+GLjUPF9rfX6T5SRDoXFdpF3FhJZS2/W7CdqEBvnpg+EM92HHJ+PDeP6cGFRiTPfruPlXvVK05ERORU3lqbwes/ZDBraEyH9WRvzt/bg3/MTMLXy879nyZzsEZrroiIdFa78w/y5893MbJ7ML+bkmhJu3OkpmL7lP4R/OvrvSxKybU0j4hIW1KhXcRNNTgcPLJ4B0UVNTw5YxBBvl4dnsFms/Hwxf1JjAzg4cU7yC6r6vAMIiIi7uLLnfn8+5t9TOkfwf9NtrbYEdXNhz9PG0h6cSWPL92laeBERDqhipp6frcghUAfT56YPhAvD9coAXnYbfxx6gBG9QjmsaU7WZNWbHUkEZE24Rq/ZUWkxd5dv5/v9xUze1JfBsV0syxH01x79Q0O/rBwO3X1WhxVRESkuZScAzyy2GRIbBCPTh3Qrgufnq6zEkK4Y1wvvtiZz8dbc6yOIyIibewvX+wio6SSxy8dQHiAt9VxjuLtaefpy5PoFebH7xduJ7Ok0upIIiKtpkK7iBvamVfOf7/bx6R+4Vw1LNbqOPQI9eMPF/Vna/YBnvsu1eo4IiIiLiX3QDX3zU8mzN+Lv10+CB9P17kEv/HsHoxOCOGZFXtILTxodRwREWkjy3cVsHh7Hj8bm8BZCSFWxzmuQB9Pnr48CRtw33xNZSYi7s91rvJF5LRU1zXw0KIdBPl68YcL+1s+x16TC41IrhwWy9vrMlmbrqF/IiIiAJW19dw3P5nK2nr+MWuwy/UotNtsPHKJgbennfs+2qKRaSIinUBJZS1//WIXRlQgt4xJsDrOSXUP8ePP0weSWlTB40t3aiozEXFrKrSLuJkXVqayt7CChy/uT4h/x8/LfjL3TOxDQqgfjy42KauqtTqOiIiIpRocDh5etINd+eX8edpA+kUEWB3puKK7+fDAlES2ZJbyyup0q+OIiEgrPb18N6VVdTxySX88XWRe9pMZ0zOUX47vzRc7C5i3JdvqOCIiZ8z1f+OKyCHJ2WW8uz6TWUNjOLd3mNVxjuHr5cFjlw6gsKKWp77cbXUcERERS72+JoOvdhfy64l9GNfH9drtI00xIpk1PI7X1qSzJavM6jgiInKGVqcWsXRHPreM6UFiZKDVcU7bT0Z3Z2yvUP6xYg+78sutjiMickZUaBdxEzV1DTy2dCcRAd7cPaGP1XFOKCmmGz8bm8DSHfl8s6fQ6jgiIiKWWJdewv++T+XiAZFcPzLe6jin5aFpA4nq5sMji3dQUVNvdRwREWmhmroG/rZ8Dz1CfLnpbNeeMqY5u83GH6cazilSP9tBdZ2mMhMR96NCu4ibeP2HdPYWVvDAhYkE+nhaHeekbjq7B30j/PnrF7sor9aCNiIi0rUUHKzhD59tJyHUj9+70Hoqp9LN14s/Th1AVmkV//lmr9VxRESkhd5dn0l6cSW/uaAf3i608PbpCvP35uFL+rOvsIIXv0+zOo6ISIu5329ekS4os6SSN37I4CIjkvF9wq2Oc0peHnYevKg/+eU1/Pe7VKvjiIiIdBiHw8FjS0wO1tTz5IxB+Ht7WB2pRUZ0D+aaEfHM3ZytKWRERNxI7oFqXlmdzqR+4S45zejpOqdXGDOHxPD2ugy2qh0SETejQruIG/j7ij142u3cM8l1p4xpbnBsENeMiOOjTVm6URcRkS7jo83ZrEot5u4JfVx28dNTuX1cTyIDvXli2U7q6jV0X0TEHfxvZSr1Dodb3TOeyK8n9iEq0Ic/LjGp0RQyIuJGVGgXcXHf7Cnku71F3HpOApGBPlbHaZE7xvciqpsPj3++k1rdqIuISCeXWlTBv77ey9heoVw9PNbqOGcswNuT+ycnsqeggrfXZVodR0RETmF3/kE+S8nl6uFxxAf7WR2n1QJ9PPn9RYmkFVfy5toMq+OIiJw2FdpFXFhVbT1/X7GH3mH+brOQ2pECvD353ZR+7Cus4PUfdIEkIiKdV119Aw8v2oGvp52HL3afedlPZGK/cM5PjODl1elkllRaHUdERE7i2W/3EeDtyS1j3GsB1JM5p1cYFxqRvLYmnYxitUMi4h5UaBdxYW+tzSSrtIrfTu6Lp4d7/u86vk84FzVeIKUWVVgdR0REpF28tDqd7bnl/P7CRLcbgXYivzm/L552G3/5YhcOh8PqOCIichzrM0pYua+Im87uQbCfl9Vx2tTsSX3w8rDz1y/VDomIe3DPyp1IF7C/tJI31mYwpX8koxNCrY7TKvee3xdvDzv//Gqv1VFERETa3JasMl5fk860pGgu6B9pdZw2E9XNh1+O782atBKW7MizOo6IiBzH/75PIyLAm2tGxFkdpc1FBvpwx7herEkr4evdhVbHERE5JRXaRVzUMyv2YrfRKRazCQ/w5ufn9GTlviJW7i2yOo6IiEibqa5r4I9LTKK7+fCb8/taHafNXTkslsGx3fjnV3spr66zOo6IiBxhfUYJGzNLuensHvh6eVgdp11cOTyO3mH+/PubvVr3S0RcngrtIi5ofUYJX+8p5OYxCUR36xzDz68ZEUdCqB/PfLVHF0giItJpvLomnfTiSn5/YSKBPp5Wx2lzHnYbv7mgH0UVtby2Jt3qOCIicoQXG3uzzxzqvgtwn4qn3cavJ/Uho6SKDzdlWR1HROSkVGgXcTEOh4Nnv91HVKC3Wy6AeiJeHnbundSXtOJKXSCJiEinsLvgIG/8kMHUgVGM7RVmdZx2kxTTjelJ0czZsF8L0omIuIj1GSVsyCzlp2f3wMezc5d2xvUOY2yvUF5elU5JZa3VcURETqhz/zYWcUPLdxWwLfsAt53bq9MN/xvXJ4xze4fy0qo0iipqrI4jIiJyxhocDp5ctotAbw9md4Jp3k7lV+N74WW386+vtd6KiIgreH1NBuEB3swcEmN1lA5xz8Q+lFfX8cYPGVZHERE5IRXaRVxIXX0D//0ulT7h/kxLirY6TruYPbEvlbUNvLAy1eooIiIiZ2xxSh5bssq4e0IfQv29rY7T7iICfbhpTA++3lPImrRiq+OIiHRpZl45q9OKuX5kfKfrnHUifSMCmDooig83ZZFfXm11HBGR41KhXcSFzN+aQ3pxJb86rzcedpvVcdpFr3B/rhkex/wtOZh55VbHERERabHy6jr+/c1eBsd2Y/rgzvnF+PHcMKo7ccG+/GPFHuoaHFbHERHpst5am0GAtwdXdOK52Y/n5+f0pK7BwaurtWaIiLimzrdik4ibqqip56VVaYyID+K8PtbP81pRUcF///svPvlkHg888DCXXjrjqNd37NjO88//h127TLy8vBg+fCSzZ99PSEjIoW2Ki4v5+9+f5KuvlvPvf7/AyJFnAc4LpMXb8/jn13v571VDsNlsbNiwjrvvvh1v76N7BQ4aNJhnn32x/Q9YRETkNL28Kp3iilr+MWswdptrfjF+Ju34o48+gs3mXIS9vr6eV175H8uXf0FhYQHdu3fn+utv5NcTz+L/Pk3h4y3ZXD087tDnZWdncfXVl+Hl5YXtiHMSFhbORx8t6JiDFhHpArJKq/jCzOf6Ud3p5tu5Szp1dXW89dZrLFnyGYWFBURGRjFs8AXM3wo/Ht2d+GC/475v/fq1PPnkYwBqg0SkQ6lHu4iLeGd9JkUVtdw1oc9RN6hWSE9P5aabrgeci7M2V1ZWym9+cxcDBgzkgw8+4bXX3qG8vJyHHvq/Q9ts2bKJm266nm7dgo95fzdfT24Zm8C69JJjhp8vX/79UX9UZBcREVeSXlzJexv3M2NwNEkx3ayOc1xn2o7fe+/sQ9u8+earLFnyGX/84xMsWvQlt9zyC5544lFCDqRyVo9g/rcylbKqYxeke/fduUe14ypwiIi0rXfXZ2Kz2bhuZLzVUdrdyy+/wMKFn/D440+xdOnX3HHH3Wxf+hb27G28vub4c7W/8MKz/OUvj9OrV+8OTisioh7tIu1q/Piz+MMfHmXZsqVs2bKRqKhoHnzwj+zcuYM333yNgwfLmTDhfG67+/94e20m5ydGkL/jB3720Bukp6fh4+PDeedN4q677sHfPwCA5ORtPP/8v9mzZzcOh4PBg4cwe/b9xMd3B+Cqq2Zw9dXXkZaWyooVX2K327j00mn88pezsdlszJ79KzZv3njcvDfeeAs33XQrhYWFzJ79W0aPHsv8+XOP2W7ZsiU4HA5+/vM78PT0BAK5/fY7ufnmG9i1ayeJif0pLi7iiSeeJjg4mAULPj7mM64cGst76zN59ttUzu4Z2nYnXUREpI0c2Y5v3bqJyMgogifehNe+FNZ/8w0X/8PZjv/udw/h4eGcI3f58i945522bccnT76I2bPv77B2vF+/RObO/YAbb7xi8zp5AAAgAElEQVQZwxgAwHnnTeKcc8bz4Yfvcc/sR/nxWxt4c20md56nQoaISEcpr65jwbZcLhoQSXQ3n9N+3+nelzZvz9577y327dtnWXvm6enJ3XffS2JifwAmTJhEnz59qa/fz8LkXH42NoGYIN+j3uvn58frr7/DO++8SWrqvhafYxGR1lCPdpF2NmfOW9xxx10sWrScuLh4Hnzw/8jMzGTOnLm88MJrfPnl5zz9zgKq6uqZEFDA448/wk9/+jOWLFnB//73GqaZwj//+TQANTU13H//r0lKGsKCBZ/z0UcLqK+vPzQsrsm7777FOeeMY8GCz3nkkT8zZ867fP/9dwA888xzx/Qab/pz0023AjBixCjOOWf8CY8pOXkb/fsPaLw5d+rXLxFvbx+Sk7cCMHHiBSQlDT7hZ3h72rltXC/MvHKW7cg/9Pzjjz/CzJlTmTHjIh588H5yc3NaeMZFRETaTlM7vnLlKgLDotny0b8YFFjN++8dbsdXrVoJwNq1a9qlHZ8378MOacd9fJzt+P79mZSUFDNwYNJR7xs0KImUlK0YUYFcPCCS9zbsP2ZBuhdeeJYrr5zOpZdO5t5772Tv3j1neOZFRKS5Bcm5VNTWn1Fv9tO5L23ent12222Wtme33no7EydecOjzampqKCjIZ/zgPjiAt9ZmHnOcP/3pzwgICGzx+RERaQsqtIu0s3HjJpCY2B9vb2/OPfc8iouL+PnP78DHx5fevfvQs3dfvtucwoVGJCu/+JQJEyYxYcIkPDw8iI/vzi233Mbnny+muroKb29v3ntvPrfeejuenp4EBgZy3nmTSEnZdtQ+hw4dznnnTcLT05Ozzx5LWFgYe/bsarNjKikpJigo6KjnbDYbQUFBlJQUn+Bdx7pkYBSJkQG8uCoNHz9/Bg5MYvz4CXz44ac8//wrFBYWcv/991BXV9dm2UVERFqiqR338vIiP6gftupynvrDbw6143379iM1dS8A8+Z92C7teEhIaIe048HBwZSUFB9qy4OCjp7+LTg4hJKSEgBuH9eL+gYHL61KA8DLy5sBAwYxcuRZvPvuR7zxxhx8fHyZPfuXlJdr8XMRkdZqcDj4YON+hsUFMTC65VOXneq+9Hjt2eTJU1ymPXM4HDz99JP4+Pjw42uuYfqgaOZvzaag2Re+IiJW0tQxIu0sJubwSvC+vr6Ehobh43N4mF9JjY16Ww0/G9uTB99NJTMzg2++WXHUZzgcDvLz8+nevQerVn3He++9TUZGBvX1ddTX11NfX3/U9t279zjqZ19fX6qqqtrh6FrHbrPx83N6cv+nKaQ5EnjppTcOvda9ew/uu+933HTT9SQnb2XYsBEWJhURka6qqR3/PCWXrPIGwoJDCQ7wP/S6j48v1dXOm/z09K7TjncP8eOKobHM3ZzFDaO60ysigpdffvPQ65GRvjzwwMNMnz6F7777mksumWZhWhER97dybxGZJVX8cvyZTdl1qvvS47VnI0cOP+ozrGrPqqurePzxR9m+PZlnnnmOgIBAfnp2DxYk5/DO+v38emKfFn+miEh7UKFdpJ3Z7fYT/lxSUUt+eTV94gLoHe6Pj48Ps2ZdzT33/Oa4n7Vhwzr+9KeH+dWvfs1ll12Bv78/8+fP5emnnzxqu5Mtpno6c+GdSmhoGIWFBUc953A4KCsrIzw84pTvP9LEfuEkRgbw6up0Lh4QhYf9cPamC7P8/LwWfaaIiEhbsdvt1Dc4+Nfy3YQHeOPnc+LLZ3dvx0tLSwkPjyA0NAyA0tKSo7YpLS0hLCz80M+3jE1gQXIOL6xM5S8zBh2zn6CgIIKCgsnPzz/mNRERaZn3N+4nKtCb8/uFn3rj4zjZfWlzTe3Zo48+TElJxTGvd2R7VlJSwm9/ezeenl68+OLrh9qhHqF+XJAYyfyt2fz8nJ74e3uccF8iIh1FhXYRC72zPpMGB4zo4Rya3aNHArt2mUdtc+DAARyOBoKCgklO3oa/vz/XXffjQ683H553Ks8881yrcw8ZMpQXX3yeurq6Q/O77tiRQk1NNUOHDj/Fu49mt9m4dWwCDzw/h8ef3cAjd9926LWmxWua94QQERHpSF+Y+ezKK+fqfuH8cJIR7+7ejldXO9vxuLh4wsPDSU7edlS7vmXLpqN+Dg/w5kejuvPy6nQ++vwrStJ3cOuttx96vbi4mNLSErp3797qzCIiXVlGcSVr0kq47dyeeHq0/wzArtKeVVQc5N57f0WPHgk8+OBjeHl5HfX6DaPi+WJnPgu25XDtGcxbLyLS1jRHu4hFSipr+WBjFqF+XoT6OS8Yrr76erZs2cTcuR9QXV1FYWEBjz32IA8//AAA8fHdqaqqwjR3UFFRwfz5H5Ge7pwbNSen4xYNnTLlEry8PHnhhWc5eLCcvLxcnnvuX5x77nh69ux1Wp+Rn5/HDTdcybZtW5iUGEFMiD/LPnyFz5ctpa6ujv37M3nmmacYPnwkAwYc20tORESkI9Q7HLy4Ko3+UYEkxZx8Tlx3b8cnTJhIz569sNlsXHPNDbz33tvs2LGdmpoali1bwtq1a7j22hsOfc4NN1xJwsGdhPh5sXBnGW+99Rrvv/8O1dXVFBYW8Ne//on4+B6MGzehw45NRKQz+nhLNh42mDkkpkP219SezZnzrqXt2YsvPo+Pjy8PPfSnY4rsAEPigghc8RRvfLyA+gZHm+1XRORMqUe7iEXmrM+koraefkG+h54bPHgojzzyOG+++SrPPfdPAgO7cfbZY7nzztkATJx4PlOnTufuu2/Dy8ubSy+dzpNP/p277rqNG2+8lldffbtNsv31r4+zdOmio35++ukniY6OYc6ceQQGBvLMM8/xz38+zWWXXYy3tw/nnTeRX//6vkPvaRoK6HA4L3juvfdO7HY7w4aN4JlnnqOuro709DQqKyux22zced3lPFhUyv9eeZmn/vonfHx8mDRpMrffflebHJOIiMiZSMk+QHp5Jc9dP4KCTftPuq27t+MPP/wQTeuP33DDjdTU1PDAA/dRUlJMQkJPHn/8rwwaNPjQ56anp1FXXcEtY5P4x4pafjX7j3y56D1effVFAMaOPZf//OcFvL292+S4RES6opq6Bj7dlsOEfhFEBPqc+g1toKk9e+ed1/nb356yrD37+OMPAbjooqO/sG1qzwBqS3KoKCnju72FGIG13HDDlQCH5oy/4IJzAbj//j9ovRARaXe2piLYqeTnH2jzrwdDQvyPO9+XHKZzdGrueI5KK2u5/OUfGNsr9LhzmrY1dzhHDQ4H172xHhsw56ejsJ9kPr/24A7nyGo6R6fW0nMUGdmt3f+ht0f73V46+78xHZ/7aXA4uPb1dXh52Fl453jKyiqtjtSuzvS/YU1dA1e8upaoQB9euX7YSefktVJn/Dd6JB1fx+mI9rsl2qKtd6XzazVXOxdLtufx0KIdPHvlEMb0Cu3QfbvauTieugYHM1/+ge4hvrxwzbB22487nIuOonNxmM7FYZ3xXJxJe6+pY0Qs8P7G/RysqefWsT2tjuIymuZq31tYwYpdBad+g4iISDtbsauA1KJKbh6TgN3uUnU1l+LtaefmMT3Yml3GmrRiq+OIiHQq87Zk0z3El9E9Q6yO4pI87TauHRHH+oxSzLxyq+OISBenQrtIB6usreeDjVlM6BtOv8gAq+O4lMn9I+kV5sfLq9JpOM3RNiIiIu3B4XDwyup0eob6cUFihNVxXN6MpBiiu/nw0qp0TnfErIiInFxaUQUbM0uZOSS2w0f8upOZQ2Lx87IzZ32m1VFEpItToV2kg326NYfSqjpuHN3d6igux8Nu4+YxCewuOMiqVPWIExER66zcV8Su/IPcNKYHHurNfkpNvdq3ZJXxQ1qJ1XFERDqFhcm52G0wbVCU1VFcWjdfT2YkxbB0Rz4F5dVWxxGRLkyFdpEOVNfg4J31mQyLC2JYfLDVcVzShUYkUYHevLtOvRFERMQ6b6/LJLqbD5cMUHHjdDX1an9xVZp6tYuItFJ9g4NFKbmc0yuswxZBdWfXjYynvsHBR5uzrY4iIl2YCu0iHehLM5/ssmp+MrqH1VFclpeHnWtGxPNDegk7NceeiIhYwMwrZ31GKdeOiMPTQ5fLp+uoXu3p6tUuItIaP6QXk1dew4zB0VZHcQs9Qv04r2848zZnU1PXYHUcEemidOcg0kEcDgdvrs2gd5g/5/UNszqOS5s1NAY/Lzvvao49ERGxwJwN+/HzsnP5kBiro7idGUkxRAV689L36tUuItIaC7blEuzryXl9wq2O4jauHBZLcWUtX+8ptDqKiHRRKrSLdJAf0krYmX+QH4/uroVsTiHI14vLBjvn2MvXHHsiItKBCg7W8PmOPKYnxRDk62V1HLfj7NWewGb1ahcROWNlVbV8vbuAiwdE4e2pss3pGtsrlNggH+Zt0fQxImIN/cYW6SBvrs0gMtBbc72eputGxtPgcPDBxiyro4iISBfy0aYs6uodXDcy3uoobuuywc5e7a+sSrM6ioiIW/p8Rz419Q5NG9NCdpuNmUNiWZdeQnpxpdVxRKQLUqFdpAPsyD3AD+klXD8yXj0STlP3ED8m9Ytg3pZsKmvrrY4jIiJdQFVtPXM3ZzO+TxgJoX5Wx3Fb3p52fjK6Bxv3l7F5f6nVcURE3M6C5FwSIwMwogKtjuJ2LhscjYcN5qtXu4hYQBU/kQ7w1tpMArw9mDU01uoobuWGUfGUVdWxYFuO1VFERKQLWLI9j5LKWm4Y1d3qKG7v8iExBPt68sYPGVZHERFxK3sKDpKSc4DpSdHYNOVoi0UE+nBe33AWJOdqUVQR6XAqtIu0s5yyKr7cmc+sobEE+nhaHcetDIsPZkhsN+Zs2E99gxZUExGR9uNwOJizYT+JkQGM6hFsdRy35+flwbUj4/l2bxG7Cw5aHUdExG0sTM7Fw25j6kBNOXqmrhgWS0llLV/tLrA6ioh0MSq0i7SzDzdl4wCuGRFndRS39KOzupNZUsW3WjleRETa0Q9pJewtrOCGUfHqQdhGrh4eh5+XnbfWqle7iMjpqKtvYFFKLuf1CSPU39vqOG5rTM9Q4oJ8+HirRkaLSMdSoV2kHVXW1jN/azbnJ0YQG+RrdRy3NLFfBFGB3szdrDn2RESk/by3cT9h/l5cZKgHYVsJ8fNi1tBYlm7PI6u0yuo4IiIub3VaMUUVtUxP0iKorWG32Zg5VIuiikjHU6FdpB0tTsmlrKqO60fGWx3FbXnanRdJq9OKydBFkoiItIOcsipW7i1i5tBYLVrexm4Y1R2bzcY76zKtjiIi4vKWbM8j2NeTc3uHWR3F7c1IisbDbtOiqCLSoXQnIdJOHA4H723IYmB0IEPjgqyO49ZmDonBwwbzdJEkIiLtYH7j0PKZQ2IsTtL5RHfzYerAKD7ZlkNRRY3VcUREXFZlbT1f7y7kgv4ReHmoVNNaEYE+TNCiqCLSwfTbW6SdrEkrZl9RBdeN1FyvrRUZ6MPEfhEs2JZDtS6SRESkDdU1OPh0Ww7n9A7VNG/t5Ceje1BT18D7G7OsjiIi4rK+3VNIVV0DFw/QFGZtZeaQGEoqa/l2r9b7EpGOoUK7SDuZs2E/4QHeXGhEWh2lU7hyWCylVXV8uTPf6igiItKJrNxbRH55DVcMjbU6SqfVO9yfif3C+XBjFhU19VbHERFxSUu25xEV6M2I7sFWR+k0xvQMJSrQmwXbcq2OIiJdhArtIu0gtaiC7/cVc9WwWA37ayNnJYSQEOqnRVFFRKRNzd+aTUSAN+P6hFsdpVO7cXQPDlTXsWBbjtVRRERcTmllLatSi7nQiMKu0dBtxsNu49JB0axKLaKgvNrqOCLSBagCKNIO3t+wH28PG1cMU++4tmK32bhiaCxbssrYlV9udRwREekEcsqq+H5fEZcNicHTrsJGexoSF8SQ2CDmbNhPfYPD6jgiIi5l+a4C6hocXDJQo6Hb2vSkaBocsCglz+ooItIFqNAu0sYOVNWxMDmXiwdEEebvbXWcTmV6UjQ+nnb1ahcRkTbxydYcHA64fLAWQe0IPzornv2lVXy9R3PliogcaemOPBJC/TCiAq2O0un0DPNnWFwQC5JzcDj0Ra+ItC8V2kXa2MKUXKrqGrh2RLzVUTqdYD8vphiRLE7J42BNndVxRETEjTUtgjq2VyhxwVoEtSNM6hdBXLAv767LtDqKiIjLyDtQzYaMUi4ZEIVN08a0i+lJ0aQWVZKcc8DqKCLSyanQLtKGHA4H8zZnMSS2G0a0eiO0hyuHxlJRW8+S7Rr6JyIiZ+77fUXkldcwS4ugdhgPu43rRsazOauMbdllVscREXEJy8x8HMBFAzRtTHuZYkTi42nXoqgi0u5UaBdpQ+szSkktquTKYXFWR+m0Bsd2IzEygPlbtJiaiIicuY+3ZBMe4M15fcKsjtKlXDY4mkAfD95Zt9/qKCIiLmHpjjwGRgfSM8zf6iidVqCPJ5P7R/C5mUdVbb3VcUSkE1OhXaQNzd2cRbCvJ1MM9UZoLzabjcsHx7Ajr1yLooqIyBnJL692LoI6OBpPD10Od6QAb09mDYll+a58skqrrI4jImKptKIKtueWc/GAKKujdHrTk6Ipr67n691aJ0RE2o/uLETaSEF5NSt2FzI9KQYfT/2v1Z4uHhiFl4dNQ/9EROSMLNmeR4MDpidpEVQrXDMiDpvNxvsb1atdRLq2z818bMCF6qjV7kb1CCEuyIcFyRoZLSLtR9VAkTYyf2sO9Q0OrhymuV7bW4ifFxP6hrN4ex619Q1WxxERETficDj4LCWXIbHdSAj1szpOlxQT5MuU/hF8sjWH8motbi4iXdcXZj7D44OI6uZjdZROz26zMS0pmh/SSsgp04gqEWkfKrSLtIG6Bgcfb8lmbM9QeuimvUPMGBxDSWUt3+4tsjqKiIi4kZ35B9lTUMGlg6KtjtKl/eis7hysqefTbepZKCJd077CCvYWVjC5v3qzd5RpSdE4gEUpeVZHEZFOSoV2kTawcm8heeU16s3egcb2DCUy0JsFukEXEZEWWJSSi6fdpvVULDYwuhvD4oL4YGMW9Q0Oq+OIiHS45bvyATg/McLiJF1HfLAfo3oEszA5B4dDbY+ItD0V2kXawEebsokK9GZ833Cro3QZHnYblw6K5vt9RRSUV1sdR0RE3EBdg4Ml2/MY3yeMED8vq+N0edeMiGN/aRXf79PoNBHper7cWcDQOE0b09FmJMWQUVLFpv1lVkcRkU5IhXaRVsoormR1WjEzh8biabdZHadLmZEUTYNDQ/9EROT0rEkrpqiiVtPGuIgLEiOIDPTmg41ZVkcREelQ6cWV7Mo/yOT+6s3e0S7oH4G/lwcLtSiqiLQDFdpFWmnelmw87DZmDomxOkqX0zPMn2FxQXy6TUP/RETk1Ban5BLs68m43mFWRxHA08POlcNiWZ1WTGphhdVxREQ6zPKdzmljLtC0MR3Oz8uDKUYEX5gFVNbWWx1HRDoZFdpFWqGqtp4F23KY1C+cyEAN+bPCZYNjSCuuZGv2AaujiIiICyuvruOr3YVMMSLx9tQlsKuYNTQWLw8bH2xSr3YR6TqW7ypgcGw3YoJ8rY7SJc1IiqGitp4vG7/wEBFpK7rLEGmFL3cWUFpVp0VQLTTZiMDX065FUUVE5KSW7yqguq6BaZo2xqWE+Xtz0YAoFibnUF5dZ3UcEZF2t7+0ku255erNbqFh8UH0CPFlwbZcq6OISCejQrtIK8zdnEXPUD/O6hFidZQuK8Dbk8lGJMvMfKo09E9ERE5gUUouCaF+DI7tZnUUaebaEXFU1jawIFkFDxHp/JbvLACcc4WLNWw2G9OTYtiQWcr+0kqr44hIJ6JCu8gZMnPL2Zp9gCuGxWKzaRFUK00bFMXBmnq+2VNodRQREXFB2WVVrM8oZerAKLXZLmhgdDeGxgXxwcb9NGjNFRHp5JbvKmBgdCDxwX5WR+nSLh0UhQ1YlJxndRQR6URUaBc5Q3O3ZOHjaWd6koagW21UjxCiAr1ZvF0XSSIicqwlje3D1EFRFieRE7l2RByZJVV8v6/I6igiIu0mp6yKbdkHNG2MC4gJ8mV0QggLU3L1Ja+ItBkV2kXOQEVNPUu35zPFiCTI18vqOF2e3WbjkoFRrEotpriixuo4IiLiQhwOB58l5zIiPki9B13YBYkRRAZ68/5GLYoqIp3X8l1N08ZEWpxEAKYPjiartIpN+0utjiIinYQK7SJn4Aszn4raemYNibE6ijSaOjCa+gYHy0ytHC8iIoel5JaTVlzJpVoE1aV5eti5Ymgsq1OLSS2qsDqOiEi7+HJnAYmRASSE6otfV3B+vwgCvD1YqEVRRaSNqNAucgbmb82md5g/Q+OCrI4ijfpFBpAYGaDpY0RE5CiLknPx9rAxWb0HXd6sobF4edj4UL3aRaQTyjtQzZasMiZrEVSX4evlwRQjki925lNRU291HBHpBFRoF2mh3QUH2Zp9gMuHxGhBNRczdWAU27IPkKaecCIiAtTWN/C5mc+EvhF08/W0Oo6cQniANxcZkSxMzqW8us7qOCIibWpF47QxkxP1xa8rmT4omsrahkP/fUREWkOFdpEW+mRrDp52G9M0BN3lXDzAuXL8EvVqFxER4Pt9xZRU1jItSYuguotrRsRTUVvPwmQN4xeRzuXLXQX0CfenV7i/1VHkCMPig+ge4svC5Byro4hIJ6BCu0gLVNc1sDgll0n9Igjx1yKoriaqmw+jE0JYvD0Ph1aOFxHp8hZvzyXUz4uxPUOtjiKnaVBMN4bEBvHBxv00qC0XkU6i4GANmzJLmaJpzFyOzWZjelI06zJKySqtsjqOiLg5FdpFWmDFrgJKq+qYOVSLoLqqqYOi2F9axdbsA1ZHERERC5VV1fLNnkIuHhiFp4cued3J1SNiySipYk1asdVRRETaxFe7CnAAF2h+dpc0bVA0NuCzFI2mEpHW0V2HSAt8sjWbuGBfRieEWB1FTuD8xAh8PO0s0kWSiEiX9oWZT229g0sHadoYdzM5MZIwfy8tiioincaXuwroFeZHH00b45Jignw5KyGEhcm5Gk0lIq2iQrvIacoormRdRimXD47BrkVQXVaAtyeT+oU3FlgarI4jIiIWWZSSR+9wfwZEBVodRVrI29POzCExfLe3SMP4RcTtlVTUsiGjhAsSI7DpPtJlTU+KJqu0ik37S62OIiJuTIV2kdM0f2sOHjaYMViLoLq6qQOjKa2q4/t9GnIuItIVZZZUsjmrjEsHRqmo4aZmDY3FZoO5m7OtjiIi0irf7i2kweEceSuu6/zECAK8PVi4TSOjReTMqdAuchrq6htYmJzDuD7hRAb6WB1HTmFMzxBC/bxYvF0XSSIiXdHilDxswCUDNW2Mu4oJ8mVC33A+2ZpNdZ1GqImI+/p6dyHR3XwwNMLKpfl5eTClfyRf7Mynoqbe6jgi4qZUaBc5Dd/uLaKoopbLh2gRVHfg6WHnogGRfLunkANVdVbHERGRDuRwOFi0PZezEkKICfK1Oo60wtXD4yitquMLM9/qKCIiZ6Sqtp7VacVM7BuuEVZuYHpSNJW1DazYVWB1FBFxUyq0i5yG+VuziQz05tzeYVZHkdM0dVA0NfUOlu/SzbmISFeyJauMzJIqLYLaCYxOCKFXmB8fbNKiqCLintakFVNd18CEfuFWR5HTMCw+iO4hvixMzrE6ioi4KRXaRU4hp6yKVfuKmTE4Bk+7eiG4i0HRgSSE+rEoJc/qKCIi0oEWpeTh62nXXLidgM1m46phcaTkHCA554DVcUREWuzr3YUE+ngwqnuw1VHkNNhsNqYnRbMuo1SLcYvIGVGhXeQUFmzLxQFcpkVQ3YrNZuPSQVFsyCwlp0wXSSIiXUFNXQPLzHwmJUYQ4O1pdRxpA9OSovH38uBD9WoXETdT3+Dg271FjOsdhqeHSi/uYtqgaGzAZyla70tEWk6/7UVOor7BwafbchjTM4T4YD+r40gLNS2Ct3i7erWLiHQF3+0t5EB1HdM0bUynEejjydRBUSzbkUdJRa3VcURETtuWrDJKKmuZ1E8jrNxJTJAvZyWEsDA5lwaHw+o4IuJmVGgXOYm16cXkHKjmssFaBNUdxQf7MSwuiMXb83DoIklEpNP7LCWPiABvRieEWh1F2tDVw+OoqXd2fhARcRdf7S7Ay8PGOb3VJrmb6UnRZJVWsWl/qdVRRMTNqNAuchILtuUS5OvJRPVCcFtTB0Wxr7CCnfkHrY4iIiLtqKSilpX7irhkYBQeWlOlU+kbEcDI7sHM3ZxFfYO+OBcR1+dwOPhmTyGjE0I0lZkbOj8xAn8vDxZu0/QxItIyKrSLnEBZVS1f7S7gkgFR+HjqfxV3Nbl/JJ52G4u1KKqISKf2uZlHfYODaYO0pkpndPXwOLLKqvl+X5HVUURETmlPYQWZJVVM7BtudRQ5A35eHkwxIvhiZz4VNfVWxxERN6LqocgJLN2RT029gxlaBNWthfh5Mb5PGEt35KkXnIhIJ7YoJY/EyAD6RQZYHUXawaR+4UQGevOBFkUVETfwze5CACao0O62pifFUFnbwIpdBVZHERE3okK7yAks2JZDYmQARlSg1VGklaYOjKLgYA3rMkqsjiIiIu0gtaiC5JwD6s3eiXl62Jk1JJbVqcWkF1daHUdE5KS+2l3A4NhuRAT6WB1FztDw+CDig31ZmKLpY0Tk9KnQLnIcu/LL2Z5bzozBMdhsmufV3Y3rE06gjweLt2v6GBGRzmhxSi52G1w8INLqKNKOZg2NwcNuY+5m9WoXEdeVe6Ca7bnlmjbGzdlsNqYnRbMuvYTssiqr44iIm1ChXeQ4FmzLxdNuY+qAKKujSBvw8bQzuX8kK3YWUFWrOfZERDqTBoeDRSl5jOkZqp6DnVxEoA8XJEawYFuu2nMRcVnf7HFOG9mLaeYAACAASURBVDOxX4TFSaS1piU5R8p9lqxe7SJyelRoF2mmtr6BxdvzmNA3nBB/L6vjSBuZOjCKitp6vm6cL1FERDqHDRml5Byo1rQxXcTVw+M4UF3HEo1SExEX9c3uQhJC/egV5md1FGml2CBfzkoIYWFyLg6H1vsSkVNToV2kmW/3FlFSWctlg2OsjvL/7N11eJxV2gbw+x3LxD0Td2m03lKh7koLpbh96AKLLizLAkW62GK7wOJupUaNtrTUaamnadzdJy6T0e8P2C6lQiXJGbl/17XXXm0m7T1DJ2fe5z3neagXDQ71hMbdie1jiIjszPqsWriq5BgfyyP6jmBQiAdi/VyxPL2aRQ8isjodPUYcqmjB+BhftiC1E3OTNahq1eFgWbPoKERkA1hoJ/qddZm18HNVYWSkt+go1ItkkoQZiQH4ubQJTV160XGIiKgXdOlN2FbQiKkJ/lAr5aLjUD+QJAmLBgUhv6ETGdVtouMQEZ1kb0kTjGYLb/7akYlxfnBVybHiSKXoKERkA1hoJ/qNxo4e7C1pwuxkDRQy7kCwNzMTA2CyAFtyG0RHISKiXrCtoAHdBjPmJLNtjCOZkaiBq0qO5ekcikpE1mVHoRY+LkqkBHmIjkK9xFkpx7QB/tiUWYeOHqPoOERk5VhoJ/qN77PrYbb8cjyM7E+Mnyvi/V3ZPoaIyE6sz6pDmJcaacEsaDgSF5Ucc5I1+DG/EdpOnlIjIuugN5qxt6QJl8b4Qs5NW3Zlfkogug0m/JDL60giOjsW2ol+ZbFYsDazFgODPRDh4yI6DvWRmUkaZNW2o6ypS3QUIiK6CNWtOhyuaMXsZA374DqgKwYFw2i24LvjNaKjEBEBAA5XtqBTb8L4GLaNsTdJge5I0LhhTWad6ChEZOVYaCf61fGadpQ1d3MIqp2bPsAfEoBN3NVORGTTNmT/crE7K4mn0BxRpI8LRkZ4YdWxGhjNHIpKROLtLNRCrZBheLiX6CjUyyRJwhVDQ5Fd246Chg7RcYjIirHQTvSrtZm1UCtkmJzgJzoK9SF/NycMD/fCxpx6WCy8MCciskUWiwXfZ9dhWJgngjzUouOQIIsGBaO+Q49dRVrRUYjIwZktFuwq0mJUlA+Hc9up+QODoZRLWHO8VnQUIrJiLLQTAeg2mLA1rwFTEvzhqlKIjkN9bGZSAKpadThe0y46ChERXYBjVW2obNFhTjJPoTmysdG+CHR34lBUIhIup64DDR16to2xY94uKkyI9cPGnHr0GM2i4xCRlWKhnQjAtvxGdOpNmJvC4+eOYGKcH5wUMmzMZo89IiJbtD6rDs5KGSbG8RSaI5PLJCwcGIRD5S0o1naKjkNEDmxnYSPkEjAm2kd0FOpD81MD0aYzYmdho+goRGSlWGgnArAuqxZhXmoMDvEUHYX6gatKgQmxvtiS1wCDibsRiIhsic5gwtb8BkyO94eLisfzHd1lqYFQyiWsSOdQVCISZ2ehFoNCPeHlrBQdhfrQ8HAvBHs4sX0MEZ0RC+3k8CpbunG4ohVzkgMhSZLoONRPZiZq0KozYl9ps+goRER0HrYV/HIKbU4yT6HRL0f5p8T74/vsOnTqjaLjEJEDqmjuRrG2C+NjecrK3skkCXNSAnGgvAVVrd2i4xCRFWKhnRze+qw6SABm84LdoYyM8IK3sxIbs+tFRyEiovOw5ngtQr3UGBzKU2j0iysHB6NTb8L3XNOJSICdvw5kZn92xzA3WQMJwLpMtiElolOx0E4OzWS2YH1WHUZGekPj7iQ6DvUjhVyGaQP8sbtYi44e7oAjIrIFZU1dOFLZinkpgZDxFBr9KjnQHYkaNyxPr4bFYhEdh4gczM7CRsT5uyLYUy06CvWDQA81Lon0xrrMWpjMXHOI6GQstJNDO1Tegrr2HsxLCRQdhQSYmRiAHqMZ2wo4zIaIyBaszayDXPplNxnRf0mShCsGBaNE+8uNGCKi/tLcpUdGdRt3szuYy1IDUd+hx89lbENKRCdjoZ0c2rqsWnioFRjHD0YOKSnQHeHeztiYw6PmRETWzmgyY31WLcZG+8LPjafQ6GTTEvzhqVZgeXq16ChE5EB2FzfBbAEmsD+7Q7k0xhfezkoORSWiU7DQTg6rXWfEjkItpg8IgJOCbwVHJEkSZiQG4HB5C2padaLjEBHRWewpbkJTlwHzU3kKjU6lVsoxNyUQOwoaUdfeIzoOETmInYVaBLo7IT7AVXQU6kdKuQyzkjTYVaRFU5dedBwisiKsLpLD2pJXjx6jGXNTePzckc1MDIAFwLoM7oAjIrJmazJr4e+mwqgoH9FRyEpdPjAIZguwOqNGdBQicgA6gwn7y5oxPtYXEueGOJz5qYEwmS0cxE1EJ2GhnRzWuqw6xPi5YECAm+goJFColzNSgzyw9hgL7URE1qquvQd7S5owN1kDhYzFDDq9UC9njIn2weqMGuiNZtFxiMjO/VzajB6jmW1IHVSUrwvSgj2w5ngNB3ET0QkstJNDKtF2IbOmHXOTA7n7gDAzKQB5dR0oaOgQHYWIiE5jfVYtzBZgLoeX0x9YPDgYTV0GbMlrEB2FiOzcziIt3J0UGBLqKToKCTI/JRClTd3IqG4THYWIrAQL7eSQ1mfVQi4BMxIDREchKzA13h8KmYSNPPZHRGR1zBYL1h6vxfBwL4R6OYuOQ1ZuZIQ3onxd8PWRKu4wJKI+YzRbsLtIizHRPlDIWVZxVFMS/OGilHMoKhGdwBWBHI7RbMGG7HqMifaFr6tKdByyAl4uSoyL88Pm3HqYzLwoJyKyJgfLW1Dd1oPLOASVzoEkSbh6SAjy6jtwtKpVdBwislMZ1a1o1RkxIZZtYxyZi0qOqQP8sSWvAR09RtFxiMgKsNBODmd/aTO0nXrMSeYQVPqf+QODUd+hx6GKFtFRiIjoN1Zn1MBTrcD4WD/RUchGzEwMgKdaga8PV4mOQkR2amehFkq5hEsivUVHIcEuSw2EzmhmyzIiAsBCOzmgdVm18HJWYmy0j+goZEUmDwiAm5McG7LqREchIqJf1bf3YEdBI+amBMJJwY+tdG7USjkWDgzCzkItKlu6RcchIjtjsViws1CLEeHecFUpRMchwZID3RHt64K1mWwfQ0QstJODaek2YFeRFjMSA6BkLz36DSelHNMSArC9oBGdeh77IyKyBt8dr4HZAlw+MEh0FLIxVwwMhkwm4duj1aKjEJGdKWrsQlWrDuPYNobwS8uy+amByKxpR0FDh+g4RCQYK43kUH7IrYfBZMFcto2h05idrIHOaMaP+Y2ioxAROTyjyYzVGbUYFeXNIah03gLcnTAl3g9rM2vZN5eIetXOokZIAMbFsNBOv5idpIFKLmHVsRrRUYhIMBbayaGsz6pDQoAb4gPcREchK5Qa5I5wb2e2jyEisgLbC7Vo7NRj0aBg0VHIRl09JASdehPWcV0nol60s1CLlCB3+LmqREchK+HprMTUBH9szKlHl94kOg4RCcRCOzmMwoZO5NR1cAgqnZEkSZiTrMGRylZUtbKnKxGRSCvSqxHsqcaoSM5UoQuTHOSBtGAPLDtSBZPZIjoOEdmB2jYdcuo6OKCbTrFwYDA69SZszq0XHYWIBGKhnRzGuqxaKGQSZgwIEB2FrNjMxABIAL7P4gckIiJRChs7caSyFZenBUEuk0THIRt29ZAQVLXqsKdYKzoKEdmBXUVNAIDxbBtDv5Ma5I44f1esPFYDi4U3d4kcFQvt5BCMJjM25dTj0hhfeLkoRcchKxboocawcC9syK7jByQiIkFWpFdDJZcwLyVQdBSycRPi/BDo7oSvj1SJjkJEdmBXUSMivJ0R6esiOgpZGUmSsCAtCHn1Hciu41BUIkfFQjs5hJ9KmtDUZeAQVDonc5I1qGrVIb2qTXQUIiKH09FjxMbsekxN8OfNcbpoCpmEKwcH43BFK7JruK4T0YVr1xlxqKIV42O5m51Ob2ZiAJyVMqzmUFQih8VCOzmE9Vl18HFRYlQU+7zSH5sY5wcXpRzrs2pFRyEicjjfZ9ejy2DiEFTqNfNTA+GslOGTfaWioxCRDdtb0gST2cL+7HRGbk4KTB8QgM259WjXGUXHISIBWGgnu9fUpcfu4ibMStJAwT6vdA6clXJMjvfDj/mN0Bk4NZ6IqL9YLBasSK9GosYNyUEeouOQnfBQKzEnORDrM2rQ2KkXHYeIbNSOQi18XJRICXIXHYWs2MKBQdAZzdiYUyc6ChEJwEI72b1NOfUwmS2Yw7YxdB5mJ2vQqTdhe2Gj6ChERA5jX2kzSpq6sHhwiOgoZGcWDw6G0WzB8vRq0VGIyAbpjWbsK23CuBhfyCRu3qIzS9S4I1HjxqGoRA6KhXayaxaLBeuz6pAU6I4YP1fRcciGDA71RLCHEzZkcScCEVF/+epwJfxcVZg2wF90FLIzET4umDJAgxXp1ejS87QaEZ2fQxUt6NSb2J+dzsnlA4NQrO3CMc78InI4LLSTXcuv70RBQyeHoNJ5k0kSZiVpcKCsBbVtOtFxiIjsXmFDJ/aXteDKwcFQyvkRlXrfbZdGoU1nxHfHOaSOiM7PriItnJUyDA/3Fh2FbMC0AQFwVcmxMoPrDZGj4VUM2bV1WbVQySXujKMLMjtZAwuAjTn1oqMQEdm9rw5XQq2QYWFakOgoZKcGh3lhcIgHvjpcBaPJLDoOEdkIs8WCnYVajIr0gZOCJRT6Y85KOWYlabAtvwEtXQbRcYioH3GVILulN5qxKace42P94KFWio5DNijUyxmDQzywIauO/fWIiPpQY6cem3LrMSdZA09nrtnUd24YEYa69h78kNcgOgoR2Yic2nY0durZNobOy8K0IOhNFqzPZitSIkfCQjvZrT3FWrTqjByCShdldrIGZc3dyKptFx2FiMhuLU+vhtFkwdVDQ0VHITs3OsoH0b4u+PxgJW+iE9E52VGohVwCxkT5iI5CNiTW3xUDgz2wOqMGZq43RA6DhXayW+uy6uDvpsLICPbRows3Od4fTgoZ1nMoKhFRn9AZTFiZXo1xMb4I93YWHYfsnEyScP3wUBQ2dmJfabPoOERkA3YWaTE4zIsnrui8LRwYhPLmbhwsbxEdhYj6CQvtZJcaO/XYV9KEWUkayGWS6Dhkw9ycFJgU54fNufXQGUyi4xAR2Z3vs+vQqjPimmEhoqOQg5g+IAABbip8drBCdBQisnLlzd0o0XZhfAzbxtD5mxzvD0+1AivSq0VHIaJ+wkI72aWN2XUwWYC5bBtDvWB+aiA6ekzYVtAoOgoRkV0xWyz48nAVEjVuGBziKToOOQilXIZrhobicEUrsmraRMchIiu249fP/+zPThfCSSHDgrQg7CrSoqq1W3QcIuoHLLST3bFYLFiXVYe0YA9E+LiIjkN2YHCoJ0I81ViXWSs6ChGRXdldpEV5czeuGRoKSeIJNOo/l6UFws1Jjs8PVYqOQkRWbEdhIxI1bgjyUIuOQjbqikHBkAAsP1ojOgoR9QMW2snuZNe2o0TbxSGo1GtkkoR5KYE4VNGKyhbuRCAi6g0WiwUf7a9AiKcaUxL8RcchB+OqUuCKgcHYlt+Iimau7UR0qvr2HhyvacfEOD/RUciGadydMDHOH2sya9ClZytSInvHQjvZnbWZdXBSyDCVF+3Ui2YnayCTwF3tRES95EBZC7Jr23HDiDAoOE+FBFg8JAQKuYQvD3NXOxGdameRFgAwIZaFdro4Vw0JRkePCRtz6kRHIaI+xkI72ZVugwmbc+sxJcEfbk4K0XHIjmjcnXBJpDfWZ9XBZLaIjkNEZPM+2l+OADcV5iTxBBqJ4eeqwuwkDdZl1kLbqRcdh4iszPaCRkT6OCPKl+1I6eKkBXsgUeOGZUeqYbHwWpLInrHQTnZlS14DOvUmXJYSKDoK2aH5KYGo79Dj57Jm0VGIiGzasapWHKlsxbXDQqFS8OMoiXPdsFAYTBYsO1olOgoRWZHWbgOOVLRwNzv1CkmSsHhwCEqaunCgrEV0HCLqQ7yyIbuy5ngtIn2cMTDEQ3QUskOXxvjCy1mJtcfZPoaI6GJ8tL8cXs5KLEgLEh2FHFyEjwsmxPlhRXoNOnqMouMQkZXYXayFyQL2Z6deMzXBHz4uSnzDG7tEdo2FdrIbxdpOZFS3YX5qECSJvV6p9ynlMsxKCsCuIi2au3jEnIjoQuTWtWNvSTOuHhICZ6VcdBwi3DIyDO09RixPrxYdhYisxPYCLTTuTkjUuImOQnZCpZBhYVoQ9hQ3oZxDuInsFgvtZDfWHK+FQiZhdlKA6Chkx+amBMJotmBjTr3oKERENumTAxVwVcmxaFCw6ChEAIABGneMifLBV4er0G0wiY5DRIJ19hixv6wZE2J9uYGLetXlA4OgkEn4lrvaiewWC+1kF/RGMzZk1WFCrC+8XVSi45Adi/VzRXKgO9Ycr+UgGyKi81Si7cK2/EZcOTgY7moOLSfrccsl4WjpNmB1Ro3oKEQk2K6CRvQYzWwbQ73Oz80JUxP8sTazFq3dBtFxiKgPsNBOdmFnkRatOiPmp3IIKvW9eamBKNZ2Ibu2XXQUIiKb8uHPZXBSyHD1kBDRUYhOkhbsgWHhXvj8YCV6jGbRcYhIoC05dfByVmJgiKfoKGSHbhgehm6DGSuOsV0ZkT1ioZ3swprjNQjycMKICG/RUcgBTEvwh5NChjWZHIpKRHSuChs78UNuAxYPCeHpM7JK/zcyHI2deqzl+k7ksPRGM7bnNWB8jC8UMraNod4X6++KsdE++OZINXRsV0Zkd1hoJ5tX0dyF/WUtmJsSCBl76FE/cHNSYEq8H37IbeCHIyKic/TuT6VwUclx/bBQ0VGITmtomCfSgj3w2YEKGEzc1U7kiA5WtKCjx4gJcb6io5Adu2F4GFq6DVibWSc6ChH1MhbayeatOFwFmQTMTdaIjkIOZF5qIDr1JvyY3yg6ChGR1cuubceOQi2uHRYKT2el6DhEpyVJEm65JBy17T3YmM2h50SOaEdBI1yd5BgezpPS1HcGhXggLdgDXx6qgNHMuV9E9oSFdrJpRpMZK45UYlSkDwI91KLjkAMZHOKJMC8128cQEZ2Dd34qhadawd7sZPVGR3ojUeOGTw6Us/hB5GBMZgt2FmoxIe6XNpFEfUWSJNwwPAzVbT3YmtcgOg4R9SKuHmTTdhZpUd/egysGBYmOQg5GkiTMTQnE0cpWlDV1iY5DRGS10itbsa+0GTcMD4Obk0J0HKKzkiQJt4wMR0WLjsUPIgeTUd2G5m4DpiXxpDT1vUtjfBDl64LPDlbAYuGNXSJ7wUI72bQV6dUI8VJjVKSP6CjkgOYmayCXSVidwV3tRESnY7FY8PZPpfBxUeLKwcGi4xCdk3Gxvojxc8FH+8thZvGDyGFsL2iESi5hXLy/6CjkAGSShBuGh6KgoRN7S5tFxyGiXsJCO9msEm0XDlW04urh4ZBzIjwJ4OfmhPExvlifVYseI4emERH93oGyFhytbMUtI8OhVspFxyE6J7Jfd7WXaLuwo1ArOg4R9QOLxYIdhY0YEeHN01fUb6YPCIDG3QmfHqgQHYWIegkL7WSzVh6rhkIm4Qr2eyWBFqYFoVVnxPYCDkUlIvot86+72TXuTliQxhZvZFsmx/sj3NsZH/1cziP9RA4gr74DNW09mBjrJzoKORClXIZrh4XiaGUrDle0iI5DRL2AhXaySd0GE9Zn1WFyvB983ZxExyEHNjzCCyGeaqzKqBEdhYjIqmzNa0B2bTtuHx0BFYfKkY2RyyTcNCIMefUd2F3cJDoOEfWx7QWNkEnAuBhf0VHIwSxIDYS/mwrv/FTKG7tEdoBXPWSTNufUo1NvwqJB7PdKYskkCQvSgnC0shXF2k7RcYiIrEKP0Yw3d5cgzt8VszlUjmzUzMQAhHqp8d7eMhY/iOyYxWLBtoJGDAn1hJeLUnQccjBqpRy3jAxHelUb9rFXO5HNY6GdbI7FYsHy9GrE+rkiLdhDdBwizE3RQMGhqEREJ3x7tAo1bT24b3w056iQzVLIZbhtVATy6juwnb3aiexWYWMnSpu6MSWBQ1BJjPmpgQj2cOKudiI7wEI72ZzMmnbkN3TiikFBkCRevJN4Pi4qTIzzw4asOugMJtFxiIiEauk24OP9FRgd5Y2REd6i4xBdlOkDAhDh7Yz39pbCzOIHkV3amtcAmQRMjGN/dhJDKZfh1lERyKnr4BBuIhvHQjvZnJXHquGqkmNGYoDoKEQnLEwLQnuPET/mcygqETm2j34uR6feiHvHRYuOQnTR5DIJt4+OQFFjF7bmNYiOQ0S9zGKxYEteA4aFecHHRSU6DjmwmUkaRHg7452fSmEy88Yuka1ioZ1sSnOXHlvyGjAzMQCuKoXoOEQnDA3zRLi3M4eiEpFDq2juxvL0asxLCUSsn6voOES9YkqCP2L8XPDe3jIYWfwgsiv59Z2oaNGxbQwJp/j1xm6xtgtbeGOXyGaxUkk2ZeWxGuhNFiweHCI6ygWpq6vFu+++hSNHDqGjox0pKWl48MFHER4eccpjDQYDbr31enR2dmLFinUAgLa2NixZ8jccP34MUVExePrpfyAo6H8DYSsqyvHQQ/fivfc+hZeX1xlzLF26BJWVFfjPfz485WvPPPME6uvr8Oab7wEA7rnndmRkpEOh+N+PCx8fXwwZMgy33XYX/P0DTnmcxWKBSqVCVFQMJk6cjAULFkGlsu8dItKvQ1Hf2FmMwoZOxPqzwEREjuetPSVQyiXcMfrUdc0e2du6/tBDD8LJyf2Uxzniuv5bMknC7aMj8ejabGzOqcfsZA74JbIXW/IbIJeAibFsG3O6NW3JkiXw8jr1JLktrGm2eK06JcEfnxyowHt7SzElwR8Kzrkhsjnc0U42Q280Y3l6NUZHeSPS10V0nPNmMpnwyCP3o6lJiw8++Axr1/6ApKQUPPTQvejp6Tnl8R9//D7q6k4ervnNN19AoVBgw4YfkZCQiA8/fPfE18xmM/7xjyX4858fPOsHlwsxZcp0bNu2F9u27cWPP/6E119/GzU11XjkkfthNptPedz27fvwzTerceON/4fNm7/HnXfegvb29l7NZI3mJGugkktYcaxadBQion53sLQJP+Y34vphYfBzcxIdp8/Z47p+9913cV0/g4mxvkgIcMP7+8pgNJn/+BuIyOr9t23M8AhveLkoRccR6kxr2h133Gaza5otXqvKJAl3jI5ERYsOa4/zpDSRLWKhnWzG5tx6NHUZcM2QUNFRLkh5eRmKigpx6613ws/PHy4uLrj11jthNBqxZ8+ukx6bm5uDVauWY/Hia0/5/UsuGQOVSoXRo8cgOzvzxNe++uozhIVFYOzY8X36PCRJQmhoGO64424UFOSjvLzstI/z9vbBqFFj8O9/v4v29na8++5bfZrLGng5KzFtQAA2ZNWhXWcUHYeIqN8YzRY8sz4Hge5OuH64ba7T58se1/Xc3Fyu62cgSb+c1Khq1WFdVp3oOETUC3LqOlDdqsPUeLaNscc1zVavVcfF+GBwiAfe+akMHT28piSyNSy0k02wWCz4+kgVYvxcMCKid++A9xdJ+uXY12/vqstkMnh4eCA3N/vE7xkMBvzjH0tw++1/gkYTeNo/AwBMJjNksl/ewsXFhVi/fi2mTZuJu+66BTfddA2++urzvnw6MP26m+u3x/ROx9XVDQsWXI6tWzed9Nzt1eLBwdAZzViXVfvHDyYishOrjtUgt64dD0yIhlopFx2nX3Bdd4x1/bfGRvsgNcgdH+wrg85gEh2HiC7SlrwGKGQSJsT5io4i3JnXNE+uaf1MkiQ8ODEGLd0GfPhzueg4RHSeWGgnm3CoogUFDZ24ZkjoSQu4LQkLC0d0dAw++OAd1NXVoqdHh5Url6GqqhKtrS0nHvfRR+/By8sbCxZcccqfkZKSip9//gk9PT346addSE0dCKPRiKVLn8ZDDz2KN998HZdddgX+/e938dVXn6G4uPCMeTIzMzBp0uhT/rd16+azPg+z2Yzy8jK8++6bGDRoCEJC/njnYkREFDo6Ok56nvZqgMYdacEeWJ5eDbOFA9OIyP41d+nxzk+lGB3ji4lxjtPj1h7X9WHDhnFdPwtJknD3pVGo79Dj26NsE0dkyywWC7bmNWBkhDc81I7dNgY485pWWVlhs2uaLV+rDtC4Y26KBt8cqUJ5c7foOER0HjgMlWzCV4er4OOixPTEUwex2Aq5XI4XXngVb7zxT9x887VQq9WYMWM2Ro4cBbn8l7dibm42Vq9ejo8++vK0NxSuvPJqPPvsk5g/fzpiY+Px1FPP4dNPP0RycgqSk1NQWJiPsWPHwdXVDWlpg5CefhTR0bGnzZOSknbWATO/tXXrZuzY8eOvv5Lg5+eHkSNH49Zb7zinGx8mk+nEa+AIFg8OxuMbcrGvpBljon1ExyEi6lNv7ylFl8GEJ2Yl2uzN8Athj+v6Qw89AIDr+tkMDfPCmCgffHKgApelBbJAR2SjMmvaUdvegzvHRIqOYhXOtKaNGTPWZtc0W79WvWtsFLbmNeKV7YV4fUGKQ33GIrJlLLST1Str6sKe4ibcNiocTgrbPoQRHByCF1987aTfu/XWGxAfPwAGgwFLly7BbbfdheDgkNN+v6urG1544dUTv87NzcH27VvxwQefn7gD7+zs8uv/q9HW1toruadMmY4nn3z2gr8/Pz8Xvr5+8PDw7JU81m5SnB/8XFVYdrSKhXYismvZte1Yc7wWVw8NQWyAG1paukRH6lf2tq57ebmc039DR1vXf+/uSyNx7WdH8OmBStw7Lkp0HCK6AFvzG6CUSxgXw7Yx/3W6Ne2OO27C6NGX2uSadq6sdU3zc1XhjjEReG1HMbYXNGISZwkQ2QTbrlqSQ/jmSBWUcgmXDwwWHeWibd++FWVlpSd+3djYiIKCPAwZMgyZjT0zgAAAIABJREFUmRkoKSnGRx+9h9mzJ2P27Ml47bWXUV9fh9mzJyMjI/2kP0uv1+P555/Go4/+HWq1Gq6ubgCA9vY2AEBLS+uJ3xOptbUFa9euxqxZc0VH6TcKuQwLBwZhX2kzypocq+hERI7DbLHg5W2F8HZR4rZREaLjCMF13THF+bthRmIAlh2tQl17j+g4RHSezL+2jbkkwhvuau49/K/TrWm5uTlc0wS6cnAI4v1d8cr2InTqORiVyBZwVSGr1tptwPqsOswYEABfV5XoOBdtw4a10Ol0WLr0JQDA888/g0GDhiA1dSD0ej1Wrdpw0uO3b9+KZcu+wjvvfAQvL++Tvvb++//ByJGjkZo6EADg5uaGqKhobNu2FWPHjkNm5jHceefd/fPETsNoNOLo0cP4979fRVBQMG688f+EZRFhQVoQPvq5HMvTq/HwpNMfiSQismXrM+uQWdOOJTMS4ObkmB8pua47rjvHRGJrfgPe31eGv0+LFx2HiM7D0cpW1Hfoce84221L2hdOt6YNGzaMa5pACpmEx6bG4Zav0vGfPaW8riSyAY55VUQ2Y8WxauiMZlw99PTH02zNX//6JF566TksWjQfMpkMY8ZcivvuexgAoFKpEBCgOenx7u4ekMlkp/x+RkY6Dhz4Ge+//+lJv//oo0/gueeewvvv/wfXXnsj4uIS+vYJ/c5v++NJkoTQ0DBMnToTixdfA5XK9m+UnA8/VxUmx/thfVYd7hobCVcVf9wSkf1o7tLjX7uKMSjEAzOTHLdQwXXdcQV7qnH5wGB8e7QK1w4NRZSvi+hIRHSONmbXw0Upx4RYto35rdOtaU8++QQsFq5pIqUEeeCKQcH49mg1Jsb5YWiYl+hIRHQWksViOacHNjS0n9sDz8O59oF0ZI78GnXpTZj3/n6kBnvgtQUpZ3ycI79G54qv0R/ri9foeHUbbvk6HY9MjsWiQbbf+oj/jv7Y+b5G/v7ufT7VqC/W775i7//G7On5PbUxFz/kNuDLG4Yg2tcVgH09v9Ox9+cH2P9z7O3n19ylx4IPD2J4uBdenp/ca3/uheJ/v/7TH+v3+eiNtd6aXt++pDOYMOOdnzEh1hdLZg447WMc5bU4F3wt/kfka9FtMOHazw7DZLbgqxuHCt/ExX8X/8PX4n/s8bW4kPWePdrJaq3OqEGrzoibR4aLjkJ0QVKC3JEU6I5vjlTBZLaZWicR0VkdKGvG99n1uGFE2IkiO5Ej8nZR4frhodhRqMXhihbRcYjoHOwubkKn3oSZSZo/fjCRlXBWyvHUjATUtvfgtR3FouMQ0Vmw0E5WqcdoxheHKjEszBNpwR6i4xBdEEmScN2wUJQ3d2NnkVZ0HCKii6YzmPDC1gKEealxC2+EE+HaoaEIdHfCq9uLeFOdyAZszK6Dv5sKw9h+g2zMwBBPXDcsDGuO12JPMa8tiawVC+1kldZn1aKxU8/d7GTzJsb5IcRTjc8OVOBcW3UREVmrjw9UoKJFh79OiYOTgh8jidRKOe4dF4X8hk6sz6oVHYeIzqK5S4+9pc2YMSAAcplVdf8hOid3jI5ArJ8rnvuhAC3dBtFxiOg0eIVEVsdoMuOzAxVICXLH8HDuNCDbppD9sqs9q7YdR6taRcchIrpgxdpOfHagArOTAjAiwlt0HCKrMTXBH2nBHnh7Tyk6eoyi4xDRGWzJa4DJbHHoId5k21QKGZbMTEBrtwEvbi3kRi4iK8RCO1mdTbn1qG7rwc0jwyFJ3GlAtm9Osgbezkp8dqBSdBQiogtitljw/JYCuKrkuG98tOg4RFZFkiQ8ODEGTV0GfLy/QnQcIjqDjTn1iPN3RZy/m+goRBcsIcANt4+OwNb8Bqw8ViM6DhH9DgvtZFVMZgs+2V+BOH9XXBrtIzoOUa9QK+W4cnAwfippQmFDp+g4RETnbe3xWqRXteHP46Ph7aISHYfI6iQHumN2sgZfH6lEZUu36DhE9DtlTV3IrGnHzETuZifbd+OIMIyJ8sEr24uQUd0mOg4R/QYL7WRVthc0oqy5GzeNCONudrIriwYFQ62Q4YtD3OlGRLZF26nHv3aVYEioJ+Yma0THIbJad4+NhFyS8K9dJaKjENHvbMyphwRgBgvtZAdkkoRnZiVA4+6Ev67LhrZTLzoSEf2KhXayGiazBe/vK0O4tzMmx/uLjkPUqzydlbgsLQibchtQ26YTHYeI6Jy9tqMIOqMJj02J401worPwd3PCTSPDsL2gEQfKmkXHIaJfWSwWbMypx/BwL/i7OYmOQ9QrPNRKvDgvCW06Ix7fkAOjmf3aiawBC+1kNTbl1KNY24W7xkRyCjzZpWuGhgAWC74+UiU6ChHROdldpMXm3AbcNCIMkb4uouMQWb1rh4Yi1EuNl34shN5oFh2HiABkVLehulWHWUk8lUX2JSHADX+bGofDFa14k6epiKwCC+1kFfRGM97dW4pEjRsmxfuJjkPUJ4I81Jg2IACrM2rQ0mUQHYeI6KzadUY8v7UAMX4uuHlkuOg4RDZBrZTj4UmxKGvuxpeHOQSdyBp8d7wWLko5JsbxOpPsz6wkDRYNCsaXhyvxfXad6DhEDo+FdrIKKzNqUNPWg7vHRkHGY+lkx24aGQadwYzPDrJXOxFZtzd2FUPbqceT0xOglPMjI9G5GhPlg0lxfvjw53JUt7JdHJFI7TojtuQ1YHqiP1xUctFxiPrEAxOiMTTME89uzsfhihbRcYgcGq+aSLhOvREf/VyOYeFeGBHhJToOUZ+K9nXFjMQAfJtejUYOrSEiK7W/tBlrjtfiumFhSAp0Fx2HyOY8MCEaMgl4ZXuR6ChEDm1Tbj16jGYsSAsSHYWozyjlMrw0LwlhXs74y5pslGi7REciclgstJNwXx2qQku3AfeMjeSQNXIIt42KgNFkxqcHuKudiKxPl96EpVvyEeHtjNtGsWUM0YUI9FDjtlER2FWkxc5Creg4RA7JYrFgdUYNEgLckKjhTWOybx5qJV5fmAKlXML9q45Dy01dREKw0E5CNXfp8cWhSkyK80NykIfoOET9IszbGbOTNVh5rBp17T2i4xARneSt3SWobevBE9PjoVbymD3Rhbp6SAiifV3wyvZC6Awm0XGIHE52XQcKGjqxIC1QdBSifhHsqcarC1LQ1GXAA6sz0c21h6jfsdBOQn28vwI6owl3jYkUHYWoX/3fJRGwWICP95eLjkJEdMLRylZ8m16NxUNCMDDEU3QcIpumkMvw6JRY1LT14P19ZaLjEDmc1Rk1UCtkmD4gQHQUon6THOiO52YnIq++A4+ty4HRZBYdicihsNBOwpQ3d2PFsWrMTQ5EpK+L6DhE/SrYU435qYFYc7yWg9KIyCroDCY8uzkPwZ5q/GlspOg4RHZhSKgX5qcE4stDlcipaxcdh8hhdOqN+CG3HtMG+MPNSSE6DlG/Gh/ri0cnx+KnkiYs2ZQHk9kiOhKRw2ChnYR5bUcRVHIZ7hwTIToKkRC3jAyHTAI+/Jm73IhIvHd+KkNFiw6PT42DM1vGEPWa+8ZHw9tFhWc353NnIVE/2ZzbgG4Dh6CS41o4MBj3XBqFzbkNeHlbISwWFtuJ+gML7STET8VN2FPchP+7JBx+bk6i4xAJEeDuhMsHBmNDVh3KmjgZnojEOV7dhq+PVGJBWiBGRHiLjkNkV9zVCjw6ORYFDZ34/FCl6DhEDuG7jBrE+bsiOZBDUMlx3TgiDDeOCMPKYzV4a0+p6DhEDoGFdup3BpMZr+4oQri3M64aEiI6DpFQN44Ig5NCjn/vKhEdhYgclM5gwpJNefB3c8Kfx0WLjkNklybE+WFKvB/e31eGUi1vrhP1pdy6duTUdeCy1EBIkiQ6DpFQd4+NxOUDg/DpgQp8eqBCdBwiu8dCO/W7b45Uoby5Gw9NjIFSzn+C5Nh8XVW4eWQYdhZpcaCsWXQcInJAb+0pRXlzN56cHs8+tkR96OFJsXBWyvHsD/kw8wg/UZ9ZnVELJ4UMMxM1oqMQCSdJEv4yKRbTB/jjzd0lWHWsWnQkIrvGKif1q8aOHnywrxyXRvtgdJSP6DhEVuHqoaEI9lTj1R1FMHJQDRH1o0PlLfjmSBWuHBTMljFEfczXVYUHJ8Qgo7oNy4+y0EHUF9p0BnyfXYdpCf5wV/PmMREAyGUSlsxIwNhoH7ywtRA/5NaLjkRkt1hop3715u4SGMxmPDAhRnQUIqvhpJDhvvHRKGrswncZNaLjEJGD6Ogx4pnNeQjzUuOecVGi4xA5hFlJARgV6Y03d5egvLlbdBwiu7M2sw46oxmL2aKU6CQKuQzPz0nE4FBPPLkxD7uKtKIjEdklFtqp36RXtmJDdj2uHRqKMG9n0XGIrMrEWF8MDfPEOz+Vok1nEB2HiBzA6zuLUdfeg6dmJMBZKRcdh8ghSJKEv0+Lh1Iuw5KNeTzJRtSLTGYLlh+twuBQTyQEuImOQ2R11Eo5XrksGQkBbnhsXTZblxL1ARbaqV/0GM147od8BHs44eaR4aLjEFkdSZLw4IQYtPcY8cG+ctFxiMjO7SnWYs3xWlw3LAwDQzxFxyFyKAHuTnh0ciyO17Th84McTEfUW/YUa1Hd1oOrBgeLjkJktdycFHhjYQrCvJ3x8JosZFS3iY5EZFdYaKd+8eHPZShr7sbfpsbDRcVdc0SnEx/ghvmpgfg2vRql2i7RcYjITrV0G/DcDwWI8XPBHaMjRMchckjTBvhjSrw/3ttbhrz6DtFxiOzCN0eqoHF3wrhYP9FRiKyal7MSb16RBn83J9y36jjy6rgOEfUWFtqpz+XVdeCzAxWYm6zByEgOWiM6mzvHREKtkOHlbYWwWHicnIh638s/FqKl24CnZwyASsGPgkQiSJKER6fEwtNZiac25kJvNIuORGTTcuvacaiiFYsHB0Mhk0THIbJ6fq4qvHVFKtxUCtyz8jiKtZ2iIxHZBV5dUZ8ymsx4ZnMevFxUuH9CtOg4RFbPx0WFuy+NwoHyFqzPqhMdh4jszJa8BvyQ14DbRoUjQcP+tUQieTkr8cT0eBQ1duHdvaWi4xDZtC8OVcJVJceCtCDRUYhsRqCHGm8vSoNcJuGeFcdR2cIh3UQXi4V26lNfHKpEfkMnHp0cCw+1UnQcIptw+cAgDArxwOs7i6Ht1IuOQ0R2or69By9uLUBSoDtuHMF5KUTWYEyUDxamBeHzg5U4WM6hdEQXoqZNh615DbgsNQhuTgrRcYhsSpi3M968IhV6oxl3L89AXXuP6EhENo2FduozpU1deH9fGSbH+2FiHPvkEZ0rmSTh8anx6DaY8M9thaLjEJEdMFsseGpTHnqMZjwzM4HH6omsyP0TohHu7Ywnv89DcxdvsBOdr68PVwGShKuGcAgq0YWI9XPFv69IRavOiLuXZ6CJaxHRBWOhnfqE0WTGUxvzoFbK8fCkWNFxiGxOpK8Lbr0kAlvzG7GzsFF0HCKycV8crMSh8hY8PCkGET4uouMQ0W84K+VYOicRrToDntmczxktROehpduANcdrMS3BH4EeatFxiGxWosYdry9IQW17D+5ZcRxtOoPoSEQ2iYV26hPv7StDdm07Hp8aBz9Xleg4RDbphuGhiPN3xYs/FqKjxyg6DhHZqOzadrz9UykmxflhXkqg6DhEdBoJAW64f3w09hQ34esjVaLjENmMZUeq0GUw4cYRYaKjENm8QaGeeGV+MkqbunDfqkx06nkNSnS+WGinXneksgWf7K/AvBQNJsX7i45DZLMUchkenxYPbace/9pVLDoOEdmgLr0JT3yfC18XJf42NQ6SxJYxRNZq0aBgjI/xxb93lSC3rl10HCKr19FjxLKj1ZgY54cYP1fRcYjswshIbzw/JxE5te146Lss6Awm0ZGIbAoL7dSr2nQGPPl9HkK91HhoIlvGEF2s5EB3XDM0FKszarGnWCs6DhHZmFe3F6GiuRvPzBoAT2cOJSeyZpIk4e/T4+HjosTjG3K5k5DoDyxPr0Z7jxG3jORudqLeND7WD0tmDsCRilY8ui4bBpNZdCQim8FCO/Uai8WC57cUorFTj2dnJ8JFJRcdicgu3DUmEnH+rnh6Uz4aOzgFnojOzeaceqzJrMWNI8IwNMxLdBwiOgdezko8O3sAKlu6sfSHAvZrJzqDLr0JXx2uwpgoHwzQuIuOQ2R3ZiQG4LGpcdhb0ownvs+F0cz1iOhcsNBOvWZ9Vh225jfgjtERSA7khx2i3qJSyPDc7AHoNpjw9KZ8mHnRTUR/oLSpC//YUoCBwR64Y3SE6DhEdB6GhHrhzjGR2JLXgGVHq0XHIbJKy45WoaXbgP+7JFx0FCK7tSAtCA9MiMaP+Y147gdehxKdCxbaqVcUNXbipR8LMSTUEzcM59E9ot4W7euKBydE4+eyZnx9mEPSiOjMdAYTHluXA5VChqVzEqGQ8+Meka25cUQYxsX44vWdxThW1So6DpFVadcZ8fnBSoyN9kFqsIfoOER27Zqhobh9dAQ2ZNXhn9uKeNKK6A/wyosuWkePEY+szYaLSo7nZg+AXMZBa0R9YUFaECbE+uLN3RySRkRn9vK2QhQ1duKZWQnQuDuJjkNEF0AmSVgyIwFBHk54bH0OtJ160ZGIrMYXhyrQ3mPEnWMiRUchcgi3XhKO64eFYnl6Nd7cXcpiO9FZsNBOF8ViseDpTXmoaunG83MT4e/GC3qiviJJEh6fFg/vX4ekdek5AZ6ITrY+qxZrM+tw8yXhGBXpIzoOEV0Ed7UCL81LQpvOiMc35LA/LhGApi49vj5ShSnx/kgIcBMdh8ghSJKEe8dF4fKBQfjsYAX+s7NYdCQiq8VCO12Uzw5WYkehFn8eH40hoRy0RtTXvJyVeGbmL0PSnt2cz90ERHRCYWMnXthaiKFhnrh9FPuyE9mDOH83PDYlDocrWvHW7hLRcYiE+2BfOfRGM+4Yw3WOqD9JkoRHJsdiVlIAXvuxAF8fYTtTotNhoZ0u2IGyZry9pwRT4v1x9ZAQ0XGIHMawcC/8aWwUtuY34ItDlaLjEJEVaO024OHvsuDmpMBzs9jGjciezE7WYNGgYHxxqBJrM2tFxyESprSpC6syarAgLQiRPi6i4xA5HJkk4YnpCZiWpMGr24uw5niN6EhEVoeFdrog1a06PL4hFxHeLnhiejwkiRf0RP3phuGhmBzvhzd3l2B/abPoOEQkkNFswd/W56C+owcvz0uCH9u4EdmdBydEY0S4F57fUoDDFS2i4xAJ8dbuEqgVMtw2mrvZiURRyCS8umggRkV6Y+kPBfght150JCKrwkI7nbeOHiPuX50Jo9mMl+YnwUUlFx2JyOFIkoQnpycg0scFj2/IQVVrt+hIRCTIGzuLcaC8BY9NiUNqsIfoOETUBxRyGV6Ym4RQLzUeXZuNyhau++RYjlS2YEehFjeOCIOPi0p0HCKH5qSQ4aV5SRgU6oknN+ZhW0Gj6EhEVoOFdjovRpMZf12XjfLmbrw0L4lH9ogEclHJ8c/5yTBbgEfWZENn4HBUIkezNrMW3xypwtVDQjA3JVB0HCLqQ+5qBV69LAUA8MDqTLTrjIITEfUPo9mCl38sQqC7E1uWElkJtVKO1xYkI0njjr+ty8b32XWiIxFZBRba6ZxZLBa8vK0I+8ta8LcpcRge7i06EpHDC/N2xrOzBqCgoRNPb8qDmcNRiRxGRnUbXthagJERXvjz+GjRcYioH4R5O+PFeUmobNHhsfXZMJjMoiMR9bkV6dUobOzEAxNjoFbyNDWRtXBVKfDmFakYEuaFpzbmYXl6tehIRMKx0E7n7MvDVViVUYMbR4RhXip3zRFZizHRPrh3XBS25jfi37tKRMchon5Q3tyNh77LgsbdCUtnJ0LB4adEDmNomBf+NjUO+8ta8NTGPJjMvMlO9quxU493firFJZHemBjrKzoOEf2Oi0qO1xakYFyML176sRAf7y8XHYlIKIXoAGQbtuU34F87izE53g9/GhspOg4R/c51w0JR09aDLw5VIshDjSsHB4uORER9pLFTj3tXHgcAvLEwFZ7OSsGJiKi/zU0JREu3Af/aVQI3JzkemxInOhJRn3h9RxF6jGY8PDEGksSbykTWyEkhw4tzE7FkUx7e3lOKdp0R94yLgozvWXJALLTTH9pX2oTHN+QiJcgDS2Yk8IclkRWSJAkPTYxBbZsOr2wvhMbdCeO564fI7nTqjXhgVSaaOvV458o0hHs7i45ERIJcPzwMbTojPjlQAXcnJZ6Ylyw6ElGv2lOsxebcBtw2KhwRnA1GZNUUchmemTUA7k4KfH6oElWtOjw9M4HtnsjhsHUMndWxqlb8ZU02onxd8MbCFP6QJLJicpmEpXMSMUDjjsc35CCrtl10JCLqRQaTGY+uzUZBQwdemJuE5CAP0ZGISLA/jY3E5QOD8NnBCry7q1h0HKJe06k34oWthYjydcFNI8JFxyGicyCTJDwyORYPTIjG9oJG3L7sGBo7ekTHIupXLLTTGeXVdeC+VZnQuDvhzStS4a7mAQgia+eslOPVy5Lh66rC/asyUdjYKToSEfUCs8WCZzfn/zKQfFo8xkT7iI5ERFZAkiT8ZVIspiX4459b8vHNkSrRkYh6xZu7SlDf3oO/T4uHSsGyBZGtkCQJ1wwNxcvzk1Ha1IWbvkpHfn2H6FhE/YYrFp1WqbYL96w8DncnBd66IhU+LirRkYjoHPm6qvDm5alQyiXcvTwDJdou0ZGI6CKYLRY8tzkfG3PqcdeYSMxL4UByIvofuUzCkpkJmJqowSvbi/DFoUrRkYguyt6SJqw4VoOrh4YgLZint4hs0fhYX7y/eBAsFgtu/SYdm3LqRUci6hcstNMpChs7cdfyDMgk4K1FaQj0UIuORETnKczbGW8vSgMA3LU8A2VNLLYT2SKT+Zed7Ouy6nDbqHDccgmPzxPRqZRyGd5YPBBT4v3xxs5ivPNTKSwWi+hYROetpcuAZzbnI9rXBX8aGyU6DhFdhASNGz6+ZjDi/d3wxPe5+MeWfOgMJtGxiPoUC+2E6uoq3HPP7Rg7dhh2ZhTgzmXHIEnAf65MQ96hnbjllmsxdeo4XHXVArz77lswmf73g7GlpQVLljyOBQtmYcaMifjzn+9Ebm7OWf++Zcu+xDXXXI4pU8Zi4cLZ+Oc/n0d7O3tJk/347Xuqpqb6pK9t2bLprO+pqqpKPP74XzBnzlTMmDER9913F/Lycs/6961atRzXXbcIU6deikWL5uHDD9+F2WxGpI8L/nNlGsxmC/60PAOVLd198nyJqG/8UmTPw/qsOlydoEbGV/+4oJ8rF7JWWywWrFy5DFOnXoqlS5f0xdMjsisXs/ZfyHv0++/X4aabrsHUqZdi4cLZ+OKLT6CUy/Ds7AGYl6LBhz+X4+lNeTCYzH3yfIn6gsViwdIt+WjtNuDZWQPgdA4tY8723jubBx+8F2PHDruYuER2qbi4CI888gBmzZqMSZNG45ZbrsXu3TvO+Pg/WuMC3J3wzpVpuGF4GFZn1OKWr9NR3szrUrJfLLQ7uJ07t+OOO25GYGAQAOCJDTlwdVLg/asGorU8F0uXLsF1192MDRu2YunSl/HDDxvx6acfnvj+J5/8K1pamvHuux9j1aoNSE0diIceugetrS2n/fvWr/8O7733Nh5++DFs3rwTb7zxH6SnH8Ubb/yzX54vUV/7/Xvqt44ePXzW91RPTw/uv/9uODu74OuvV2HlynXw9w/AI4/cj56e0w+R+e67lXjvvbfw0EN/xaZNO/DEE89g2bKvsGLFMgBAtK8r3l6Uhh6jGXd9m8EPNUQ2wmS24JnNediQXY/p7rXY/u7fL+jnCnD+a7Ver8d9992FHTu2ISBA02fPkcheXMzaD5z/e3Tbtq148cXncOONt2Djxu144YVXsGbNaixb9g0UMgl/nxaPO0ZHYEN2Pf68KhPtOmOfPXei3rTsaDV2FGrxp7GRiA9w+8PHn+29dzbr1n2H7OzjFxqTyG7pdDrce+/tCA0NxYoVa7Fp0w6MHz8Jf//7oygpOXXg9rmscQCgkMtw77govLYgGfXtPbj+8yNYm1nLk1dkl1hod3Dt7a146633EZI2FgDg56bC+4sHIsTTGStXLsOoUWMwadIUqFQqxMTEYvHia7Fy5TKYzWYUFxfiyJFDuPvu+xAQoIGLiwtuvvk2SJKEzZs3nvbvy83NQXR0LIYMGQa5XI6wsHCMGXMpcnKy+vNpE/WZ/76npk+fdcrX/ug9pdU2YtCgwbj33gfg7u4OV1c3LF58DbTaRpSVlZz27zMYDLjrrj9j8OChkMvlSEsbhKFDh+HIkYMnHhPr74q3rkiDzmjGrV+nI6eOJ0iIrJnOYMKja7PxfXY97hgdgUuCVRf8c+VC1uqenh6MGHEJ3njjP/Dw8Ozrp0tk8y5m7b+Q9+j27VsxdOhwTJw4BQqFAvHxA3DddTfiyy+/APDLILpbR0Xg6ZkJSK9sxa3fpKO2TdenrwHRxcqsacMbO4txabQPrh0Wek7fc7b33pnU1dXi7bf/hRtuuOVCoxLZre7ubtx55724/fa74eLiCpVKhcsvXwyTyYTi4qJTHv9Ha9zvjY32xRfXD0GCxg3Pbs7HfasyuT6R3WGh3cHNmXMZDjQp8d7eMgDA87OTEODuBADIyspEYmLySY9PSkpGa2srKivLkZWVCaVSidjY+BNf/++H/ays0+8QGDduIkpKinDw4M8wGo2orq7C3r27MWnS1D56hkT9a86cyxAeHnHar/3Reyo4OASPP74Enp5eJ75eXV0FuVwOPz//0/6ZixZdhfnzF574tcViQU1NzSm7UBM0bvjgqoFQK2W4c1kG9pc1X+hTJKI+1NSlx53fZmBXkRYPTYzBraMiLurnyoWs1e7u7rjuupsgk/FjItG56O/3qCRJpxQwvLy8UFxcjK6u/81kmZVU3jvaAAAgAElEQVSkwb8uT0F9Rw+u/+Io9pU2XehTJOpTTV16PLYuBwFuKiyZmQCZJJ3T953tvXcmL774HObOnY8BA5IuJCqRXfP29sbcuZdBrf5lTl9raws++eQDBARoMGzY8FMe/0dr3OkEeqjxzpVp+MukGBytbMVVnx7Gdxk13N1OdoNXUA7MYDLj+S0FePHHQiQGugMAPJwVJ77e0tIMD4+Tp7z/twDY3NyMlpZmuLt7QPrdByFPTy+0tJy+iDdixCW4++778Ze/3I+JE0fhyivnIzo6BjfffFtvPjUiq/RH76nfa2iox+uv/xMLF14JHx/fc/o7Pv74fdTW1uDqq68/5WsRPi748OpBCPZU4/5Vmfghl5PfiaxJaVMXbv4qHYWNnXhpXhKuGhLyh9/TF2s1EfWevniPjv9/9u47PI7i/uP4+9S7VS13W27j3ghgTDUGQu+dJJBAQgst4UdJAdIDgZBAIAGSAKE7QEInNGOK6S5gjMfGXbYlS7asbpW7+/0xJ1uWZUuyruhOn9fz6Dlpb2935qu93dnvzs4eejjz53/KG2/8j8bGRtauXc3s2U8AUFVVudO8+w7J4cFzppKXnsiVzyzmnndX0exTMkN6jsZmH9c9t4SK+iZ+f+I4slISQ7au55//D6WlJVx44SUhW4dIrJg58wCOO+4IFi2az5133rNTZ7AWXT2/bRHn8XDm1IE8cf4+jCnM4DevL+eyf3/OivLa4FZCJAKUaO+lKuoaufzpL3j28418Z9/BXDyjaz0BoKNeBu2//+abr3H//fdy66138sYb7/HII7MpLi7m97//VRfXLxJrdv7OLF9uufji7zJt2jf44Q+v7vDTXq+XP//5Dp5++iluv/3P9O8/oN35CjKSuf+syUzsn8nPXlrKvz5ep94DIj3AZ+u2cuETC6lv9HLfmZM4bFR+EJa6d8dqEQmXvfuOzpp1JFdd9WP++c/7Of74I7nttt9y4omnAK43fFvD8tJ46NypnDSxHw99vI5LZy+itLr9Z7+IhJPf7+d3byxn0YYqbj7aMLYwM2TrKilxQ8bceONNJCcnh2w9IrFizpwPeOGF15k+/UAuu+xC1q5d08UldNzOHJSdyr1nTOKGI0ayrKyW8/71GXfMWaFni0hUU6K9F1pSUs35jy1gSUk1vzp2DFccUtTu7Xk5OblUVu7cK6bloUx5eXnk5ORSXV21S5KusnIreXnt97596qnHmTXrKPbf/wCSk5MpKhrOd77zXV555UXq6nT1UmJbR9+pFh988B6XX/4DTjzxFH7+818SHx+/x+U2NGzjhht+xCeffMh99z3IhAmT9jh/ZkoCd502kVmjC7j73VXc+OJX1DaqMSMSCT6/n4c+Wsvl//6cnNRE/nnuFMb3z+r4gwGhOFaLSPCE6jt62mln8fjjz/Daa3P5y1/uJzMzi+TkZLKzc9qdPyUxnp8dNZpfHTuGZZtcMuPlJaW62C4Rdf+8Nbz4ZSnfP2AIR5r2h0kMlltv/RXHH39Sh+1kEdkhJyeHCy+8mPz8vjz33DPtvN+589s9ifN4OG3yAJ757r6cNLE/T81fz+kPfsJzX2zEqzuwJAop0d6LNPv8/OPDNXzviYV4fX7uP2syR4/tu9v5J06cxJdfLt5p2uefLyQvL5+BAwcxceJkmpqasHbp9vebmpr46qslTJo0pd1l+nw+fD7vzuVqdn+roS+xrqPvFMBnn33CTTf9hBtv/DkXXHBRh8v0er385CfXUV9fz9/+9iCDBw/pVFlSEuP57fFjuPKQIuYsL+e7jy9k9Za6jj8oIkGztb6JH/3nS+55bzUzRxXw0HlTGZSd2qVlhOJYLSLBE4rvaHHxOl5//dWdps2b9x7Tpu3Tbo/21o4e25eHvzWVITmp3PyK5cpnF7NRD6KTCHhq/nr+/uFaTpxQyPcP6Ord1V1TUrKRTz75iBdffI7jjpvFccfN4sYbfwzAccfN4o03/hfS9YtEi/fem8vpp59AQ8POdz01NTW22/mrM+e3nZWdlsiNR47i4W9NZWCfVH792nLOefgz3lperlyRRBUl2nuJ4q31/ODJRfzt/TUcMTqfJ87fh3H99nxr3hlnnMvHH3/Am2++RmNjI0uXLuHJJx/jrLPOw+PxMHToMKZPn8E99/yJsrJN1NbW8Ne/3kVycjJHHvlNAJYsWcy5555GSUkJ4MaUfOut15k//1Oam5tZv76YJ598hOnTZ5CenhHyOIhEUkffqbq6On7zm1u4/PIrmTnziHaXMXfuHM499zS8XneB6umnn6S4eC233fYnMjK69h3yeDx8e9/B/OX0iVTUNXHBYwuYs7y82/UUkY59vqGKbz0yn4/XVnDdrJH89vgxZCTvOUHWnlAcq0UkeELxHa2srORXv7qJt99+E5/Px7vvvs3LL7/A97//g06VaVhuGg+cPYVrZ45g0fpKznroU56Yv149ByVsnl9cwu1zVnDYyDxuPHL0Ls8oCIbW35uCgr48++xL/OtfT/Lgg4/z4IOPc/31PwfgwQcf56CDDg36+kWi0fjxk9i2bRt33nkbVVWVNDQ0MHv2E6xfX8whhxy+y7loR8e4vTG2MJN/nDOZ358wFp/fz/XPL+GCxxfy0ZoKJdwlKng6u6GWlVUHfYvOzk5j61b1oNyT7sbI6/Pzn883ctc7K4mP83DDrFF8s1Uv9nPOOZXS0hJ8Ph/Nzc0kJibi8Xj45jeP5frrf8bcuW/x97//jeLideTk5HLyyafx7W9/d/tOs7q6mj/96Q+8//67NDc3MWHCJK666lqKioYDMH/+p1x55SU8+eR/GDRoMM3NzTzxxKO8+uqLlJRsJCUlhUMOOZxLLrm83YdrhCNGvYFi1LFgxag736n//e9lfvWrm0hKStplud/5zve44IKLePnlF/jtb3/B229/SEJCAmeddTIlJRvb7WHw1lvzOl3ukqptXP/CVywpqebECYVcc9iIXZJ+2o461tUYFRRkhnyQ7FAcv0Ml1rex7Ow0NpZV87f3V/Pk/PX0z0rhdyeM7XBM2nAfq1999SVuu+03gOtZ6/F4tveSffzxZ+jXr/9u6xfr/79Yrh/Efh1DVb9wf0cBXnjhv/zrXw+yeXM5AwcO5KKLLuGkk47vcv1KqrbxuzeWM29VBSPz07n6sOHsP7T94WcirSdtn+E4fndFMI714Yrvfz7fyG9fX87+Q7O54+QJJCfsfd+/PX33jjzy6F2+N621fK/ee+/TXd7rSdtapCkWO/SWWKxcuYJ77vkzn3++kLg4D0OGDOP88y/koIMO2X4uunDh59TUNAJ0eIzrjmafn5eXlPLAvDWUVDcweUAW391/CDOKckJygW5v9JbtojNiMRZ7c7xXor2H606MFhZX8oe3vmZZWS37Dsnmpm+Opl9WSpBLGHnajjqmGHVMMYImr48HPljDwx+vo29GMtfMHMHMkXnbGzGKUceUaO+eWN/Gviiv42f/+YINVQ2cOqk/VxxStFe92HuqWP//xXr9IPbrqPq1z+/38+aycu5+ZyUbqho4aHguVx0ynGF5aSEo5d7rSf8/Jdr3zpPz13PHnBXMKMrhthPHdyvJHko9aVuLNMViB8Vih3DHorHZx3+/KOGRT9ZRUt3AqIJ0LthvMLNGFxAfF9ndsbaLHWIxFntzvI+dszvZrqymgbveWcWrX22ib0YSvzluDEeagh5zxU9EeqbE+DguO6iIg4bn8bvXl3P980uYPjSHaw8fwdDcnnWyLRJNymsb+cs7K3lpySaG5KRy31mTmDZo7+7iEhEJNo/HwxGmgINH5PHk/PU8+NFazv7XZ5w8sR8X7Dc4JjvqSHj5/H7umruKxz4r5rCRefzmuLEk9dAku4j0PEkJcZw5dQCnTurHq0s38fDH6/jpS0u5591VnD5lACdO6Eef1MRIF1MEUKI9plTUNfLop8XMXrABr9/P9/YfzAX7DyE1cdchJUREdmfSgCwe+fY0nl64gb+9v5qzH/6M874xiCuPGB3poolEldrGZh77tJhHPy2m0evn0kOHc96UAT22B5+I9G7JCXGcv99gTphQyP3z1vDcFyU890UJJ07oxwX7D6a/Eu6yF2obm/nFq8uYs7ycM6cM4EczR0S8B6qIRKeE+DiOH9+PY8cVMvfrzTw5fz13vbOK++at4egxfTljygBMoZ79J5GlRHsM2FrXxCOfFvPvhevZ1uTjm2P7cvGMoQzKTo100UQkSiXEeTh72kCONAXc/e4qHv54Hc9+vpGzpw7g7GkDyUpRjwGR3Wn2uttbH/hgDVvqmjhidD6XHVTExKK8mLudUkRiT25aEjccMYrz9xvMwx+v47kvSnh+cQnHjS/k3H0GMjwvPdJFlCixanMd1z3/Jesq6rnmsOGcM22g7rIWkW6L83iYOSqfmaPyWV5Ww+wFG3jlq008t7iE0QXpHD+hH0ePKSAnbddnn4mEmhLtUWxtRT2zF6znhcWl1Dd5OWpMARdNH9rjxlMUkeiVl57ELUcbzpk2kIc/Xc8DH6zl8c/Wc9a0gZw9dYAaLyKtbGvy8twXJTz6aTEl1Q1MHdSHO04uYkL/rEgXTUSky/pnpXDDEaO4IJBwf36x6+E+fWgOZ08byAFFOcQpaSrt8Pv9PL1oI3+eu5K0xHjuOWMS+wzWkGkiEnyjCjL46VGj+eHBRfxvaRkvflnCH+es4K65KzloeC5HmgIOHJ5LepLSnxIe2tKijM/v58PVFTy1YD3zVlWQEOfhqDEFnL/fYPUuEZGQMX0zuPfcqXy8bBP/+HAt//xwLY98so5Zows4bVJ/Jg/MUg8l6bUq65v498INPLVgA1vrm5gyMIsbjhjFjKIcfS9EJOr1y0rh+iNG8YMZQ/nP5yX8e+EGrv7PYobkpHLyxH4cM66Q/HRdeBdnbUU9t725nI/WbGX6sBxu+uZoCjKSI10sEYlxfVITOXPqAM6cOoCvy2t5cXEpry7dxNtfbyYp3sP0YbkcPiqfA4tyyU7T3dkSOkq0R4kNldt4aUkpL35ZyobKbeSlJ/GDGUM5ZVJ/NWxFJGxG983g1hPHsXJzLc8s3MhLS0p59atNjMxP5+SJ/TjCFJCnfZL0EktLq3l64UZeXbqJhmYfBw3P5fx9BzNlUJ9IF01EJOhy0pL43vQhfHvfQby5rJzZCzZw1zuruOfdVRxQlMsJ4ws5aHieHnLZS1Vva+Zfn6zjsc+KSYqP4/pZIzltcn9dcBaRsBuZn87Vhw3nikOK+GJDFW8uL+etZWW8s2IzHmBMYQb7Dc1h/6HZTB7QR8ctCSol2nuwmoZm5ixYz+xP1/Hp2q14gG8MyeayA4dx+Oh8EuO1MxCRyBiel87/zRrJ5QcX8drSTTyzaCO3z1nBH99ewT6DsznKFDBzVL6e/i4xp77Jy5vLynhm0UYWb6wmJSGOY8f15cwpAxlZoDvLRCT2JcbHcfTYvhw9ti+rt9Tx4pelvLyklPdWbiEtMZ4ZRbkcNjKPGUW5ZKbodDPWVdQ18u+FG3hi/npqGrwcO64vVxwyXJ3BRCTi4uM8TBnUhymD+nDNYcP5qqSaD1ZX8PGaCh79tJiHP15HSkIcUwf1Yd8h2Uzsn8WYwgxSEuMjXXSJYmr59DA1Dc28s2Izb9gyPlxTQZPXz8A+KVw8YyjHjS+kf1ZKpIsoIrJdWlI8J0/qz8mT+rOivJbXbRmvLd3Eb15fzu/fWM7kgX04aHguBw7PpSg3Tb2aJCp5fX4+W7eVl5eU8tbycuqbfAzLTeXamSM4bnwhGclqTolI7zQsN40fHlzEpQcO4+O1FcxZXs7crzfzxrIy4uM8TB2YxbTB2Uwb1IcJ/bNIVq/BmNDk9QWOi5t4Y1kZTV4/h43M46IDhmL6ZkS6eCIiu4jzeBjfP4vx/bO46ICh1DY289m6Sj5eU8FHayq4651VAMR7YER+OhP6ZzG+fybj+2UyLDeN+Didx0rn6Mwwwvx+P2sq6pm3agvzVm1hfnElTV4/fTOSOGPKAE7eZzDDMhKVnBKRHm9Efjoj8tO5eMZQ7KYa3lxWzvurtnDXO6u4651VDMhK5sDheRw4PJd9BvVRTwHp0Xx+P4s3VvPmsjLesGVsqmkkIzmeo8b05dhxfZk6sI+OzSIiAfFxHg4YlssBw3K54Qi3/5z7dTkfrq7ggXlr8AOJ8R4m9MtkbL9MxhVmMqYwg8E5qXqgag/X7PVRWtNA8dZtLNtUw+cbqvhsXSXVDc2kJ8VzysT+nD5lAEV5aZEuqohIp6UnJXDIiDwOGZEHwObaRr4sqebLjVUs3ljNa3YTz36+EYDkhDiG56UxqiCdkQUZjMpPZ2RBOtm6e1vaoUR7BNQ3eZm/rpL3V23h/VVb2FC5DYCi3DTOmDKAWaMLmNA/kziPh+zsNLZurYtwiUVEOs/j8TCmMJMxhZlcfnARJVXbmLdqC++t3MILi91D1BLiPIzrl8nUQX2YNqgPkwZkqVewRFyz18eiDVXMWV7OnOXlbKppJDHew/5Dc7j6sEIOHp6rC0QiIh2I83iYNCCLSQOyuOIQqNrWxML1VcxfV8miDZU8vXADjV4/AOlJ8QzPS2dobipDc1IZmpvGsNw0BmWnaJjMCLtk9iIWra+i2effafqg7BQOG5nHoSPz2X9oto6LIhIT8tKTdkq8+/x+1m6p58uSapaV1fB1WS3vrtjC84tLt3+mICOJsf2zGNonheH5aRTlpTMsN5X0JJ3X9mYev9/f8VxAWVl152bsgt6SRN5a38Si9ZUsKK5i4fpKlm6qwevzk5wQx75DsjmwKJcZRbkM6LPrsDDREKN7772bP/zhd9TW1kS6KCIxIT09g//7vxu57LIrIl2UnQRjf9TQ7G41/mxdJQuKt7Kk1O0P4zxg+mYwZWAfxveL3l5uXY1RQUFmyCsYiuN3qETimLepuoEPVm9h3ip322hto5ekeA8zinI5fHQ+Bw/PC9pFoEge03WsFun5unv8j4bzBnAXNVdurmNpaQ1LSqtZvaWONVvqKa9t3D5PvAf6ZaVQmJm8/WdYYSZZ8R4KM5PJSUskKyUxYkPRhOP43RXBONa33X7++/lGiiu3kZoYR356EoOyUynKSyM3LXrGXtexTyQ0MjIyuPbanne+Gg6baxv5uqyW5eW1fF1Ww8ot9XxdVkOTd8duuF9mMsPy0hiel0ZRbhpFee4nKyW2e8BHSzukK/bmeK9Ee5Bta/LydXktyzbVsHRTDQvXV7Fqs6tjYryH8f0ymTKwD/sM7sPUQdkdNg6jIUYTJ46mtLQk0sUQiSmFhf344otlkS7GTkKxP6pv8vLFhirmF1eyoLiSL0uqaWj2Aa6X29jCDMYGbi8fVZDB4OwUEnpwDzcl2rsn1Mc8v99PSXUDC4ormb+ukgXrK1lbUQ9A34wkZhTlcmBRLvsOzQ5JT5RIHtN1rBaJDt05/kfDecOe1DQ0s6ainjVb6lhTUU9xRT2l1Q2UVjdQVtOAt52jWXJCHH1SEuiTmkhWSgLpSQkkxXtIjI8jKT6OvplJXLDfEJKCnJDvDYn2WKBjn0jo9MTz1UjIzk6jfEst67fWs3pLHSs317Gq5WdL3fZzW4D89CSKWhLwee4OruF5aeRE0QXMPYnF48jeHO91P8Neamz2sb5yG+u21rNqcx3LNtWwrKyGtRX1tNxdl5mcwMQBmRwz1o3lOrZfZkw+AOjSS69QTwGRIEpPz+DSS3tH74DUxHj2G5rDfkNzgF17uX1VWsOTC9Zv7yEQH+dhcHYKw1r1DBiak0b/rGSyU/U8C9nB6/NTUr2Nr8tq+aq0hqWlNXxVWs2WuibAHaOnDMzi5In9mD4sh5H56TG9/ehYLdLz9abjf3sykhMY3889eK4tr89PU0I8y4u3sqmmga31TVRta6ayvpmqbYHftzWxsWobjc0+mrw+Gr1+MlMSOHefQUFPtEt00LFPJDQyMnr38aqthDgPQ3PTGJqbxqEjd0z3+f1srNq2PfG+cnMdq7fU8eKXpdQ2erfPl52aSFFuKoNzUhmUncrgwM/A7BQNrxqF1KO9HX6/n+qGZsprGymvaaS8tpHNtY0Ub3WJ9eKt9ZRUNdA6IP2zkhldkIHpm8HovumM7ptBv8zkbp+099QY9SSKUccUo44pRh2LVIyavD5WltexYnMtqwKNk1Wb6yjeWr9T77aUhDj6ZSXTLyuF/lnJ9M9KIS89idy0RHLSksgLvIbygqd6tHdPV+PX5PVRXtvIpuoG1lbUs6ai3r1ucdtHyxjAcR4oyktjTGEm4wozmDqoDyPy08M+NFGs72dUv+gX63VU/aJbT6qferTHNsViB8ViB8ViB8Vih72Jhd/vZ1NNI6s2127vAb96Sx3rtm5jc6th1AByUhPp38cNpdY3I2mnIdUKMpLJTUvsMc/KiMXtIqp6tPv8fv7x/irWltUQ5/EEfiAuzkMc7jXe48HjYcdrnAePx0O8hzavrd9vmd+DB2j2+Wny+gKvfpp9Ppq9fuqavNQ0NFPT6KW2odn93uClalsT5bWN20/OW+uTksDgnFQmD+zD8eNTGJzjrjINyUmN+bGWREQiJTE+DlOYgSnM2Gl6k9fH2op61lXUs7G6gZKqbWyscq9LS2vYWt/U7vLSk+Lpk5pIRlI86ckJpCfFk54UT0bg96T4OBLiPSTGBV7j40iM8zB1UB+G5qaFo8q91rYmL2U1DVRua6Z6WzNV25qpbnA9Fau2NbO1volN1Q2U1TSyqaaBirqmnS56x8d5GNQnhaG5aRxYlMuQnFSG56czuiC9xzRARURERESk9/J4PNuT5dOH5e70Xl2jl+Kt9RRXbqO4op61W+sprWpg9eY6PlpdQV2Td5flpSTEkZ2aSE5a4vbXzOQE0pLiSU1057ppSfGkJcaTkhhPQpyHhHgPCXFxxMd53N9xnu2/x8e5fGpLXtXjYcffrX8PvNfSeSmhoZn6Ji8tmem4tvO3+j2WRS7R7vPz9Gfr2bC1Hq/fj9/vx+t308PR9c4DpCfHk5GUsP01Lz2JYXlp5Kcn7fjJSCIv8Ltu2RAR6TkS4+MYkZ/OiPz0dt/f1uRlc10jFXVNbKlrYkttIxX17vet9U3UNboLrmU1jaxubKa2wUttY3O7F1oBZo3O5/cnjAtllaLC+6u28L+vNuHz+/H7wecHP3736vfjDRzHff4d01q/Nvv8NDT7aGz20dDspcHrp7HZx7Zm704PEWrLA2SlJNA3M5mCjCRMYQZ9M5Lom5FMQWYyg7NTGdAnhYS42G64iYiIiIhIbEpLimd03wxG981o9/2ahmZKqxvYVNPApmrX8WhrfTNb6925bkVdE6u31FHT4KWusbnd55v0BNsT+C2drnd63fH79k7VtNf52mXuPcB+Q3P48cwREa6VE7HMcUJ8HK9ceVC7txW0Pin3+t3JutfXckLvXlsn591rYLqv1ftAYqsrNYnxLVdq4khJjAv7LeMiIhI+KYnxDOyTysA+qV36XEuyuKnNHVG5abpzCWD15joWbaja3sCJa9NA8hBoIMUF3qPlPTdfckIcWSkJpCTEkZQQR3KCe2BdckI8fbNTSfT7yExJJCs5gazUBDKTE7Y/4C5eSXQREREREemlMpITyEhO2G1ns9b8fj+NXj91jc3UNnqpb/JS1+jF6/fT7PXT7HPnva1fm30+fD7XkcrvB59bEH73Engm5Y73WoYj9/khJSWR+vrG7fncls+0LKv17y3LdZ22XKdrn7+ls1Y7v/v8+LbPt3NHLnDDefcUPbKLdssVCvD0zAKKiEjM8ngCF2jj3cNaZWfnfWMQ531jUEiWHYvj+omIiIiIiISb6+TkITkhiZwwjICqczlHj18XEREREREREREREekGJdpFRERERERERERERLpBiXYRERERERERERERkW5Qol1EREREREREREREpBuUaBcRERERERERERER6QYl2kVEREREREREREREukGJdhERERERERERERGRblCiXURERERERERERESkG5RoFxERERERERERERHpBiXaRURERERERERERES6QYl2EREREREREREREZFuUKJdRERERERERERERKQ7/H5/xH5uueWWWyK5/mj4UYwUI8VIMeopP4qRYqT4qX6qX+TLoTqqfqqffhRfxUKxUCwUi57xo1goFm1/It2j/eYIrz8aKEYdU4w6phh1TDHqmGLUMcWoe2I9fqpfdIv1+kHs11H1i26xXr9IU3x3UCx2UCx2UCx2UCx2UCx2UCzQ0DEiIiIiIiIiIiIiIt0S6UT7LyK8/migGHVMMeqYYtQxxahjilHHFKPuifX4qX7RLdbrB7FfR9UvusV6/SJN8d1BsdhBsdhBsdhBsdhBsdhBsQA8fr8/0mUQEREREREREREREYlake7RLiIiIiIiIiIiIiIS1ZRoFxERERERERERERHpBiXaRURERERERERERES6IaG7CzDGTASeADKstcNaTT8UuBUYB2wA/mSt/Vur9y8DrgAGAkuA/7PWvrubdWQD9wIzcRcH3gAus9ZWdrf84RCmGK0OzOdtNfkta+2xwaxLqHQjRvHATcBPgYustQ/tYR29dTvqSoxW0zu3o4uBq4HBwFrgVmvtw7tZRxJwJ3ACkA68j9uOikNRp2ALU4zeBg4CmltNXmGtHR/UyoTI3sTIGJMA/Br4FpANrMbF6JHdrCOq90edZYzZB7gN2AeoB+621v428N7ZwA3AKGAdcK219sXdLCc1sJyTcfFdDvzSWvvfkFdi17LEdLsnTPXLA/4AHAOkAB8C11hrl4aiTm3WHfL6tVnfVcCfgCJr7erg1WS36wtL/Ywx38G1LQYCXwFXdSYe3RWm7bMId5w/EPf9+wS3f1ocijq1s/6YbhOHqX4R28f0dLuLfzvznQ78DBgBrAR+Ya19NiyFDJPOxMIYcwHwIFIC//oAACAASURBVNDQ5q3DrbXzQlrAMDHGDAX+CBwSmDQHuNpau6Gdeff4PY12nY2FMeawwHttt4vvWmufCHU5w8EYMx33v54K1OHqe421tqSdeWN6f9HZWPSG/UVrxpg7cd8Pz27ej+ntYk+61aPdGHMm8CruhLf19H7AC8DDQCHwPeBWY8zRgfePA34H/ADoi9sYXzTGFO5mVQ8AecAUYGLg9/u6U/ZwCWOMAL5vrU1p9RMtydG9jVEq8A7uQF/biVX1xu2oqzGC3rcdnYY7GbsEl8D7OfAPY8y+u1nVb4AZwKHAcKAceDrY9QmFMMYI4NdttqNoSbLvVYyAW4BjcdtFH9wT1x8yxkzdzaqidn/UWcaYXFwsPwMGAIcD3zXGfNsYcwjwKO7iRA7wI+AxY8zI3Szul7jYHojbBm8F/m2MMaGtxc5ivd0Txvo9BAzB1W8osIUw7EfD3CbDGDMA+HGQq7Gn9YWlfoHP/QG4AMjF/T9/YYwJ6Z2yYfz/zQaqccf4QYAFXjLGtHsiGUyx3iYOY/0eIgL7mJ5ud/FvZ75JuGP0LUABrt33mDFmQqjLGC6djUXAmjZt2pQYS5q9gOsMMQIYj9sf3N92pk60hWNBp2LRop3tIlaS7DnAa8CzuBhMAvoDu1xUifX9RVdiERDr+wsAjDFTgG/v4f2Y3i460t0GcQZwAPBmm+nfAlZba/9qra0PbFiP4JI0AJcCD1tr37XWbrPW3ofrzXZO2xUEGsGnAjdaa0uttZtwV0VON8bkd7P84RDyGMWAvY1ROvCktfYMoGlPK+jF21GnYxQD9jZGqcBPrLVzrbXN1tpngK+Bg9uuwLhey98HfmWtXRXo+XU9sF/gYNPThTxGMWBvY/Q+cL61doW11mut/TdQiWuM7SQG9keddQDuosNPrbV11tqvcMmui3F3hLxnrX3aWttorX0ZeA6XuGvPfsAr1tq1gfg+hestEu7GWqy3e8JRPw9QDPw4UL8q4G5gfODiTCiFu032Z3Z/IhYK4arfdcCd1tr3Asu7y1p7uLXWF/wq7SQc22c8MA143Fpbba2tDyxrCO6iQqjFeps4HPWL5D6mp9td/Nv6AfCatfa/ge/M84HPXBTqAoZRZ2MR0wJ3t3wKXGetrQrsDx5gR4/u1jr6nka1LsYi1iXj7lT7s7W2KRCLZ4HJ7cwb6/uLrsSiVwh0rPgb7u6P3Yn17WKPujV0jLX2nwDtdCjbB5jfZtp84JRW77ftVTAfaK935BTADyxqNW0R4MHduvF6V8sdTmGKUYuzjTE34G6LfRu4xFq7vuulDq+9jZG1thzXcO6MXrkddTFGLXrbdvRo6zeMMcm4Hm/t1XkELnG4fXnW2jJjTDHuu7lw72sQemGKUYvDjTGn4HoELgAuDiRae7RuxOiVlonGmDRcI8KHux2/rajeH3VTBa7+H+Bi0N577XkeuMgY83fcrYctyZZ3QlTOdsV6uycc9bPW+nGJz9YGAzVAVZcL3QXhbJMZY47B9RQ+D3cnVMiFo36BRPQM4DljzIfAWNyx7zJr7ZfdKX9HwrR9eo0xL+PuvvkId4v4d4D3rbWbu1WBToj1NnE46hfJfUxPt4f4t7UP8L820+YDs0JQrIjoQiwAMo0xz+GGRazB3bX5QAiLFzbW2q24numtDab9Nn5H+9qo1sVYAGCMeRQ4ErdPvRv4XRguOoecdUOiPAjbL14aXGeYJ9uZPab3F12MBcTw/qKVi3Hto8fZfRs3preLjoTqFs883Alza1uA/E6+33ZZ1dba7WNGW2ubcLd0RnPPv2DGCFwiawGwPzAaNx7hM0EpaeR0NQYdLas3bkddpe0I7sKNOdje+GF5gddgxrwnCGaMwI1/+xWu4TkEN175K8aYlG6XNHI6FSNjzGzcbe1XASft5iJVrO6P2pqHq9NvjDFpxphhwA9xPRNfBA4xxpxqjEkyxszAnajltbcga+0duDF2l+ES7PcD51pry0JfjU6J9XZPsNss2xlj+gJ3AL+11jZ3NH+IBLV+gWEu/gJcaq1tDGI591Yw65eP6931PeC7uGE5VgPPG/cMk0gI9vb5HWAksBk3hMAxuJ6ckRTrbeJgt2e36yH7mGgTsv9HFCrDXYi6FTcM3o+AewMXU2NOYEi+nwG/auftXrVddBCLKlw79wncEGPnAP+HS0DGjMDwH43Al8DHuHi01Su2i07GIub3F4G74m5m1wvabfWK7WJ3uv0w1D3oaBzDroxzGPIxESMkaDGy1ra+klxpjLkSWGKMMdZau1el6xmC+b/vrdtRp/Xm7SjQS++vwBHAzMBJ514vLwoFLUbW2svafO5y3IH1UHa9sh1NOoyRtfZMY0w6cDZuTN8jrLWf7s2yop21tsIYcxJwO1ACLAXuwY3V/h6ugfY73Fi6b+B6i8xsb1nGmJ/hhnMYgxvy4SxgtjFmsrV2ZWhr0mmx3u4JZv0AMMYMx+0TXgN+vzeFCqJg1u9nwDxr7ZxulCfYglW/lvn+2nKXkjHmR7jnleyH+25HQjD/f7NxF4yPwvVS/DXuQsLU1snpCIj1NnHQy9TD9jHRpiduI2FnrX0JeKnVpGeMMc/iLsi90v6nopMx5hu4ut5hrX18N7P1iu2io1hYa+fjnhvUYo4x5j7cdvHX8JQy9Ky1nwcuohvcUCFPAGe2M2vMbxediUUv2V/8EXjAWmsDnaj2JOa3i90JVY/2MnbtlZYHbOrk+22XlWmMSWyZEPg9czfzR4tgxqg9qwOvA/amcD1Ed2PQdlm9cTvqrtWB15jejgJDoTyHS+QdaK1ds4dltXx+t8uLQsGM0S6stdW4RHtMb0ctrLW11tp/AB/R/jh0sbo/2oV1YzhPt9ZmWWv3wyXjNlo3zvr91loTeO9UIA03rm57rsSd7Fjrxnt/EPecgNPDU5MOxXq7J+htFmPMNNwQQrNxD+FuO5RQOAWtfsaYMbje3mF7CGonBHv79OL26QAEhlSpIXL7+GD+/8bhLib/xFpbHqjbDbhhgPYJZqG7KNbbxEFvz/awfUy0CfX5RbRbTXS3aXdhjPkmbvzkW6y1v9zNbL1iu+hkLNqzmhjbLsANx2WtXQrcCJwReChua71iu4BOxaI9q4mR7cIYMwvXqaIzQyL2mu2iPaFKtH8KfKPNtP1wt3135v3WFuB6k0xrNe0buEZ+2zHCoknQYmSMGWqM+WsgEdZibOC1p/T02xtd2U460lu3o07r5dvR47gk32HW2o17WNZK3C1Q25dnjBmAu2Vwb7bLniJoMTLGZBlj7g3EpWVaPu5p4zG7HRlj5hlj2j553Uf7D22L1f3RTowxKcaY7xhj+rSafBTwnjFmkDHm3DYfOZLd94aND/y0Fsq78roq1ts9wawfxpgRuJ49v7DW/rQHJMCCWb+zgBzc3WDlxpjywPT5xpjrglTergpa/QI9ui1uLG9g+z4+A+j0BdggC+b/L77NK/SMfU2st4mDWb+euI+JNkH9f0QzY8wlxpi2PXjHEt1t2p0YY/YHngK+Y63dU2/smN8uOhsLY8wZxpi2Q2fEzHYRqN9nbSa3jD3f9twmpreLrsSiF+wvvoV7jl9xoH07HyDQ3j27zbwxvV10JFQNx0eBmwPDBfwDmI57GNSxgffvwd1G8RjuH3AJkItL5GCM+SEumXO6tbY8MObtr40x5+EuDvwWeMRa23bMn2gStBjhrgqdCHiNMdfjHtZ4J/BSV3qd9kAdxWiPtB11TNsRGGPOwR0EJlhra9p+2LgHel5nrT0g8JC0vwE/Ne4haVtxw2K8FeqHwIVYMGNUZYyZDtxtjPk+7mT+XuAL4N2w1CY0OvquzQNuMsbMxyWhjsX1ivwj9Jr9UVuNwC3A5MA+5RDgQlxCPQV42BhTD7yAG8OwHy7OGGP2A/4FTLPW1uEehnq1MWYuO4aOMbix3nuCWG/3BLPNAm6f8Li19t7wVWGPglm/OwPLaG1dYFlLQlyP3Qn2/+8u4FZjzIu4B6H+AbeP/yQ81dlFMOu3FFgO/CowvRn4BbCKnR8eGm6x3iYOZnsWet4+psczxiwFLrHWvg3ch7s4eArwMu784GDg8siVMHzaxCIZ+IsxZiVuH3A6brs8IHIlDB5jTALwT+Bma+1z7bz/JvBPa+1jdPN72tN1MRaNwB3GmBXAHOAw3N1sF4StwKH1PjDSGPNz3LluJq5N/761dnMv2190JRYxvb/Ana/9vNXfg3B3jk0BtvSy7WKPupVoN8ZY3EOQ4oEEY8y2lreA43AN8TtwT2q+1Fr7DoC19jXjxnN8FHdivQg4tlXjLh8Y1mpVl+AayctxSZtngSu6U/ZwCUeMrLX1xpijcQmd9bixkJ4Frgl5BYNgb2MU6D3a8gTnZOCBQBL0EWvt99F21KUY9dbtCDe0x0CgzBjTepEtMeoDjGo1/Wbcwxw/w8X0Ndx43D1eGGN0MvAn3IMrU3Djbx9rrfXRw3UjRj/FNbrfBLJwPRcutNa+Hng/ZvZHnWWt9RljTsc9uLQKF7MLrbUfABhjLsDtbx7DJeu+aa2tCnw8DRfzljvvrsSN5z4XyMZtW6daa8OauIz1dk846meMGYy7s+GwdnqDHdXqOxV0YWqTVeG299brBShptX2HRLi2T2vtfcaYAuDfuN777wLHh3ofH6b/X5Mx5ljcvmk5bh/0MXCctbYhlPXrTh2jpU0cjvpFch/T03UQf4O7MwVr7RJjzFm4ce2fxG0np1prvw5/qUOjs7HAbZOZuP1df9xFt5OttZG6sBhsBwDjcBdPb23zngFG4PbzWGvLjDF7agtHu67E4jljzNXA3cAQ3LOIrrLWPh3G8oaMtXaDMeYo3LHwJ7h2zVvsGBKz1+wvuhILYnx/EWg3bb8gH7g4hbW2OPB3r9kuOuLx+3UnnYiIiIiIiIiIiIjI3grVGO0iIiIiIiIiIiIiIr2CEu0iIiIiIiIiIiIiIt2gRLuIiIiIiIiIiIiISDco0S4iIiIiIiIiIiIi0g1KtIuIiIiIiIiIiIiIdIMS7SIiIiIiIiIiIiIi3aBEu4iIiIiIiIiIiIhINyjRLiIiIiIiIiIiIiLSDUq0i4iIiIiIiIiIiIh0gxLtIiIiIiIiIiIiIiLdoES7iIiIiIiIiIiIiEg3KNEuIiIiIiIiIiIiItINSrSLiIiIiIiIiIiIiHSDEu0iIiIiIiIiIiIiIt2gRLuIiIiIiIiIiIiISDckRLoAIhI6xphC4FbgCCAL+AL4ubX2rQiU5SHgIGvtyHCvW0REJFSMMbcAP7PWql0tIiIiItKLqUe7SIwyxiQBrwKTgbOB/YDlwMvGmLFBXE+8MabGGDMsWMsUERGJIrcDAyNdCBERERERiSz1vBGJXUcCU4Cp1tqFAMaYHwCnAWcAvwzSeiYC6UFaloiISFSx1tYANZEuh4iIiIiIRJYS7SLdYIwZCjwAHAxsBn4PjASOt9aONMb4gR8DpwD7An2stQ3GmMuAK4HhQCWu5/m11trSwHJXA29Yay9qta6/AUdba4cF/vYD1wBjgHOAeOB54AeBk/7/AYOstetblmGtbTTGVAD5XahjKm74mVOAvkAp8BRwI3AQMCcw6ypjzFxr7WGBuPw98P4W4O7Ork9ERGRvGGMWAV9Za89uNe0AYB5woLV2XieW8TZQDHyMO85lAI8DVwN/xB1v64E7rLW3Bz5zC62Gjgkcwx8FtgJXATmB5X3fWrsiMI8fN5Tbr1ut+1UgxVp7WODvs4AbgNFAI/AhcI21dmkXYpIP/AE4DsgGVgP3Wmv/FHh/GLAKOCnwcwrgA14ELrPW1gXmGwjcgTuu5wILcO2WDzpbFhERERGRWKehY0S6ZzZgcCewxwEnBF5buwz4V2C+RmPMJcBdgZ9xwJm4YV1eNMZ4urj+a4E1wDeA7wEn45L9WGubWyfZAYwxk4HBwEddWMfPgVOBbwGjgIuB7+BO/ucBlwTm2y8wH7hE/AjgKFzP+lHA0V2rmoiISJc8BRwTGDqtxZeB1290YTnTccfnQ3HJ9h8AbwJLgH2Ah4FbjTHD97CMM3EX048Cjgks78+dLYAxZgzwGC7JPz5Qlkbghc62FQLzvRCoz5nAWOAvwO3GmB+2mf23wHxcp4CrgfNx7ZeWoejeDJTjvMA8XwOvdxADEREREZFeRT3aRfaSMWYULrn8rZaHixpjTsf1hCtrNesqa+0DrT73I+Apa+29gUlfG2OuwPVA3x/XY62z1lhrfxf4fbkx5gjgLKDtCTTGmEzgEWAxLhnRWVOARdbauYG/1xpjDgW2BXrIVwaml1lrtxhjRgfqcY619t3Aun+AuyAgIiISKk8BvwEOx90pBuANvHalc0k2cGXgGLccl4SusdbeDWCM+QNwPTAJWLmbZfiBH1prfYHPPAuc3oUyTMLdqfaQtbYssIzzcReuPYHld+QAXJL9KGvt24FpdxljpuPaCX9pNe8H1tp7Ar+vMMb8BNfGAdfL3bDzUHTfx11Ivwx30V9EREREpNdTj3aRvTci8PpFywRrbTXwfpv55rf8YozJwp0kt73V+uPA67QulqFtUn4+kG+MSWs90RiTA7wOFACnWmubu7COF4FjjTFPGGNOMcZkW2uXWmtX72b+cYHXhS0TrLVe4JMurFNERKRLAsOyzMfd3dViWOB1UdcWZRsDv/iBClod03BDogH02cMyPmtJsgeU4YaQ6ax5gfXOMcb80Bgzxlq71Vr7SZvl7klLL/722hymTVuh7TG6dXn3BypakuzghqILlHFKJ8siIiIiIhLzlGgX2Xt5gdfKNtO3tPm7utXvWYHXqt3Mk0XXtF13y8PYslsmGGMKcOOo9wMOtdYu78oKAj3vzwYKcb0Fy4wxTxpjcnfzkczAa91uyiYiIhIqTwEntRpeZSZQArzThWXUt/nbT6tjWiD5Dq5n+e60PQb6O5h/J9baYlyP9I+Am4GvjDGLjTEzO7sMXJvCH3huS2vttTn2VN4sINsYU9P6Bzeme78ulEdEREREJKYp0S6y97YFXlPaTM9rO2MrLQn2tr3gWv5uSZy3d0Ke0c7y0tv83ZLkrgAwxqQDrwBJwAxr7bI9lG23rLVPWWsPx9XtItzt4vfuZvbawGtam+nZbWcUEREJstm45O/0wN8X4YZf8e7+IxGzx+O8dS7EXeg+ENiEe57L7i50t1UJeAJDx7XWB9fOaHvRf0/L2Yzrvd76Zyy7PpdGRERERKTXUqJdZO+19Azfp2WCMSYfOHh3H7DWVgHLcCfMrR0QeG25dbuKVreYG2PicA8fa6vtuvYB1llrW3rjPQDkA4dbazfstia7YYyJCwwXMzhQ/mpr7cPAo7iHorXWkjCwgdft5TXGpLJrnUVERIIqMKzZx8DJxphTgKHAHyJaqPa1Pc6n0+q4aoyZ3NJ73Vrrs9bOA36Mu4hd1Ml1fBp4ba/NscRa27YX++58DOQCjdbar1t+Au+VdHIZIiIiIiIxTw9DFdl7X+CSyjcbY1bjenLfDqwDEvfwuduA+4wxVwMv4MZ6vwuYa61tOSn+DDgj8HDTdcAVtP/gs2HGmJ/hbpWfCpwH/BHAGHMgcA7w7cDfrW/vbrTWth3iZhfWWp8x5jqgyRhzPe5Br8OBE4CXA7NVBF6PM8bMtdZ+YYz5HLjJGLMCl0y4gV1vSxcREQmFp3AP+zwXuLkzx7sIaDnOz8YN5XIzOz9IfTrwB2PMpbhnv6QCVwHlwJLOrMBa+4Ex5j3g7sBDydfhHmx6KnBhF8r6HLACeNIYcy2wATckz93A1cDfu7AsEREREZGYpR7tInspMEbr6QQeVgY8DTyE60G2bQ+f+wcucX4psBR4BHiTnR/e9nPcw8v+C8wFNgJPtrO4v+Nukf8I+Cfwb+A3gfeOCLw+Evh8659nu1DV0wKfeR74Gng48Pt1gfffBt7CJfgfCkw7A3ciPgd4DZcUeLoL6xQREdlbs3EPQbW4ZHBP9EPcxeu3gJdwx8p5rd6/H3c8vwXXVngXN4TM0a3uWuuMk3CJ+n/jjsUXAN+31j7U2QVYa7cBs3CJ+pdwd/RdB/zYWqsku4iIiIhIgMfvb6+TrIh0RuBW7wRrbWWraR8CZdbaE0K8bj/wc2vtr0O5HhEREREREREREdkzDR0j0j1zgCRjzCW4h5SdBuyPuzVbREREREREREREegEl2kW65xTckCkv4B5QtgL4nrX2vxEtVScYY15hDw9uDXjUWntJOMojIiISCsaYIXRuXPNjrLXvhro83WWMOQ+4r6P5rLUZYSiOiIiIiIgEKNEu0g3W2vXAWRFat6ebi7gI93C1Panq5jpEREQibQMwpRPzrQ91QYLkedyzWUREREREpAfRGO0iIiIiIiIiIiIiIt3Q6R7tZWXVIcnIZ2QkU1PTEIpFR0ws1glis16qU/SIxXrFYp0gNusVqjoVFGR2986UDgX7+B2L/99IUSyDR7EMLsUzeBTL4Oop8QzH8VtERESiT1ykC5CQEB/pIgRdLNYJYrNeqlP0iMV6xWKdIDbrFYt12luKRfAolsGjWAaX4hk8imVwKZ4iIiLSk0U80S4iIiIiIiIiIiIiEs2UaBcRERERERERERER6QYl2kVEREREREREREREukGJdhERERERERERERGRblCiXURERERERERERESkG5RoFxERERERERERERHpBiXaRURERERERERERES6QYl2EREREREREREREZFuUKJdRERERERERERERKQblGgXEREREREREREREemGhEituNnr46yHP6OsphHwM3lgH06b1J+DRuSREOeJVLFEREREtmto9vHmsjLeWlbOwvWVpCcnUJCexLHjCzlhfCGJ8eqzICIiIiIiIhFMtMfFeTh9ygAqG71U1zby9tfl/N/zSxhbmMFtJ46jX1ZKpIomIiIiwrqKem54YQnLymrpm5HEYSPzafD6WFFey+9eX85DH63lhiNGMaMoN9JFFRERERERkQiLXKLd4+GcaQPJzk5j69Y6rpk5gtftJm5942vOf2wBt54wjimD+kSqeCIiItKLzVu1hZ+8+BXxcR5uO3Ech47MI87j7rjz+/18sLqCu95ZyY/+s5gbjxzFSRP7R7jEIiIiIiIiEkk95n7nhDgPx4wt5MFzp5KRnMCVz36B3VQT6WKJiIhIL7NsUw3XP7+EgX1SePTb05g5Kn97kh3A4/EwoyiXf5wzhX2H5vDr15bzyCfrIlhiERERERERibQek2hvUZSXxn1nTiIzOYEf/WcxZTUNkS6SiIiI9BJb6hq59rkvyUxJ4M+nTqD/HoayS09K4M6Tx3PE6ALufmcV76zYHMaSioiIiIiISE/S4xLtAPkZydx5ygRqGrz8+L9f0uT1RbpIIiIiEuP8fj83vbyULXVN3H7SePIzkjv8TEJ8HDcfPZoxhRnc9PJSVm2uC0NJRUREREREpKfpkYl2gNF9M/jFMYavSmt46CPdji0iIiKh9bot46M1W7nykOGM65fZ6c+lJMZz24njSE6I4/oXltDYrA4CIiIiIiIivU2PTbQDHDYqn6PH9uUfH61leZnGaxcREZHQqGv08ue5KzF9MzhtctcfbNovK4Wbjjas2lzHwx+rg4CIiIiIiEhv06MT7QA/njmCPikJ/PLVZTT7/JEujoiIiMSgf3y4hk01jVw3ayTxcZ6OP9COA4ty+eaYAv750VpWbq4NcglFRERERESkJ+vxifbs1ESuPXwkSzfV8PzikkgXR0RERGJMeU0DT8xfz3HjC5k0IKtby/rRzBGkJ8Xz29eW4/erg4CIiIiIiEhv0eMT7QBHjM5n8oAs7nt/NXWN3kgXR0RERGLIE/PX4/X5uWj6kG4vKzctiSsOKWLRhirmLC8PQulEREREREQkGkRFot3j8XDVocPZUtfEo59q3FMREREJjuptzTyzaCOzRhcwKDs1KMs8fnw/huelcc97qzXsnYiIiIiISC8RFYl2gIkDsjhidD6PfFJMeU1DpIsjIiIiMeDpRRuobfRy/r6Dg7bM+DgPlx1UxNqKeg17JyIiIiIi0ktETaId4LKDimjy+njk0+JIF0VERESiXEOzjyfnr2f6sBxMYUZQl33IiFwmD8jigXlr2NakYe9ERERERERiXVQl2gfnpHLUmL48u2gjW+uaIl0cERERiWJzvy5nS10T5+4zMOjL9ng8XHbwMMprG9WrXUREREREpBeIqkQ7wAX7D2Zbs48nFqyPdFFEREQkir2wuJR+mcnsPzQnJMufNiibyQOyeOSTYpq9vpCsQ0RERERERHqGqEu0D89LZ+aofGYvWE9NQ3OkiyMiIiJRaGPVNj5aU8EJEwqJ83hCtp7v7j+EkuoGXl26KWTrEBERERERkciLukQ7wPf2H0xNg5dnF22MdFFEREQkCr34ZSkAx4/vF9L1zCjKYVRBOg9/vA6f3x/SdYmIiIiIiEjkRGWifUxhJt8Yks3shRto9umkVURERDrP5/fz4uIS9h2SzYA+KSFdl8fj4YL9BrN6Sz3vrtgc0nWJiIiIiIhI5ERloh3g7KkDKa1u4O3l5ZEuioiIiESRBcWVbKhq4IQJoe3N3uLw0QUUZibz1IINYVmfiIiIiIiIhF/UJtoPGp7LwD4pPDFfD0UVERGRznvDlpGcEMehI/PCsr6EOA+nTe7PJ2u3snJzbVjWKSIiIiIiIuEVtYn2+DgPZ00byOcbqlhSUh3p4oiIiEgU8Pr8zPl6MwcW5ZKaGB+29Z4ysT9J8R5mq1e7iIiIiIhITIraRDvACeMLSU+K56kF6tUuIiIiHft8QxWbaxuZNTo/rOvNTkvkqDF9eXlJKTUNzWFdt4iIiIiIiIReVCfaM5ITOGZsX96wZVTWN0W6OCIiItLDvbnMDRtz4PDcsK/7zKkDqG/y8eKXpWFft4iIiIiIiIRWVCfaAU6d3J9Gr5+Xluiki736CgAAIABJREFUVURERHbP5/fz1vJyDhiWQ3pSQtjXP7Ywk7GFGfz3i434/f6wr19ERERERERCJ+oT7aMKMpg0IItnFumkVURERHbviw1VlNU0Mmt0QcTKcPKk/qwor2PxRj1fRkREREREJJZEfaId4NRJ/VlbUc9n6yojXRQRERHpod5ZsYX4OA8HRWDYmBbfHFNAamIcz31RErEyiIiIiIiISPDFRKJ91uh8slISeGbRxkgXRURERHqoD1ZvYcrALDKSwz9sTIv0pASOMn15zW7SQ1FFRERERERiSEwk2lMS4zlmbF/mrijXQ1FFRERkF6XVDSwvq+XAosj1Zm9x0sR+7qGon6uDgIiIiIiISKyIiUQ7wAkT+tHk9fOaLYt0UURERKSHmbdqCwAzekCifUL/TIbnpfGfhesjXRQREREREREJkphJtJu+GYwqSOeFxRrzVERERHY2b9UWCjOTGZ6XFumi4PF4OHZcIfPXbqV4a32kiyMiIiIiIiJBEDOJdoDjxxfyVWkNX5fXRrooIiIi0kM0eX18vGYrBxbl4vF4Il0cwD0U1eOBV77aFOmiiIiIiIiISBDEVKL96LF9iY/z8NKXpZEuioiIiPQQC9dXUtfkZUZRTqSLsl2/rBT2H5bLK0tK8fv9kS6OiIiIiIiIdFNMJdpz05I4qCiXl5eU0uyL7ElrXV0dt9/+Ow4+eF9efvmFDudftmwp11xzOcccczj/z959h1dd3+8fv0/OycneJzsECGQAYYqDpRJAUXGjVmyrVXC0Vqut2n7r3q27at1ateKoA/diOXChEFYgbLL33jk55/dHhB+RGTjJ54zn47q4Wk7OSe7PiV7nfW7f5/WeNWu6/va3P6u4uKgfkgIA4N2+3VYri59JR6a6T9EuSaeNTlJhXZvWlTUe9GN6u74oLi7SDTdco1NPPUGzZs3Q9ddfw/oCAAAAAPqAVxXtknRqdrxqWjr13fYawzJs27ZNF110viQd1C61qqoqXX3175WRkaV33vlIL7/8P7W3t+vGG6/v66gAAHi9HwvrNDIpXMFWs9FRepg5IkEBFj99lHdw42MKCrb3an1ht9t13XVXKzQ0TC+//IZeffVtRUZG6i9/uUp2u/2wsgMAAAAAerIYHWB/Jk8er7///VZ9/vmnWr16peLi4nXjjbdp48YNeumlF9Tc3KRjj52qv/71JpnN3W+eO7evUNAXT+j/PqhUeEiQpkw5Xn/8458UHBwiSVq3bq2eeOJf2rJls5xOp7KzR+qaa65XcnKKJGn27FN1zjm/0o4d27VkySL5+Zk0bdoJuuaa62UymXTNNX/QqlUr95r3t7+9WBddNFdVVVW65prrdOSRx2jBgrcOeJ1VVRU69tjjdemlv5fZbFZgYKDOOGO2/u///qKGhgaFh4e76BkFAMC3NLR1akN5k+ZNGLjrtkNZXyxevFCvvPKiCgp2KCAgwCXri5NPPkVT0mbqsw0VKnn/Ia1evf/1RXV1da/WF99//62Kigr1xBPPKSIiUpJ05ZV/0qmnnqBvv/1aU6YcfzhPLQAAAABgN26/o/3VV1/WFVf8UR99tFhJScm68cYbVFRUpFdffUtPPvmCFi36TN9+u0yStHz597r77tt01InnqfPUu3TfI08rPz9PDz98vySpo6ND119/tUaMGKn33/9Mb775vrq6unTPPbf3+Jnz57+sCRMm6f33P9Mtt9ylt9/+n7755mtJ0kMPPa7Fi7/Z65+LLporSTryyCM1YcLkg77GrKzh+tvfbt71Zl6SSkqKFBISopCQkMN6/gAA8GUrCuvllDQ+NbLH7b1dX9x55y268MJL9MknS/TUUy+4ZH3x6qvzNbhjm+rb7Drrj7cfcH0xduwRvVpfrFu3RklJKbtKdkkKD49QUlKy1q1beyhPJwAAAABgH9y+aJ806Vilp2fIarVq4sQpqq2t0bx5VyggIFCDB6dpyJCh2r59qyTp7bf/170z/JxZsjtNWtNg1cUXX6bPPvtY7e1tslqteu21BZo793JZLBaFhoZqypTjlZfX883mqFFjNGXK8bJYLDrqqGMUGRmlLVs29ds1b9myWc8//4wuueSyHuU7AADonR8L6xRo8VN2YliP2w9lfXHsscfLbDYrOTnFJeuL6OhoWRvLFBnkr4/zXH+Qe11d7V4/FRcZGanaWuNG7AEAAACAN3Lr0TGSlJCQuOv/BwYGKioqWgEBAbtuCwgIVHt7u6Tu2aVFRYX68sslCuhy6NH3JH+zn5xOpyorK5WSMkDffvu1XnvtvyosLFRXl11dXV3q6urq8TNTUgb0+HtgYKDa2tr68Cr/vx9//EE33niDzj77XJ177px++ZkAAHir5QV1GpMSIX9zz70Fh7q+2J0r1hcdHe06ITNWC9aUqrHNrrDA/lmamUymfvk5AAAAAOAr3L5o9/Pz2+/fdxcQEKAzzzxHf/rTX/TqimI9uGSL/nPhERpi6x6/smLFj7rjjpv1hz9crdNOO0vBwcFasOAt3X//PT2+z/7efB7MjPZD9cEHC/TIIw/o6qv/olmzTj/k7wMAAKTq5g5trW7RKcPj9/jaoa4v9uZw1xcnD4/TO4/frFkLrpfZb8/7HOr6Ijo6Rg0NP+5xe11dncaOjen19wMAAAAA7JvbF+29MWBAqjZtypcknZAZq4eXbtEHK7fpd0cPUHh4hNatW6vg4GD96le/3vWYX36s+0Aeeuhxl2be6dNPP9Jjjz2s++//l0aPHtsnPwMAAF/yU2GdpD3ns/fW7uuLnRobG+V0OlyyvhieEKbEWdcoJsSqp88bfVhZd5edPUovvfS8amtrFBUVLUmqqalWcXERaw0AAAAAcDG3n9HeG+ecc75Wr87VW2+9oVCLQ2Nj/LTguft0881/kyQlJ6eora1N+fkb1NLSogUL3lRBwQ5JUllZWb9mnTPnbC1ZslCSVF5epvvvv1e33HIXb3wBAHCR5QV1Cg0wKzMu9LC+z+7ri/b2NlVXV+n222902frCZDJpZlaccovqVdHYflhZd19fHHnk0Ro8OE0PP3y/6uvrVFdXp4cfvl9paUM1fvxRh/VzAAAAAAA9eVXRnp09SrfccqfeffctnXRSjra9fqvaTEE69/LuN8LHHTdVJ500S1dddZnOPfd0lZQU6557HtCgQWn67W/PU1FRoUty3HLLzcrJmagTTjhWkvSPf9ypnJyJOv/8s3bdp6Bgh5qamiRJH3/8gVpbW/T3v1+nnJyJPf588smHLskEAICvWVFUrzHJEXsdx9Ibv1xf/O53FygiIlK33nq3JNesL2ZkxsopadGmqn3eZ+d64mDXF2azWf/858Nqb2/T7Nmn6dxzT5fdbtd99z3MYesAAAAA4GImp9N5UHesrGw8uDv2UmRksOrqWvriW6up3a6ZT36n07ITdP20oX3yM/amL6/JSN54XVyT5/DG6/LGa5K887r66ppiY8P6/ERKV79+e8rvt6alQyc+8Z3+OGWwfnvUgAM/wAC/fC7nvPSTgvzNeu78MQam8kye8s+lp+D5dB2eS9dyl+ezP16/AQCA5/GqHe2/FBpg0ZS0aC3Mr5S9y2F0HAAA0E9WFTdIkkYnhxuc5OBNz4jV6pIGlTW0GR0FAAAAANBLXl20S9LMYXGqbe3UDwV1RkcBAAD9JLe4XgEWPw1PCDM6ykGbkRkrSVq0cd/jYwAAAAAA7snri/YJg6IVFmDRJ+srjI4CAAD6SW5xg0YkhMnf7DlLnQFRQcqKC9Xn+ZVGRwEAAAAA9JLnvPs8RFaLn6Zl2LR0c5XaOruMjgMAAPpYS0eX8ssbNcaDxsbsND0zVuvKGlVSz/gYAAAAAPAkXl+0S93jY1o7HfpyS7XRUQAAQB9bW9qgLqc0JiXC6Ci9Nj3TJklayK52AAAAAPAoPlG0j02JUFyolfExAAD4gNzievmZpJGJnrejPTkiSCMSwhgfAwAAAAAexieKdj+TSSdkxemb7bWqa+00Og4AAOhDucUNSo8NVWiAxegoh2R6Zqw2VDSpsLbV6CgAAAAAgIPkE0W7JM3MilOXw6nFm6qMjgIAAPpIl8OptaUNGpXkebvZd5qe8fP4mI3sagcAAAAAT+EzRXtGXIhSo4L4KDYAAF5sa3WzWjsdGpkUZnSUQ5YQHqhRSeGsWQAAAADAg/hM0W4ymTQjM1YrCutU3dxhdBwAANAH1pQ2SvLM+ey7m54Zq02Vzdpe02J0FAAAAADAQfCZol3qftPqcIrxMQAAeKk1JQ2KDPJXckSg0VEOy7T07vExS1izAAAAAIBH8KmifagtRINjgvkoNgAAXmptaYOyE8NkMpmMjnJY4sICNDIxXIs2UrQDAAAAgCfwqaJdkmZkxiq3qF6VTe1GRwEAAC7U0Nap7TWtHn0Q6u5yMmzKr2hSUV2r0VEAAAAAAAfge0V7RqycEjvEAADwMuvKuuezZyd67kGou8thfAwAAAAAeAyfK9oHxQQrPTaE8TEAAHiZtSWNMkkanuAdRXtSRKCGxYdytgwAAAAAeACfK9ql7vExq0saVNbQZnQUAADgIqtLGzTEFqIQq8XoKC4zNd2mtaWNrFkAAAAAwM35ZNE+PSNWkrSQ8TEAAHgFh9OpdaWNXjM2Zqdd42M2VxucBAAAAACwPz5ZtA+IClJWXKgWMj4GAACvUFjbqsZ2u0Z4ydiYnQZGB2uoLURLNrJmAQAAAAB35pNFu9Q9PmZdWaOK61uNjgIAAA5TXnn3QajeMp99dzkZNuUWN6iqucPoKAAAAACAffDZon165s/jY/IZHwMAgKfLK2tSgMVPabYQo6O4XE66TU5JSzkUFQAAAADcls8W7UkRgRqREMb4GAAAvEBeWaOy4kJl8TMZHcXl0mKCNSg6SIso2gEAAADAbfls0S51j4/ZUNGkwlrGxwAA4KnsXQ7lVzR55dgYSTKZTMpJt2llYZ1qWxgfAwAAAADuyKeL9mkZNknS5+xqBwDAY22pblG73eG1Rbsk5WTEqsspfbG52ugoAAAAAIC98OmiPSE8UKOTwinaAQDwYHll3nsQ6k4ZsSFKjgjUYsbHAAAAAIBb8umiXeo+FHVzVbO2VbcYHQUAAByCvLJGhQVYNCAy0OgofWbn+JjlBXVqaOs0Og4AAAAA4Bd8vmiflmGTSeJQVAAAPFReWaOGxYfKZPK+g1B3Ny3DJrvDqa+21BgdBQAAAADwCz5ftMeGBmhsSgTjYwAA8EBtnV3aUtWsEYneOzZmp+EJYYoPC2B8DAAAAAC4IZ8v2iVpWkasttW0aGt1s9FRAABAL2yqbFaXUxoW7/1F+87xMd9tr1Fzh93oOAAAAACA3VC0S8pJj5FJ0qJ8dogBAOBJ8iuaJElZ8aEGJ+kfOek2dXQ5tWwr42MAAAAAwJ1QtEuyhQZoTHK4Fm1ifAwAAJ5kQ0WTIgItSggLMDpKvxiVHC5biFWLNrI5AAAAAADcCUX7z6ZlxGpLVYu2V7cYHQUAABykjRVNyojz/oNQd/IzmXT80Bh9s61GbZ1dRscBAAAAAPyMov1nORk2SdLCjexqBwDAE3R2ObS5qllZcb4xNmanqek2tdkd+nZ7rdFRAAAAAAA/o2j/WWxogEYnhWvxJj6KDQCAJ9ha3aLOLqfPzGffadyASEUEWlizAAAAAIAboWjfzbTMWG2qbNaOGsbHAADg7nYehJrhYzvaLX4mHTc0Rl9tqVaH3WF0HAAAAACAKNp7yEnvHh/DAWMAALi//PImBfublRoVZHSUfpeTHqvmji4tL6gzOgoAAAAAQBTtPcSHBWhkYrgWMacdAAC3l1/RpPTYEPn5yEGouzsyNVIhVrMWb2LNAgAAAADugKL9F6Zn2rSxslmFta1GRwEAAPvQ5XBqY2WTz81n38lq8dPktGh9sbladofT6DgAAAAA4PMo2n9h5/iYhexqBwDAbRXWtaq106FMH5vPvrucjFjVt9m1sojxMQAAAABgNIr2X0gID1R2YpgWM6cdAAC3lV/efRCqLxftEwdFKdDix5oFAAAAANwARfteTMuI1YaKJhXVMT4GAAB3tKGiSf5mk9Jigo2OYphAf7MmDo7W0s3VcjgZHwMAAAAARqJo34tpGd3jYxaxQwwAALeUX9GkobYQWcy+vZSZmm5TVXOH1pQ0GB0FAAAAAHyab7873YfE8EANTwjTIua0AwDgdpxOp/Irmnx6bMxOk9Oi5W82afEmNgcAAAAAgJEo2vdheoZN68ubVFzP+BgAANxJWWO7GtrsyoqnaA8NsOjogVFasqlKTsbHAAAAAIBhKNr3Iefn8TEcMAYAgHvZwEGoPUxNt6m0oV0bKpqMjgIAAAAAPouifR+SI4I0LD6UOe0AALiZ/IommU3SUFuI0VHcwrFDYmQ2sTkAAAAAAIxE0b4f0zJita6sUaUNbUZHAQAAP8uvaNLA6GAF+puNjuIWIoP8NW5ApBYzPgYAAAAADEPRvh/Tfh4fw652AADcx4byJuaz/0JOuk0Fta3aUt1idBQAAAAA8EkU7fuREhmkzLhQLd5YaXQUAAAgqaq5Q1XNHcxn/4Xj020ySVqyic0BAAAAAGAEivYDmJZh05rSRpUxPgYAAMPlV3AQ6t7YQqwanRxO0Q4AAAAABqFoP4BpGbGSpMW8cQUAwHAbKdr3aWq6TZsqm1VY22p0FAAAAADwORTtB5AaFaT02BDmtAMA4AY2lDcpJTJQoQEWo6O4nanp3WfLsDkAAAAAAPofRftBmJ4Rq9UlDSpvbDc6CgAAPi2/oklZ7Gbfq8TwQA2LD6VoBwAAAAADULQfhGkZ7BADAMBoDW2dKq5vY2zMfuSk25RXxtkyAAAAANDfKNoPwsDoYA21hWjxxkqjowAA4LM2VjRLkjLjKdr3Jefns2WWbK42OAkAAAAA+BaK9oM0LcOmVcUNqmxifAwAAEbI5yDUA0qNCtJQW4iWsDkAAAAAAPoVRftBmp4RK6ekxRyKCgCAITZUNCku1KroYKvRUdza1PQY5RY3qKq5w+goAAAAAOAzKNoP0qCYYKXFBGsRc9oBADBEfkUTu9kPQk569+aALzazZgEAAACA/kLR3gvTM2KVW1SvKsbHAADQr1o7u7SjpkVZzGc/oCG2YKVGBfEpPAAAAADoRxTtvTAt09Y9PmYTB4wBANCfNlU2y+FkPvvBMJlMmppu00+Fdapv7TQ6DgAAAAD4BIr2XkiLCdHg6GAt3sQBYwAA9CcOQu2dnHSbupzSl1vYHAAAAAAA/YGivZemZdi0sqhe1RwwBgBAv8kvb1JEoEXxYQFGR/EIw+JDlRAWoMWcLQMAAAAA/YKivZemZcbK4ZSW8MYVAIB+k1/RpKz4UJlMJqOjeISd42O+31Grpna70XEAAAAAwOtRtPfSkJhgDYwK0iKKdgAA+kVnl0Obq5qVGRdmdBSPkpNuU2eXU8u21hgdBQAAAAC8HkV7L5lMJk3LjNWKwjrVtDA+BgCAvra1ukV2h1OZcSFGR/Eoo5LDFRNi1ZLNbA4AAAAAgL5G0X4IpmfY5HBKS9nVDgBAn8sv7z4INSueHe294Wcy6fihMVq2tUZtnV1GxwEAAAAAr0bRfgiG2kKUGhWkRRsp2gEA6GsbKpoUYjUrJTLQ6CgeZ2q6TW12h77dXmt0FAAAAADwahTth8BkMmlahk0/FdaprqXT6DgAAHi1/IomZcSGyI+DUHvtiJQIRQRatJhP4QEAAABAn6JoP0TTMmLV5RRzTwEA6ENdDqc2VjQpk7Exh8Ri9tOxQ2L01ZZqddgdRscBAAAAAK9F0X6IMmJDlBIZqMWMjwEAoM8U1raqze7gINTDkJNhU3NHl5YX1hkdBQAAAAC8FkX7IeoeHxOr5QW1qmtlfAwAAH1hQ8XPB6HGsaP9UB2VGqUQq1lL2BwAAAAAAH2Gov0wTMuwqcspfbm52ugoAAB4pfyKJlnNJg2KDjI6iseyWvw0OS1aSzdXye5wGh0HAAAAALwSRfthyIoLVVJEoBZurDQ6CgAAXmlDRZOGxobKYmbJcjhy0m2qb7NrZRHjYwAAAACgL/Cu9TCYTCZNz7Dph4I61TM+BgAAl3I6ncovb1JWXKjRUTzehMHRCrD4cbYMAAAAAPQRivbDlJMRqy6HU19uYXwMAACuVNrQrsZ2OwehukCQv1kTB0dr6eZqOZyMjwEAAAAAV6NoP0zD40OVFB6gRewQAwDApXYehJoZz0GorjA1PUZVzR1aU9JgdBQAAAAA8DoU7YfJZDIpJyNW3++oVWOb3eg4AAB4jfyKJplN0lAbO9pdYUpajCx+Ji3exOYAAAAAAHA1inYXmJZhk53xMQAAuFR+eZMGx4QowMJyxRVCAyw6ZlCUFm2skpPxMQAAAADgUrxzdYERCWFKCAvQwo2VRkcBAMBr5Fc0KTOeg1BdaXpGrMob27W2tNHoKAAAAADgVSjaXaB7fIxN3++oVUNbp9FxAADweFVN7apq7lBmHEW7Kx03NEb+ZhObAwAAAADAxSjaXeTErDh1djm1mENRAQA4bPkVzZKkLIp2lwoNsGjCoGgtzK+Ug/ExAAAAAOAyFO0uMiw+VKlRQfpkQ4XRUQAA8Hj5FU2SpPRYDkJ1temZNlU0dWhNSYPRUQAAAADAa1C0u4jJZNJJw+L0U2G9SutbjY4DAIBH21DRpNSoIIUGWIyO4nWmpMXIajbp83zGxwAAAACAq1C0u9DMYXGSpPdXlxqcBAAAz5Zf0aSMWMbG9IXQAIsmDo7Woo1VjI8BAAAAABehaHehlMggjUwM13urSoyOAgCAx6pr7VRJfZuGJ1C095UZmbGqau7QqmLGxwAAAACAK1C0u9jMYXHKL2/Spsomo6MAAOCR8su7X0Oz4ina+8rktBgFWPy0kPExAAAAAOASFO0uNiPTJoufSZ+s51BUAAAORV55oyQpKy7M4CTeK9hq1qTB0Vq0qUpdDsbHAAAAAMDhomh3sahgqyYPtemT9RXMPQUA4BCsL+8+CDUskINQ+9KMzFhVN3cot7je6CgAAAAA4PEo2vvA6aOTVNHUoZVFvHEFAKC31pc1ahhjY/rcpLRoBVr89DnjYwAAAADgsFG094FpWXEK9jfrY8bHAADQK7UtHSprbFdWPGNj+lqQv1mT02K0ZFOV7IyPAQAAAIDDQtHeB4KsZk1Nj9GijZVqtzuMjgMAgMdY//NBqOxo7x8zsmJV09KplUV1RkcBAAAAAI9G0d5HZg6LU1N7l5ZtrTY6CgAAHmN9eaNMkjLjKNr7w8RBUQryZ3wMAAAAABwuivY+cmRqlOJCrXpvbbnRUQAA8Bjry5o0MDpIoQEchNofAv3NOnZIjBZvZHwMAAAAABwOivY+YvYzadaIeH27vUYVje1GxwEAwCOsL2/UMOaz96vpGbGqb7PrpwLGxwAAAADAoaJo70OzRiTI4ZQ+zGNXOwAAB1LV3KGKpg5lMZ+9X00YHK0Qq1mfb2R8DAAAAAAcKor2PjQgKkjjUiL0/toyOZ18HBsAgP3ZUN4oSRrOjvZ+FWDx07FDYrR0U5XsXRziDgAAAACHgqK9j50+MkGFdW1aWVxvdBQAANza+rIm+ZmkDA5C7XczMrvHx3y3o9boKAAAAADgkSja+1hOuk0hVjOHogIAcAB55Y0aFB2sYKvZ6Cg+55hBUYoItOiT9RVGRwEAAAAAj0TR3scC/c06IStWi/Ir1dRuNzoOAABua315k4Yxn90Q/mY/Tc+M1Rebq9XS0WV0HAAAAADwOBTt/eD07AS12R36PJ9DxgAA2JvKpnZVN3doGPPZDXPSsDi12R1aurnK6CgAAAAA4HEo2vvB8IQwpcUE6721ZUZHAQDALeWVNUmShiVQtBtlVFK4ksID9DHjYwAAAACg1yja+4HJZNLpIxO0trRRW6qajY4DAIDbWV/eKLNJyogNMTqKzzKZTDpxWJx+2FGr6uYOo+MAAAAAgEehaO8nJw2Lk9nPxK52AAD2Yn15o9JsIQr05yBUI80cFieHU/qMcXcAAAAA0CsU7f0kKtiqqUNj9OG6crV1csgYAAA7OZ1OrS9rUlYcB6EaLS0mRJlxofqE8TEAAAAA0CsU7f1o9pgk1bfZ2SUGAMBuyhvbVdvayXx2NzFzWJzyyhq1o6bF6CgAAAAA4DEo2vvRuJQIpcUE683cEjmdTqPjAADgFvLKGiVJw+PZ0e4OTsiMlUliVzsAAAAA9AJFez8ymUyaPSZJ68ubdpUKAAD4ujWljbKaTcpgdIxbiAsL0BGpkfpkQwUbAwAAAADgIFG097OThsUp2N+s/+WWGB0FAAC3sLa0QZlxYfI3syxxFycNi1NRXZvWlrIxAAAAAAAOBu9o+1logEUnD4/T5/mVqmvpNDoOAACGsnc5tL68SSOTmM/uTnLSbQqw+OmjvHKjowAAAACAR6BoN8DsMUnq6HLq3bVlRkcBAMBQm6ua1W53aAQHobqV0ACLjh8ao083VKrd7jA6DgAAAAC4PYp2AwyxhWhcSoTeXlWiLgezTwEAvmvNz6NJRiaFG5wEv3TqiAQ1ttv1xeYqo6MAAAAAgNujaDfIOWOSVNLQrm+21RgdBQAAw6wtbVBMiFUJYQFGR8EvjE+NVHxYgN5fx/gYAAAAADgQinaDHD80RrYQK4eiAgB82trSRmUnhMlkMhkdBb9g9jPplBHx+n57rcob242OAwAAAABujaLdIBazn84alahvt9dqe3WL0XEAAOh3da2dKqhtVXYi89nd1akj4uWUOBQVAAAAAA6Aot1AZ49JlNVs0vwVRUZHAQCg360rYz67u0uJDNLYlAh9sK5cTifnygAAAADAvlC0Gyg62KqTh8fro7wK1bZ0GB0HAIB+tbq4XmaTNCyeHe3u7NQR8SqobdXqkgajowAAAACA26JoN9gFR6So3e7Qm7mlRkcBAKBf5RY3KCMuVME2+rFbAAAgAElEQVRWs9FRsB/TMmIV5O+n99cyPgYAAAAA9oWi3WCDYoI1OS1a/8stUVtnl9FxAADoF51dDq0ra9SY5Aijo+AAgq1mTcuI1ef5lWplrQIAAAAAe0XR7gYuOCJFta2d+mh9hdFRAADoF/kVTWq3OzQmmfnsnuDU7Hi1dHZp8cYqo6MAAAAAgFuiaHcDRwyIUGZcqOb/WCQHB40BAHxAbnH3vO9R7Gj3CGOTI5QSGaj31pYZHQUAAAAA3BJFuxswmUy6YHyydtS2atnWGqPjAADQ51YV12tAZKBsIVajo+AgmEwmnZ6doBVF9dpW3WJ0HAAAAABwOxTtbmJGRqziQq165acio6MAANCnnE6ncosbNJrd7B7ltJEJsviZ9NaqEqOjAAAAAIDboWh3Exazn341Llk/FdZrfXmj0XEAAOgzO2pbVdfayXx2DxMdbNW0DJs+zCvnUFQAAAAA+AWKdjdy5qhEhVjN+s/3hUZHAQCgz6wqrpckdrR7oNmjk9TU3qVPOcAdAAAAAHqgaHcjoQEWnTs2SUs2VTH/FADgtVYU1SsqyF8Do4KMjoJeGp0criG2YL21qlRODnAHAAAAgF0sRgdwlfLyMj311ONaseJHNTU1Kjt7lK699galpg7c476dnZ2aO/c3am5u1ptvvi9Jamho0K23/p/WrFmlwYOH6Lbb7lZiYtKuxxQWFujPf/6jnn76RUVGRu4zx1133aqyshI9+ujTe3zt9ttvUkVFuR57rPtrV155qVavzpXF8v9/DZFR0bIGpeqpAf6699wJe9zP6XTKarVq8OAhmjp1ms488xxZrRwkBwDwDE6nUz8W1OmIAZEymUxGx5HkXmuIoqJCPfHEc3t87WDWENHRMRo3brzmzbtCsbFxe9zPFWsIk8mks0cn6Z+LNiuvrFEjEhn/AwAAAACSl+xo7+rq0vXX/0k1NdV69tmX9N57n2n48Gz9+c9/VHt7+x73f+GFZ1ReXtbjttde+68sFos+/HCRMjOH6bnnntr1NYfDobvvvlVXXXXtft8gH4rp00/U4sXfaPHib7Ro0TL965EnZDM16asX71VRbcse91uy5Fu99to7uvDCS/Tppx/p8ssvVmMjM90BAJ6hsK5NFU0dGp/qHmNjvGkN8fDD/1ZpaYmuv/5Pcjgce9zPVWuIk4bFKcjfT2+uKnXl5QAAAACAR/OKor2gYIe2bNmsuXMvl80Wq+DgYM2de7nsdru+/vrLHvfdsGG93n77fzrvvAv2uP2YYybJarVq4sRJystbu+tr8+e/pAEDBmry5OP69DpMJpNSUgbo2j9eLVN9sZ785Ie93i8qKloTJkzSo48+pcbGRj311ON9mgsAAFf5saBWkjR+gGtL50PlbWuIyy77gzZt2qiCgh17vZ8r1hChARadNCxen+dXqr6183CjAwAAAIBX8IqifedHz3ffveXn56fw8HBt2JC367bOzk7dffetuvTS3ys+PmGv30OSuroc8vPrfmq2bt2sDz54TyeccJKuuOJiXXTRHM2f/3JfXo4iAsySpCVbalTVtOduup1CQkJ15plna+HCT3pcOwAA7urHwnrFhVqV6ibz2b1tDdHV1X0du4+U2ZvDXUOcPTpR7XaHPlhXfkg5AQAAAMDbeEXRPmBAqtLShujZZ59UeXmZ2tvb9NZbr6u4uEj19XW77vf8808rMjJKZ545e4/vkZ09Ut99t0zt7e1atuxLjRw5Wna7XXfddZv+/Ocb9NhjD+uMM2br0Uef0vz5L2nr1s37zJObu1I5ORP3+LNw4af7vQ6Hw6GCgh166qnHlDVitOxBMZr/U/F+HzNw4GA1NTX1uE4AANyR0+nUT4XuNZ/d3dYQa9euPuw1xJgx45ScnHLAaz+cNURGXKhGJYXr7dWlcnAoKgAAAAB4x2GoZrNZ9977oB555H797ncXKDAwUDNnnqKjj54gs7n7EjdsyNM77/xPzz//yl7f3J977vm6446bdfrpJ2ro0AzdcsudevHF5zRiRLZGjMjW5s0bNXnysQoJCdWoUWOUm7tSaWlD95pnzJix+z0MdXcLF36qpUsX/fw3k2w2m44+eqLmzr1M931dqrdWlWq4Y99vYLu6unY9BwAAuLOt1S2qaenU+FT3GBsjud8aIjt71H4PQ93d/tYQB/MfMg53DTF7TKJu/ihf326r1aS06EP6HgAAAADgLbyiaJekpKRk/eMfD/W4be7c3yojI0udnZ26665bNW/eFUpKSt7r40NCQnXvvQ/u+vuGDeu1ZMlCPfvsy7t2egUFBf/8v4FqaKh3Se7p00/UzTffsdevXXS0vz7dUKmKpnYl7uPxGzduUEyMTeHh7nGoHAAA+/JjQffr6ZFuVLRL3rmGOBiHu4aYnhGrx77cpld+KqJoBwAAAODzvGJ0jCQtWbJQO3Zs3/X3qqoqbdqUr3Hjxmvt2tXatm2rnn/+aZ1yyjSdcso0PfTQfaqoKNcpp0zT6tW5Pb5XR0eH7rnnNt1ww40KDAxUSEioJKmxsUGSVFdXv+u2vjTUFqLjh8aoorFDnV17zk+tr6/Te++9o5NPPrXPswAAcLiWF9QpKSJQieGBRkfpwRvXEAfiijWEv9lP545N1vKCOuVXNLkwHQAAAAB4Hq/Z0f7hh++pra1Nd931T0nSPffcrjFjxmnkyNHq6OjQ229/2OP+S5Ys1Ouvz9eTTz6vyMioHl975pkndPTREzVy5GhJUmhoqAYPTtPixQs1efKxWrt2lS6//A/9cl3zJgzUshec2l7Tsus2u92ulSt/0qOPPqjExCRdeOEl/ZIFAIBD1dnl0PKCOp00PM7oKHvw1jXE3rh6DXHmqAQ9990Ozf+pSLedlOWilAAAAADgebymaP/rX2/WP/95p84553T5+flp0qQpuvrqv0iSrFar4uLie9w/LCxcfn5+e9y+enWufvjhOz3zzIs9br/hhpt055236JlnntAFF1yo9PTMvr2gn2XEhSoyyF/bcr/W1KkTZTJJJpNJKSkDNGPGSTrvvDmyWq39kgUAgEOVW1yvls4uTRzsfiNGvHUNsdPus9xdvYYID/TXadkJenNVqf4webDiwgJcERkAAAAAPI7J6dz3QZu7q6xsPLg79lJkZLDq6loOfEcP4upr2lTZpDkvrdAlx6Tq8kmDXPZ9e4vflWfwxmuSvPO6vPGaJO+8rr66ptjYsAOfWHmYXP36fajPxcNLt+qN3GIt+sNEBflzgLfkPf+uFNe36qznlus3Rw7QlVMGG5LBW55Ld8Hz6To8l67lLs9nf7x+AwAAz+M1M9q9WXpsqKZl2PTaimLVt3YaHQcAgF77ZnuNxqVEULJ7oeSIIE1Nt+ntVaVq6egyOg4AAAAAGIKi3UPMnTBQzR1dmr+i2OgoAAD0SmlDm7ZVt7jl2Bi4xpwjUtTYbtf7a8uMjgIAAAAAhqBo9xBDbSGanmHT6+xqBwB4mG+21UiSJg6iaPdWo5LCNTIxXK+uKFaXo0+mDQIAAACAW6No9yBzJwxUS0eXXvmpyOgoAAActGVba5QUEaiB0UFGR0Ef+vX4ZBXXt2np5iqjowAAAABAv6No9yBDbCGanhmr11YUq6alw+g4AAAcUEtHl34oqNOUtGiZTJwd582OG2rTwKggPfddgRxOdrUDAAAA8C0U7R7m0okD1WF36D/fFxodBQCAA1q2rUbtdodyMmxGR0EfM/uZdPExqdpU2awvNlcbHQcAAAAA+hVFu4cZFB2sWSMS9OaqEpU1tBkdBwCA/Vq8sVLRwf4anRRhdBT0gxOy4pQaFaRnvt3BrnYAAAAAPoWi3QPNnZAqSXr22wKDkwAAsG9tnV36emuNpqbbZPZjbIwvsPiZdAm72gEAAAD4IIp2D5QQHqjZo5P0/royba9pMToOAAB79c22GrXZHZqeEWt0FPSjE7LiNCAyUM9+u0NOdrUDAAAA8BEU7R7qoqMHKMDip6eW7TA6CgAAe7VoY5Wigvw1JoWxMb6ke1f7QG1kVzsAAAAAH0LR7qGig62ac0SKFm6s1IbyRqPjAADQQ0tH99iY49NjZGFsjM85cVj3rvZn2NUOAAAAwEdQtHuwX49PUUSgRU8s2250FAAAeliYX6mWzi6dMjze6CgwgMXPpIuPSdXGymZ9uYVd7QAAAAC8H0W7BwsNsOjCowbom221+qmwzug4AADssmBNmQZHB2tUUrjRUWCQmcPilRIZqCeX7VCXg13tAAAAALwbRbuHO2dMkuLDAvTIF1vl4KPZAAA3sKWqWWtKG3T6yASZTIyN8VUWP5OumDRIm6ua9fH6cqPjAAAAAECfomj3cIH+Zv1+8iCtL2/SZxsqjY4DAIAWrCmTxc/E2BhoemashsWH6sllO9RudxgdBwAAAAD6DEW7F5g5LE5ZcaF6/KttvIkFABiq3e7Qx3nlOn6oTZHB/kbHgcH8TCZddWyayhvb9cbKYqPjAAAAAECfoWj3An4mk646brDKGtv1+grexAIAjPPumjLVt9k1e0yi0VHgJsanRmrS4Gg9/32Balo6jI4DAAAAAH2Cot1LHJkapclp3W9i61o6jY4DAPBBHXaHXvyhQGOSwzUuJcLoOHAjVx+XptZOh55ctt3oKAAAAADQJyjavchVx6aprbNLz363w+goAAAf9O7aMlU0dWjuhIEcgooeBscE69wxSVqwukz5FU1GxwEAAAAAl6No9yKDY4J1xqhEvbmqVDtqWoyOAwDwIR12h/7zfYFGJ4XrqNRIo+PADc2bMFARQf56YPFmOZ1Oo+MAAAAAgEtRtHuZeRMGKtDip4e/2Gp0FACAD3lxeaEqmjo0j93s2IewQIt+P3mQVhY36MO8cqPjAAAAAIBLUbR7mZgQq+ZOGKivt9boyy3VRscBAPiAvLJGPfftDs0cFqejB0UZHQdu7PSRCRqZGK5HvtimulbOlAEAAADgPSjavdCvxiZpcEywHliyRW2dXUbHAQB4sbbOLt3y8QbFhFh1fc5Qo+PAzfmZTPrbjKFqbOvUo1/y6TsAAAAA3oOi3QtZzH66PmeoSurb9PLyIqPjAAC8VHOHXde9l6ftNa26eWamwgItRkeCB0iPDdUF41P03tpy/VhQZ3QcAAAAAHAJinYvNT41UjMyY/Xi8kIV17caHQcA4GV21LTostdXa/mOWt10QoaOHsjIGBy8eRMGakBkoO74bKNaOvj0HQAAAADPR9Huxa4+Lk1+JunBJXw0GwDgGgvXl+u8//yo2S/8qILaFj1wZrZOG5lgdCx4mEB/s246MVOl9W16/KttRscBAAAAgMNG0e7F4sMCNG/CQH25pVpfb+VgVADA4Suua5UtxKprjk/TGxeN16TB0UZHgocamxKh88Yl643cEi0vqDU6DgAAAAAcFop2L/ercckaFB2k+xZt5qPZAIDDduGEQXr8nFGac0SKEsIDjY4DD/f7yYM0MCpIt36cr7rWTqPjAAAAAMAho2j3cv5mP/3fjAyVNrTr31/z0WwAAOA+gvzNuvOULNW0dOruzzfJ6XQaHQkAAAAADglFuw8YmxKhc8cm6fWVJVpZVG90HAAAgF2y4sP0+8mDtGRTld5eXWp0HAAAAAA4JBTtPuIPUwYrKSJQd3yar7ZORsgAAAD3ccH4FE0YFKUHlmxRXlmj0XEAAAAAoNco2n1EkL9ZN52QocK6Nj25bIfRcQAAAHbxM5l0+8lZigm26q/v5zGvHQAAAIDHoWj3IeNTI3X26ES9uqJIa0oajI4DAACwS2SQv+49bbiqmjv09w/Wy97lMDoSAAAAABw0inYfc+WUwYoNDdDtjJABAABuZkRCmP46PV0/FNTpwaVbjY4DAAAAAAeNot3HhAZYdNMJGdpe06qHeAMLAADczGnZCfrN+BT9L7dEb6wsNjoOAAAAABwUinYfdPSgKP32yBS9vbpUC/MrjY4DAADQwx+mDNZxQ2J0/+It+mxDhdFxAAAAAOCAKNp91BWTBmlkYpju/GyjiupajY4DAACwi9nPpDtPydKY5HDd8nG+vtlWY3QkAAAAANgvinYfZTH76c5ThsnPZNLfP9ygTg4cAwAAbiTQ36wHz8xWWkywrn8vT6uK642OBAAAAAD7RNHuw5IiAnXjiRnKK2vUY19tMzoOAABAD6EBFj06e6TiwwJ0zTvrtKmyyehIAAAAALBXFO0+LifdptmjEzX/p2J9sbnK6DgAAAA9RAdb9djskQry99OVb67RlqpmoyMBAAAAwB4o2qE/HT9Ew+JDdfNH+dpcyZtXAADgXhLDA/X47FHyM5l02eurtL680ehIAAAAANADRTsUYPHT/aePULDVrGsXrFVNS4fRkQAAAHoYFBOsZ341WsFWs654YzUz2wEAAAC4FYp2SJLiwgJ0/xkjVNPSqevfzVOHncNRAQCAe0mJDNLT541WTIhVV765Rt/vqDU6EgAAAABIomjHbkYkhOnmEzO0qqRB9yzcJKfTaXQkAACAHhLCA/X0eaOVEhmka95Zq8UbK42OBAAAAAAU7ejphKw4zT0mVR+sK9dLy4uMjgMAALCHmBCrnjx3lLLiwvTX99fr+WXb2CAAAAAAwFAU7djDvIkDNSMzVo99tU0LVpcaHQcAAGAPEUH++vc5IzU13aZ7PsnX/Yu3qMtB2Q4AAADAGBTt2IOfyaTbTsrUhEFRuvvzTVqYz0eyAQCA+wn0N+ueU4fpkkmD9EZuia57d51aO7uMjgUAAADAB1G0Y6/8zX7652nDNTo5XDd9tEHfbKsxOhIAAMAe/Ewm/XVmlq7LGapl22o077VVKmtoMzoWAAAAAB9D0Y59CvQ366EzszXEFqLr38vTjztqjY4EAACwV+eOTdIDZ4xQUV2rLnxlpXKL6o2OBAAAAMCHULRjv0IDLPrX2dlKCAvQvJd/0qpi3rQCAAD3NDktRi/MGavQAIuu+N9qvcNZMwAAAAD6CUU7Dig62KrHzxml2FCrrnxzjX5gZzsAAHBTg2OC9cKcMRqfGqm7P9+kfy7aLHuXw+hYAAAAALxcnxbtJSXFuvLKSzV58niVlpbs977Ll3+nyy+/WDNnHq+zz56l++67W21tzNd0tYP9nXz00fuaPHm8cnImKidnos4/faoqX7pKQStf1TXvrNVXW6r7MTUAwN20tbXp/vvv1TnnnKYTTzxOl132Oy1f/t1+H7No0eeaNWu6rrzy0n5KCU/RmzXjRx+9r4sumqMZM6borLNO0X//+5897hMe6K+Hz8zWr8en6H+5JbryrTWqa+nso/QAAAAA0IdF+xdfLNFll/1OCQmJB7xvYWGBbrjhWk2ffoIWLPhEjz76lNavz9ODD/6jr+L5pN78TiQpISFRixd/s+vPyhW5euOJhzXEFqLr3svTwvzKPk4MAHBXDz74D61du1oPPPCo3nvvM5100izdcMO1KijYvtf733rr3/XSS89rwIDU/g0Kt9eb9cnixQv1j3/cqQsvvFgff7xE9977gN599x29/vpre9zX7GfS1cel6baTMrWmpEEXvrJCG8ob++ISAAAAAKDvivbGxno9/vgzOvHEkw9433fffVupqYM0e/avFBgYqKSkZP3ud3P16acfqa6urq8i+pze/E72JTLIX/8+Z5SyE8L09w/X661V+991BgDwPg0NDfrss4918cWXKjV1oAICAnTGGWdr4MBBWrDgrb0+Jjk5Rc8886ISE5P7OS3cXW/WJ0uWLNQRRxypqVOny2KxKCMjS7/+9YV65ZX/7vMxJw+P19PnjZbd4dQlr+ZqwepSOZ1OV14CAAAAAPRd0T5r1hlKTR14UPddt26Nhg0b0eO2YcOy1dXVpfz89X0Rzyf15nciSS0tLfrb3/6iWbNm6IwzTtJNN92ohoZ6hQZY9OjskZowKFr3Ltysh5ZuUZeDN6wA4Cvy89fLbrdr+PBfvnaP0Lp1a/f6mHnzrpDVau2PePAwvVmfmEwmORw9561HRkZq69atamlp2efjRiSG67+/GaexKRG66/NNuv3TjWrr7Dqs3AAAAACwO7c4DLWurlbh4eE9bouMjJQk1dbWGBHJ50VERGrQoMGaPfs8LVjwse6772Hl5ubq9ttvkiQF+Zt1/xkjdN7YJM3/qVjXvbtOLR28YQUAX1BX130odlhYz9fuiIhIXrfRp447LkcrVvyohQs/VUdHhwoKtuuNN16VJDU01O/3sVHBVj1y1kjNPSZVH6wr18Wv5qqwtrU/YgMAAADwAW5RtO+PyWQyOoJPmjRpiv7972d1xBFHymKxKD09U9dee62+++4blZeXSZIsfib9JWeorssZomXbajTvtVyVN7YbnBwAYCRet9GXpk2boauv/rOef/5pzZo1Q//859067bQzJUkWi+WAjzf7mXTZpEF6+KxsVTS26zf/XaGlm6r6OjYAAAAAH+AWRXt0dMweu5B2zmaPjo4xIhL2IjW1+wC7ysqeh6CeOzZZD56ZraK6Nv3m5RX6fnutEfEAAP1k52vzL1+76+vreN1Gnzv77PM0f/5b+uyzL/TYY08rLCxcAQEBioyMOujvMWlwtF769TilRgXpuvfy9NDSLeqwOw78QAAAAADYB7co2rOzR2ndujU9blu9OldWq3WP2e3oHwsWvKmPP/6gx21bt26V1H2g3S9NGhyt/1wwVlHB/vrjW2v05LLtzG0HAC+VmTlMVqt1j9fuNWtWafTosQalgi8oKirU559/0uO2b775WuPGHXFQO9p3lxQRqGd/NUbnjOkeg3fR/JXaXNXsyrgAAAAAfIghRXte3lrNmXO2ysq6R5CcccbZKikp1uuvv6L29jYVFGzX888/pVmzTldoaKgREX3OL38nnZ12PfTQfVq+/HvZ7XZt2rRRjzzysGbOPEVRUXvfMTY4JlgvXjBWs0bE67nvCvSHN1erqolRMgDgbUJDQ3XyyafpueeeUkHBDrW1tWn+/JdVVlaqM844W5WVFZoz52ytXbva6KjwcL9cn9TX1+uOO27W0qWL5HA49NVXS/XRR+9r3rxLD+n7Wy1+un7aUD105ghVN3fowv+u0KsriuVwslkAAAAAQO/0butPL5x//lkqLy+Tw9H9Mdw5c86WyWTSiSeerBkzZqqgYIfs9k5JUmJiku6//196/PFH9NRTjys0NEwzZpyoyy//Y1/F80m9+Z2cc86vZLfb9eCD/1B5ebnCwsJ0xhlnaM6ci/b7MwL9zbp5ZqbGDYjQvQs36/yXVui6nCGakRnL3F4A8CJXXXWt/v3vf+n3v5+rlpYWpadn6IEHHlVCQqJKS0tUULBDra3dB03m5q7QtddeKUmy2+1yOp3KyZkoSXrwwcc0Zsw4w64DxuvN+mTEiGxdd93/6fHH/6Xbb79ZycnJuuWWO3TUUUeprq7lkDNMTovRqxceoTs+3agHl2zR11uq9bcZ6UqJDHLJNQIAAADwfibnQe7Yqaxs7JOtPZGRwYf1xsgdeeM1Sb2/rq3Vzbrtk43KK2vUsUNidMO0oYoLC+jDhL3njb8rb7wmyTuvyxuvSfLO6+qra4qNDevz/wLp6tdvb/z9GoXn0nVc9Vw6nU69s7pU//pym+wOpy45JlW/Hp8if7NbTFvsN/yz6To8l67lLs9nf7x+AwAAz+Nb7xrQr9JiQvT8+WN09XFp+n5Hrc578UctWF3Kx7EBAIBbMplMOmt0kt64aLwmDY7Wv7/ergteXqHcovoDPxgAAACAT6NoR58y+5n06/EpevW3RygzLlR3fb5JF72yUj8V1hkdDQAAYK/iwgL0j9OG68EzRqi1o0vzXl+l69/L0xYOSwUAAACwDxTt6BcDooL073NG6baTMlXT0qnL31ita95Zq23Vxn/0EwAAYG+mDInRG78br3kTUvXDjlqd/+JPuvmjDSqqazU6GgAAAAA302eHoQK/5Gcy6eTh8cpJt+n1lSV64fsCnf/ij5o5LE6/PnKAhtpCjI4IAADQQ5C/WZdOHKRzxyTrpeWFeiO3RJ/lV2pGZqxmj07UqKRwDnwHAAAAQNGO/hfob9aFRw3QadnxeuH7Qr2zulQf5lVo0uBo/ebIFI1LieANKwAAcCuRwf666rg0zTkiWS8uL9L7a8v0yfoKpceGaPaYJM3MilOw1Wx0TAAAAAAGoWiHYaKCrbp26hBdfEyq3lpVotdXlOjyN1YrKy5Up2Yn6MSsWEUE+RsdEwAAYBdbaID+PHWIrpg0SJ9sqNCbuSW65/NNenDJFk0YFKWp6TZNSYtRWCDLbAAAAMCX8A4AhosM8tclxwzUBUek6MO8cr21qlT3Ld6sh7/YouOG2HRqdryOSo2UxcyRAgAAwD0EW806a1SizhyZoDWljfp0fYWWbq7S0s3VMvuZ/l97dx4lWVnecfx7a+nqrl5nX2CGAQZelmGRTVGCRCMa9CSoaPQEDSZqGDyowUOiBgMmRjSCuyOLQT1xTRBFgxIUF8CVxQMMyCPbzMDArD0zva9188d7q7u6urq7qru6a5nf55x7qure91a/z32r77311Hvfy2lr2nnhYYs4bW0HRy9rIR7T1XoiIiIiIvVMiXapGo3JOK8/aTWvP2k1trOHHzziL8n+yR9305pK8JIjFnPO+iWcuW6xLs0WERGRqhAEASeubuPE1W2872VH8uiObn72+B7ufrKTz971NACtqQSnHNrOSYe0cfyqVo5d0UpTUucyIiIiIiL1RIl2qUpuRQtuxXreffYR/HpLJ794Yi93PbmX2/+wi4Z4wEmHtHP62g7OWNuBW9FKQr3EREREpMJiQcCGVW1sWNXGpWcfwZ6eQe5/5gD3PrOf+5/Zzy+e3AtAPIAjljazYVUrG1a2cdyqVtYtTut8RkRERESkhinRLlWtIRHjpeuX8tL1SxnJhDy4/QB3PbmX323dz6Z7trAJaEnFOfmQdk5Y1caGVa0cv6qV5gZ9tOkhg30AABUeSURBVEVERKSylrakeOWxy3nlscsB2Nc3xCM7utn8fDePPN/NT2wP331oBwCpRIyjljXjlrdwzPIWjlnRwhFLmmlIaOg8EREREZFaoGyk1IxELODUNR2cuqYDgM6+Ie7btp97t+3nwe1d3PNUJwCxAA5fkuboZS0ctayZ9cuaOWpZC0vSSYJAPcVERESkMhalGzjriCWcdcQSADJhyLbOfh7d2Y3t6uGxnT3c/oddfOfB5wF/7nPk0maOWd6CW+ET8Ecta6ZRw86IiIiIiFSdiibaN236HNdcczU9PT2VrIbkaG5u4fLLP8All1xa6arMaHG6gXOPWc65x/heYt0DI2ze0cXm57p5ZEc39z+znx/9YddY+UVNSdYva+bwxWnWLmpi7eImNhwG6TDUDcpERMps06bP8YlPXE1vr47xUh61dI5SrFgQsG5JmnVL0px33ArAJ9+37x/gsSjxbru6+fkTe7h1845oHVi3OM1Ry5pZtzjtpyVp1nY0qfe7iIiIiEgFBWEYFlVw9+7u4gqW4IQTjmbnzh3lfluZoxUrVvLww3+cNL+jI83+/X0VqNHsHegf5ok9vTy+u5fHd/fw+O5etu3rp3dodKxMMh5waHsTaxc1sSaaVrelWNXWyMq2RlI19qW1FtupGPUYVz3GBPUZ13zFtGxZ67z/ylfu43ex20LHeJkP9XSOUoowDNnZPchjO3vGEvBP7e3l+a7BsTKxAA5pb+SwxWlWtqZY0ZpiefS4ojXF8pZU0Yn4et+eC0nbsryqZXsuxPFbREREak9Fe7Rv3HiperRXmebmFjZurJ+eYu1NyQnDzYD/srq3b5ht+/rYO5jhse372bavn637+vn1lk6GRifmpBank6xqa4ymFCujx1XtjaxsTdHcENeQNCIieTZuvFQ92qWs6u0cpRRBELAy6gBwzlFLx+b3D4+yrbOfpzv72NLZx9bOPrbu6+eh57roGhiZ9D5tjQlaU4mJj40JWlNJWlJxmhviNDckWLYoDcMjNKcS0Tw/vykZ0zmPiIiIiMgUKtqjHaqnV0I51WNMUJ9x5cc0mgnZ1TPI810DPH/AP+7oil53DbCje5DhvER8KhFjaXODn1oaWJL2j+1NSdob/ZfYtsbs8+S8f0mtx3aC+oyrHmOC+oxLPdrH1WP7Voq2ZfloW07WNzTKrp5BdnYPsqvbP+7rG6ZrcITugRG6BkboHhymK3o+kpl5VxELoCkZJd5TCVoa4qSjJHx2XrohTntjgo6mJO2NSTqaErQ3JeloSh6UnRP02Syvatme6tEuIiIihehmqCI54rFgrPc6h05englDOnuHeD5Kvu/sHmRP7xB7e4fY0zvEE7t7+W3fPnoGRyevHEnEgrGeZOmGOI3JOOlknKZknKZkjHSDfz6+LBYt81NDIkYqHiOViNEQTdnXybjO+UVERATSDfGxMdyLMTSSoW9olJ6hEWKpJDv29tA3NErv4Ci9QyP0Do2OT4P+dd+QX7arZ2jsee/gKFOl7BOxIEq65ybiJybjs48dTQnaGw/O5LyIiIiI1CYl2kVKEAsClrakWNqS4oTVbVOWGxgeHeshdmAg21tsOHrtn3cPjNA/nKFveJTOPv8FtX941M8bGmF0ln1QU4kYDTmJ+FQ8SsjHA+KxaArGnycKzBubnzMvAILAX74e4Hu1EQTEJs0P/Gv8vOx9Zsfm566PX57//XnS1+kgIN3UQF//UMHlk15Per8g98Xs1y2wvEBVp143r2xzc4q+vkGmMlViYaorkXJn55YIc15NdRHTxHULl5+w6jTl0+kG+vqG8upQ+I+FhWdPOZ8i6jZx3YkBh6FfHoYhmdD/eBbmPWZylmcfGxoSnLyqhTPXLUZEpB5lf7zvSCfp6Eizuml2XxMyYUjv4Cj7+4c5MDDM/v7sNMKB/vHXB/qHebqzjwPR86nOexKxgI6mJK2NCRoTMRoTMVKJOKmEP9dpTI6/TsYDf+7B+HlH9hxmwusgGD8OZEK/7w9hNAwJw5DRaP8/mokec44Roxl/1BvN5Bw/KHRc8cfHeCLO0NDIpGMOjNctHguIRedM+fWMR+dO8ez8CXEFxGMULpfz3kHOe4/9nVi0nWLjy2Zrpgukwyl/ehk/LpO3LUOibRjmvg5pamqgt2/Iz8s5pofRe014jxAWpZO87sRVJOK1dc8lERERqU1KtIvMg8ak742+vDU1q/XDMGR4NIwS76P0RQn4geFRBkcyDI1kGBrNMJDzPDufRJzu3kH/Opo/OJJheDTDaMZ/QRzK+C+N2dej+a9zno9EU7ZembEvRDnPRepILGBCUiKbqOjfsFKJdhGRGcSCwI/73phgDU1FrZMJQ3oGRzjQP5KTmB/mwMD46+6BEQZG/HlQz9AIe/v8+U323GhgJMNIJhw7V5mLgIkJ6ElJ6iAgFvPJ7WzMuceO3MdkPEYYhhM7I0RJ7TA638om4TNh7vOJPwJkH3MT/xOT/uGsO2nUs8XpJK86djltSrSLiIjIAlCiXaQKBUFAQyKgIRGjvSlZ0rqVGLsyt+dRbgI+twdSmO2VRPQFOIQMBb4M5/dAjh7b2pro6uqf1Gtq8urT9Jqa/k9N6nE1Yw+taeoyqSd1gcq0tjXS3TVQuG4F6jJVb/kJfdCm6Lyf2zt+4vz8ik2eP+FvTX1xwJj29jRdXf3T/q2JdZ65bhPmTxHk1OtOrH+Qk0AvlBwppFrGhBURqUexIKCtMUlbY5I1i4pLzs8kNzFdKEHtk+UFEujTHAtmY6GPHxN75E/sfT+5x/748kw49XE9ay6bZbp1A6a/AjIgGDt+L+pIc+BA/6QrKCdcbZkzX0RERGQhKdEuInOWPxzMfOhoaySVyczLe1dKR0ea/cn662HV0d5IU1hfbSUiIrUlmzSfr/OSahUEAYko7mS80rUpv9bGJKMDw5WuhoiIiEhB9ZfhERERERERERERERFZQEq0i4iIiIiIiIiIiIjMgRLtIiIiIiIiIiIiIiJzoES7iIiIiIiIiIiIiMgcKNEuIiIiIiIiIiIiIjIHSrSLiIiIiIiIiIiIiMyBEu0iIiIiIiIiIiIiInOgRLuIiIiIiIiIiIiIyBwo0S4iIiIiIiIiIiIiMgdKtIuIiIiIiIiIiIiIzEUYhhWdrrrqqqsqXQfFdPDGpZhqZ6rHuOoxpnqNqx5j0rao/KRtqW1ZrZO2p7ZltU7anpo0adKkSZOmap6qoUf7lZWuwDyox5igPuNSTLWjHuOqx5igPuOqx5hmS9uifLQty0fbsry0PctH27K8tD1FRESkalVDol1EREREREREREREpGZVQ6L9w5WuwDyox5igPuNSTLWjHuOqx5igPuOqx5hmS9uifLQty0fbsry0PctH27K8tD1FRESkagVhGFa6DiIiIiIiIiIiIiIiNasaerSLiIiIiIiIiIiIiNQsJdpFREREREREREREROZAiXYRERERERERERERkTlQol1EREREREREREREZA4S5X5D59wJwDeBFjNbN025C4ArgCOBp4APm9kt0bIAuAq4EFgCPABcamaPlLu+xSohrtcC/wIcBewArjezT0TLroqWDeWtdqSZbZ+Hak+rmJiccxcBXwYG8xa9zMx+VW1tVWRMNwJvyZsdB+4xsz+ttnYCcM4dBnwSODua9TPgvWb2XIGyLwU+DhwHPAd82syuy1l+CXApcAjwKHC5md09vxFMVmJMZwNXAycA+4FvAR80s5GZPqPzVP2Cio3JOXdOtCy/zm8zs29GZaqinaK6FBvXFfj9eq4YsN3MDq+ytnoR/v/kBUAfPqZ/MLMdBcrW1PFqPjjn1gCbgDOBfuBW4DIzy99PShGKPaeQmZVyLJGZlbJvlOI55z6F/1wGla5LLXLOhcAwkMmZ/WUz21ihKomIiIgUVNZEu3PujcCngN/hT9CnKnci8DXgTcDtwLnAt51zp5vZZuAS4G3Aq/FJjfcDtznnjjGzgXLWuRglxHUG/ovzhcD38AmJ251zT5vZzVGxu8zsnPmt8cyKjSmydZpEQNW0VbExmdk7gHfkrBcA9+DbLqsq2inHD4CH8Im+RnxdbwBek1vIObcyKvtPwFfw2+FHzrktZna7c+7V+IT1a4B7gb8B/tc5d7SZ7VygWLKKjWkt8EPgg8A5wDHA/wG7gGuiYtN9RhdSUTFlmVljoflV1k5QZFxm9hHgI7nznHPfBJ7OmVXxtnLOLQLuAD4E/BmwCPhv4Drg/LyyNXW8mke3AJuB9UA78F3gX/HxSglKPP7KzEra78rUStk3SvGccyczuYOHlO5cM/t5pSshIiIiMp1yDx3Tgk8u3zlDuXcCd5jZ98xswMy+H63z9mj5Rnwv3IfNrBf/Zb4deFWZ61usYuNaDFxtZjeb2UjU+/RuxntZVZNiY5pJNbXVbGP6W6AB+FLZa1QGzrkO4D7gH82sy8x2ATdS+HN1IbDFzL5oZv1RL+H/Ai6Olm8Evmpmd0f/e9cDzwBvnv9IxpUY0wp8r6XPmtmwmT0MfH+KshVTYkwzqYp2grnF5Zx7OfBi8pLvVSAFvMfMPhN9pnbhE8knFShba8ersnPOnQacgr+qYr+ZbQU+CrzTOach6EpXruPvQa/M+10pbd8oRYj2kdfhr7oQERERkTpX1h7tZnYTgHNupqKn4nuk5noAeLlzrgk/5MUDOe877Jx7GDgd31N8QRUbl5ndju/xSFQ+AA7FX3abtcY5dyd+G+zEJy6+X+46z6SEtgJodc7dCpwF9AAfMbMbq62tSoyJqGwanzC6wMxyL0etinYCMLP9+B8Dcq0BCg1jcyo57RF5AHhtzvKbCyw/fY7VLEkpMZnZvfhe3fllt+W8LvgZLV+NZ1ZiOwHgnPsa8AogBD6H/6EuQ5W0E8wuLhjb/30KuMLM+nIWVUNb7cAPYZOtpwMuwg9JlK+mjlfz5FTgGTPbkzPvAXxv1yOBxytSqxo1m2OVFDbb/ZMUVuK+UYrz9/gheL4B/HuF61Lr3uucuwk/TNutwLujfYCIiIhI1ahUT7QlwL68eZ3AUvwX92Ca5bXk/fhYs0mkZ4HHgPcAq/CJtVuccxsqU72i7AYexI/XuRq4DNjknPtz6qOtNgKP5o19XdXt5Hx25grg3wosnu5/q5jlFTFDTPll34zvrZjtHTbdZ7RiZoipC/gVfoiDQ/E91S/HfyGHKm0nKKmtXgek8cmFrKpqq2hYmCHgEfwwHvnjy8PBc7yazlTbAOorTqlxpRxLZGpF7htlBs65FcCV+HNNmZvf4q8SPh7/4++JwPUVrZGIiIhIAWW/GWoJZroZUE3fLMg59yF8ovYVZtYJYGZfYuLwJJ93zr0F+GvgAwtfy5mZ2W3AbTmzvuOcuwV4K/C+aF5NtlV0Oe9ljCc3gepup2gIh9uAa83sG1MUq6n/rSJjypZ9G/AZ/BUIj8OMn9EfzU+tpzdTTGb2APCSnFk/c85dj6/zF6N5VdVOUFpb4X84+LSZjWZnVFtbmdlDzrkGfK/N6/A/fLyxQNGa+p+aJwdDjFLDStw/yTRK2DfK9D4J3Ghm5pxbV+nK1DIze1HOyyeccx/A3w/lIjPrr1S9RERERPJVqkf7bnwPuVxL8Dc37MTfUX6q5VXNORc4527AX2p7lpn9foZVtuB7dtaSLfg613RbAX8CtAE/LqLsFircTs65V+LH9L3KzP51imLT/W8Vs3xBFRlTtuwV+J7QrzKz/KE88m2hQu1VSkx5tjBe56pqJyi5rQ4DzqC4oVO2UMH/LTMLzewx/I9ob4huKJyrbo9XJZhqG0B9xSk1ag77XZlCEftGmUZ0j5Iz0HAx82UL/gdgfS5FRESkqlQq0X4fcFrevDOA35jZALA5d7lzLoW/EdNvFqyGs3ct/iZnL46+oIxxzl3hnHtZXvljgacWqnKlcs5d7JzL78V0LPBUHbTV+cBPzWwwd2Y1tpNz7oXAt4G3mtkXpyk65f9WkcsXTAkx4Zy7FH9D15dEN3jNXTblZ7Sc9S1GsTE5597gnMu/lDy3zlXTTlBaW0XOBx42s2fz3qcq2ira/vfnzc7eo2E4b349H6+KdR9wSF6i7Qx8kr1qj19ycJjF/kmmUOK+UaZ3IXAI8Kxzbg/RvTycc3ucc2+qaM1qjHPuBc65a/NmH4v/TD5bYBURERGRilmwoWOcc48BF5vZz/Fj6j3gnHst8EPgL/C9i98VFf8CcKVz7jbgaeDDwHPAHQtV32LlxuWcezHwd8DxZrazQPEl+PGI/xLYio93PXDTglW4CHltlcIPnfIUfmzlC4Dz8D8mQI20VV5MWacAha44qKp2cs4lor99pZndWmD5ncBNZvZ14Gv49ngX8J/Ai/BD3pwXFf8CfriOr+OTZxcDi5k4jva8KyUm59zhwNXA2dnhYvLM9BldECW20xBwrXPuSfzNks/B39Dvoqh4VbQTlBxX1in4/UG+qmgr4JfA+miIr2uAVuAq4Jdmtrdej1ezZWa/d879BviP6EevJfgxmz9vZmFlaycHs5n2T1KyafeNlaxYDboM+FDO60OBXwMnM36PCynOLuCdzrnd+JusH4a/D8MNZqYfgERERKSqlDXR7pwz/MlPHEg45wayi6KpBcDMHnXO/RXwMeBbwOPA68zsiWj5DdENhH4MdOBP/F9TqZOpYuPCJ9lb8GMH5r7FXWZ2LuPje9+Jv4HcZuDlZvbM/EYwWQkxfRb/Ret/8DcGfRo438zuhepqqxJiyloJ7CjwVlXTTpEzgeOAjzvnPp63zAFH4m/KiJntds69Gt9u1wLbgY1mdle0/A7n3GX4hPxKfLLzPDPLv9HhfCs6JnyvsDTwq7z/q61m5pjhM7qASmmnW51z78XfaHct/nP4HjO7OVpeLe0EpbVV1koKJ9qroq3M7Dnn3Ln48XM/iL857U+Bt0dFavZ4NY8uwP/o8BzQB3wF+GglK1SrpjtWmdnWytWsJk27f9L2LE0R+0YpUnS8HjtmRz8KkX+ll8zMzLZH57YfA/4ZGAS+Gj0XERERqSpBGKozmoiIiIiIiIiIiIjIbFVqjHYRERERERERERERkbqgRLuIiIiIiIiIiIiIyBwo0S4iIiIiIiIiIiIiMgdKtIuIiIiIiIiIiIiIzIES7SIiIiIiIiIiIiIic6BEu4iIiIiIiIiIiIjIHCjRLiIiIiIiIiIiIiIyB0q0i4iIiIiIiIiIiIjMwf8Dk95TU3bnk6gAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -289,7 +290,7 @@ } ], "source": [ - "pm.plot_posterior(trace, varnames=['group1_mean','group2_mean', 'group1_std', 'group2_std', 'ν_minus_one'],\n", + "pm.plot_posterior(trace, var_names=['group1_mean','group2_mean', 'group1_std', 'group2_std', 'ν_minus_one'],\n", " color='#87ceeb');" ] }, @@ -309,9 +310,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAFgCAYAAACmKdhBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4FOXax/HvtiSkQEIKvQuhSpEi\nCorSBFHhCAdEEBHpVVFBBASkqCA2jgoI6gHfo6JYEBBFwYZwKKH3XkJLJT3ZZN4/OEZCEkjiJpvd\n/D7XxUV2p93PM5t7cu/MPGMyDMNARERERERE/jazswMQERERERFxFyqwREREREREHEQFloiIiIiI\niIOowBIREREREXEQFVgiIiIiIiIOogJLRERERETEQVRgSbGWkJDAvffeC8BTTz1FcnIyx44do3Pn\nzixbtowtW7bQqVMn1q5d6+RIb2zx4sV069aNkydPOjsUEREpJkriMW7dunXZ3jt8+DD9+/cvhMhE\nnEMFlriM119/HS8vL/bs2cNdd91F//792bp1K3379qVLly7ODu+Gfv31V+bOnUv16tWdHYqIiBRD\nJeEYd/bsWVavXl00QYk4kdXZAYhcLz4+ntGjRwNw6623Zr5/77338vHHH/Pee++RlJRE5cqVWbly\nJVarlZCQEEJCQpg/fz5Wq5UKFSrw0ksvERYWxtKlS0lMTGTChAmEh4ezdOlSrFYrDRs2ZOLEiaxc\nuZLt27cTFRXFiRMnGDRoEL169eL3339n/vz5WCwWunbtyuOPP862bduybcPDwyMzxri4OCZOnMiV\nK1ew2+1MnjyZI0eOsH//fiZPnszcuXOpWbMmACtXrmTr1q1ER0dz5MgRnnrqKb799luOHTvGvHnz\naNy4MR9//DGrVq3CbDbToUMHnnjiCS5cuMCzzz4LgN1u55VXXqFq1ap07NiRDh06sGPHDvz8/Fi0\naBEHDx5k+vTpeHh44OHhweuvv07p0qWLcG+KiMi1SsoxLjw8nGeffRaz2Ux6ejpz585lxowZ7N69\nmwULFtCzZ0/Gjh2Ln58fNWrUyNzGzJkz2bt3L+np6TzyyCP84x//KKI9I+JAhkgxs3z5cmPWrFmG\nYRjG6tWrjXvuuccwDMO45557jPj4eOOLL74wXn75ZcMwDOOtt94yli1bZhiGYTz00ENGdHS0YRiG\n8corrxhff/21sXnzZqNdu3ZGSkqKER8fb3Tv3t1ISUkxDMMwxowZY2zbts344osvjJ49exp2u904\nevSo8eCDDxoZGRlGx44djcjISMNutxtDhgwxkpKSctzGtd5++21j4cKFhmEYxu7du41HH33UMAzD\n6Nevn3Ho0KEs837xxRdGnz59jIyMDOPTTz81unXrZtjtduOzzz4zZs6caZw+fdro16+fkZGRYWRk\nZBi9e/c2zp07Z+zatcv4448/DMMwjBUrVhhz5swxDMMwQkNDjQMHDhiGYRi9evUy9u/fb7z00kvG\nl19+aRiGYWzatMk4evSoQ/aRiIgUTEk5xi1dutRYsGCBYRiGsXfvXiMsLMzYvHmzMXr06Mz1f/jh\nh4ZhGMbChQuNfv36GdHR0Ub79u0NwzCM1NRU49NPP3VIn4sUNZ3BkmLn2LFjtGjRAoCWLVvmaZmI\niAhOnTqV+a1gYmIiAQEBlCtXjtDQUDw8PDhw4ADh4eEMGjQIuPpNXHh4OABNmjTBYrFQvnx54uLi\niIqKwtPTk7JlywKwcOHCXLdxrb179zJ8+HAAGjVqxIkTJ24Yd8OGDTGZTAQHBxMaGorFYiEoKIgd\nO3awZ88eTp06xWOPPQZcvVb/3LlzVK5cmZkzZ/L2229z5coVGjRoAICvry9169YFyGxH+/btmTZt\nGidPnqRr167UqlUrT/0pIiKFo6Qc4+68805GjRpFXFwcnTt3pmnTpmzZsiVLP9x3330AtGrVil9/\n/RV/f3+qV6/O8OHDue++++jevXue+kekuFGBJcWOYRiYzVdvD8zIyMjTMjabjZCQEJYtW5bl/S1b\ntmRe3mCz2WjYsCFLlizJMs+fl2Bcy2w2Z9t2btu4lslkwjCMPMUMZNnutT8bhoHNZqNdu3bMmDEj\nyzLPP/88bdq04ZFHHuG7775j48aNAFgslizzGYZB69at+fzzz9mwYQMTJ07kueee4/bbb89zfCIi\n4lgl5RhXp04dvv7668xLER9++GEqVKiQOT23fnj//ffZt28f3377LV9//TVLly7N0/ZEihMNciHF\nTo0aNdi7dy9Alm+7bqRMmTIAHD16FIBly5Zx8ODBbOs9duwYkZGRALz11ltcvHgxx/UFBASQnp7O\nxYsXMQyDoUOHYjKZbrqNRo0aZca8c+dOateunaf4c9KgQQO2bNlCUlIShmEwc+ZMkpOTiY6OpmrV\nqhiGwY8//khaWlqu61i+fDkxMTE8+OCDDBgwgAMHDhQ4HhER+ftKyjFu9erVHDlyhA4dOjB27Fj2\n7t2L2WwmNTU11344e/Ys//73v2nQoAETJkwgJiYmT/0jUtzoDJYUO927d2fkyJEMGDCA2267Lc/L\nzZo1i+effz7zW7jevXsTFhaWOb1UqVJMmjSJwYMH4+HhQf369QkJCcl1fS+++CJjxowBoEuXLpQu\nXTrHbVzrscceY9KkSTz22GMYhsHUqVPz2fq/VKxYkccee4xHH30Ui8VChw4d8PLyonfv3sycOZOK\nFSvSv39/pkyZwm+//ZbjOqpWrZp5E7GHhwdz5swpcDwiIvL3lZRjXPXq1XnxxRfx9vbGYrEwefJk\nAgICOHjwILNnz2bAgAGMGzeOH374gTp16gAQEhJCWFgYa9aswWaz8fDDD+e5f0SKE5ORn+uZRERE\nREREJFe6RFBERERERMRBVGCJiIiIiIg4iAosERERERERB1GBJSIiIiIi4iB5HkXw8uW4woyjwHx9\nPYmPT3F2GIXCXdumdrked22bu7YLnN+24GA/p237RorrsayoOPtz4Y7Up46nPnU89WnBFeR45vJn\nsKxWy81nclHu2ja1y/W4a9vctV3g3m2TgtPnwvHUp46nPnU89WnRcvkCS0REREREpLhQgSUiIiIi\nIuIgKrBEREREREQcRAWWiIiIiIiIg6jAEhERERERcZA8D9MuIo5RJsAHD2vev9tItWcQG51QiBGJ\niLi/ws69yu0i8icVWCJFzMNq5uWwiDzPP7FpUCFGI1Ky+Pp6lujhii0WM/7+3s4OwylsBci9eemr\nP/u0sNZfEpXkz2lhUZ8WLRVYIiJSYpT0B236+3sTE5Po7DCcoiAPC81LX/3Zp4W1/pKoJH9OC4v6\ntOBK5IOGRUREREREigudwRIRERG5jj3DyPM31wX5hltE3JcKLBEREZHrWM0m3S8rIgWS5wKruN4Y\n7M437blr29yuXWYzNosJKLxvMZ3dX263z/7HXdsF7t02ERGR4izPBVZxvTHYnW/ac9e2uVu7goP9\nCv1bTmf3l7vtsz+5a7vA+W3TJVMiIlJSaZALERERERERB1GBJSIiIiIi4iAqsERERERERBxEBZaI\niIiIiIiDaJh2kWIuP89iAUi1ZxAbnVCIEYmIiIhIblRgiRSSE5t/4rd3Z9Nt5iICqtTMNn3Pqo85\nuXkDYKJJz4FUaXoHqYnx/Pz2NFITE7B5leLu0dOwmoMYOG8pRzaswmS2ULbaLdz+xHhMJlOO29Wz\nWESkJCgT4IOH1XkX4lyfr4cteivbPGEr3ufszi2YLRaa9x1OubqNM6cdPnyY7t2788knX1KhQsXM\n9997bwF79+5mwYJFRdIOEXE8FVgiheDC/jDO7dxMQNVaOU6PuxTOiU0/cv9LC0lLjOfbqcOo1LgV\n+9Z8Rvn6TWn0wKMc+H4lu79eTlLzZzmxaT1dp72L2Wpl7UujuXR4L+VCGxVxq0REig8Pq9mpDwK+\nPl8vXrwYOgzMnB554jDndm/l/pfeIy0xgfWvPsf9M94DwDAMXnnlFapUqZplnSdOHGfXrh1YLPrz\nTMSV6TdY3NqaNavYuXMHMTExnDhxnCFDhrN+/TpOnjzB1KkzOXToAD/8sBaTyUzbtu145JF+XLp0\nkZdemgqA3W5n8uTpVKpUmd69u9O2bTv27NmFr68fc+e+wbJlH7Br13ZOx6VlbrP1oPEE1qhD+fpN\nWTt9VI5xnd+3g0pNbsditWEpHYBfcHlizp7k/N5ttBk2CYCqzdvy49wJlCpVivumXP1m1J6STFpi\nAt7+ZQu550REXMORjau5cGAnKXGxRJ89wW29h3B80w/EnD3J3aNeJOLEIY7/9j27/Tww12tNw26P\nkBB5iV/+NQOAjPR02g5/gdLlK/P52H9StfldXDq8m6Ply1Jr+Gx2f72M8N1bs2yz9aDx2fL1H/96\ngZbXFFhXLpwhqGYoZrMFT9/S2Lx9iLt0Hr+QChzZuJo7Wrfmhx9+zLLeBQveYPDgESxdqrNXIq5M\nBZa4vTNnTvPOO++zatVXLF/+IUuXfszatatYtmwpCQkJvPPOEgCGDx/EPfd0IDo6koEDB9OsWXO+\n/fZrVq5cwejRTxEefo777rufUaPGMWTI4xw7doQBAwYRHDwuX9+iAiTFROLl55/5ulSZQJKiI0iK\nicKr9NX3S/mXJTHmr/Xu/noZ+9euoH6Xf+JXrpIDekZExD1cuXCWrtPe4fBPq9j99TIefPkDjm5c\nw66v/k1aUgJdp7/LxKZBtH2gJ9Vvv4ek2GiaPDyQCg1u4/CGbzn4w5e07D+auEvh3HLXfbTsP4od\nc0YQdfoojXsMoHGPAdm2eX2+vnTpUpbpAVVqsuvLj65+MZaUSNSpIyTHRmEr5c2xX75j0efLsxRY\na9asokmTZlkuFxQR16QCS9xe3br1MZlMBAYGUatWbSwWCwEBgRw7dhS73c7o0UMBSExM4MKFcCpU\nqMgbb8xjyZKFxMVdITS0HgA+Pj7cckttAEJCQoiPj3dYjAYGmExX/89808DEX/dZ3fpQf+p3+Sc/\nvDyecnVvpVzorQ7bvoiIKwuqGYrJZMLbP5CAqrUwmy2UKlOW6NPHyEi3892M0ez3s5GWnEj85Qv4\nBldgy1f/JmzFElIS4giqEQqARykfyla7BYDy5cuTlpj7gEHZ8vV198X6V65BnXsf5LuZY/ErV5Gy\nVWtjYLDt/96h6T+fxGr960+wK1diWbNmFW+88Q6XL2ct1ETE9ajAErdnsVhy/PnKlVjat+/Ec8+9\nkGX+2bOn06rV7XTv3pMNG9azadNv2ZaFq9fQf/TRkhwvEfSvXOOGMXkHBBF7/nTm68Soy3gHBOET\nEExSTCQe3r4kRkVQKiCQmJgYLhzYSfl6TbB6eFK5SWsuHdqjAktE5H9M5r/+nDGb/8rVKfFXqHFH\nB+4c/BwTmwZlXm3w67uzqHRrS+p27MHJzRs4s+P3q+vJIc/v+vKjHC8RvD5fBwcHZ4ur/n09qX9f\nTwC+nTIE3+AKnN+7nZgzx/nnV4s4cuQokyY9Q79+A4mJiWbEiCdJS0vl3LlzvPXWa4wZM94xHSQi\nRUoFlpRYoaH12LFjO8nJyXh6evLmm68xfPgoYmJiqFSpMoZh8NtvP5OenpHrOgp6iWCFhrexb82n\nNO31JClXYkiMisC/UnUq3tqCE5s30OQfj3Pyvxup1Ph27HY7v747i+6vfoTNy5vLR/dT6677/m7z\nRUTcXmDNUC7s24E9JRnDMNj84Rs07zuclLhY/MpVwjAMTm/7FSMj9zyf2yWC1+frtm3bknLN9OQr\n0fzyzkw6TphHzNkTGBkG3v6B9Hr7c+DqoBu9ez/CCy9Mo0KFirRv3xGA8+fDmTVrmoorERemAktK\nrHLlytOuXXtGjhyM2Wzmrrva4enpxUMP/YM33phHuXIV6NmzN6++Oov//ndzvtZ9+KdVHPt1HVGn\njvDbu7MoU6k6d42cwpaP3uBM0FB8g8pT594HWDttBJhMtB70DCazmfpdevHLghmseXE4Hj5+3DVq\nKkFBQTT5x+N8N2M0JsvVYdqr3tamkHpFRMR9+AaWo3qre1gzfQS7fD3xrt8aq4cnoe0fYsuHb+Ab\nXJ56nXuyafErnNu1JV/rvj5fP7noTf51NIUtH71x9V7ZkIoEVqvNqhcGYfP05q6RUwqplSJS3JgM\nwzBuPhtcvhxX2LEUiL+/NzExic4Oo1C4a9vcrV3BwX75Hiq4sOd39O+ru+2zP7lru8D5bcvPw7GL\nUnE9lhUVZ38uHKk45l5n52p34U6f0+JCfVpwBTme6QyWyHWc/fBKEREREXFdKrBEruPsh1eKiIiI\niOvS1/QiIiIiIiIOojNYxdChqIMsP/ARXp5WetZ8lNCydZ0dkoiIuDAdV0REio4KrGLo/w4s43Li\nRWxpVv5zcDnT7pjp7JBERNyCr68nVqvl5jO6mZXb/0NMWiQmu4kvT3zCyzVfdXZIwtWBByQ7i8Ws\nvnEw9WnRUoFVDF1MPJ/584WEcCdGIiLiXuLjU24+kxs6FXUGAJvNysmo024xmlhxHakyP9xhPxQG\njXjneOrTgtMogiIiIiIuwJ5h5OsPt1R7BrHRCYUYkYg4igosERERkSJmNZs0Yq2Im9IogiIiIiIi\nIg6iAktERERERMRBVGCJiIiIiIg4iAosERERERERB9EgF+L2ygT44GHVdwkiIiIiUvhUYInb87Ca\nNVKTiIiIiBSJPBdYvr6eWK2WwoylQNzxydQ229XdYjKZsNmsbtc+d9xnxY2j+9dd95m7tgvcu20i\nIiLFWZ4LrPj4lMKMo8Dc8cnUaWl24GqhlZZmd7v2FfU+K8gTuF2do/vXHX/PwH3bBc5vW0n8vRMR\nEQFdIijiduwZRr7+uE21ZxAbnVCIEYmIiIiUHCqwRNyM1WzSPWciIiIiTqICS1za8eNHmThxPL17\n9+Xhh3tnmXb58iWmT5+Mh4eV03FpxF0K57ZHhuEbXJ7//vttPP1K0+GZVzBbrcRdPMfWj9/h3qdn\n5XnbUaeOsOn9eez0tZEYWI07nnw2T8tdvnyZ7+eMx56SjFfpANqOeAGblzcH1n3Bsd/WYTJbCKoZ\nSqsB47Isd+nwXrZ+/C/MFgsWmwd3jZyCzduXH+dNJCXuCi0fG0O50EYArJ87gdZPjMcnMCTP7RER\nKW7eeus19u3bi8lkYuzY8dSr1yDL9Jzy5sVDu3PM8WPGzKDiwKl53vbBgwf5dsoLmEwmAqrWynOO\nT4yJ5Ld3Z2XL8ae2/crulR9itnlQo3V7aDosy3KpiQn88q8ZpCbGQ0YGdwyZgH+l6vy8YDpXzp+l\n6dhhNGt2BwCvvDKLhx7qQd269fPcHhEpOhq7WlxWUlISr78+l9tua5nj9ODgEBYsWMSyZcvoPPkN\nfILKUbV5Gw6s+4J7x88mpHYDLhzYCcCOzxZzW58hedruuV1bANjy0Zu0enwcn3zyCSnxVzgb9ke2\neZOvRBNx/GCW9xYuXEjV29rSddo7VG3elv1rV5CamMDeVf9H12nvcP/0d4k5e5JLR/ZmWW7f6k+4\na8RkukxdQHDthhz68Rsu7NtBudBbueeplzj0w5cA/Pzzz5StdouKKxFxaWFh2zl79gwLF37AhAmT\nmT//1SzT4+Pjc8ybueX4cePG5bSZbP7M8bNmzaLV4+O4f8Z7+crxu79ali3HGxkZbF46n44T59H1\nxX9xZsfvXLhwIcty+1b/h3Kht9L1xX/R6KH+hK1YQmz4KawennSd9i8+/fRT4OoXi+npdhVXIsWY\nCixxWTabjXnz3iQo6OaXuB39eQ3VW96NzcublLhYSvmXpZR/EMlxMVw6shdPP3/KVKyW6/IZGekc\n37Se1VOHcSbsD9LtacRfOk9wrXoAVG3ehvC92zLnj7t0nj+WvsZPr00iw27Psq5Tp04RdMvV5So1\nbkX47q2YrVbMVhtpyUlkpNuxp6bg6VM6y3L3PDUTv3KVMAyDxKjL+ASGkBwXS6kyZfH+X1syMtL5\n6KOPaPRgvzz3o4hIcbR9+1batm0HQI0aNYmLiyMhIT5zus1myzFv5pbja9asmeu2csrx586dK1CO\nv3LhTLYcnxwXi4ePL16lAzCZzVRs2JxNmzZlWa7RQ/2p3/WfAHiV9iclLpbkuCuUKlMWi80D+/+2\n8/77C3nyyaxnv0SkeNElguKyrFYrVmvePsKHf1pFp0lvAOATGELchXNcOX+aqi3uZveX/6ZJzyf4\n7b052EqVIrVB1ktIDm/4loPfr6RS41a0f2YOXqUDSIy6jIfvXwNJlCoTSFJ0JPERF9jxySISoyNo\n+EBfWj8xPlssderUYXvYJoJq1uXcrs0kXYnG6uFJk54D+XxML6yeXtRo3YEyFatmW/bszs1s+fAN\nylSqRq02nbl4aDfndm4m9vxpfALLceSnb+l2//188vUykqIjqNe5J4E16uSnW0VEioXIyEhCQ+tm\nvi5btiyRkZH4+PgC4OmZc97MLcdPmjSJA4lmmj86EovVlrne3HJ86dJ/fcmVnxwfUKUWZ6/L8V6l\n/bEnJRJ7/gx+wRU4v28HERVKQY2/lrN6eGb+vH/tZ9S8syM+ZYOJuxhOSkIcpUqVYuvWzdSqdQsb\nNqzn+PFjtG/fiZYtb3dkt4uIA+gMlri9sLAwylSshoe3DwAN7u/DpiVzSUmIIzH6MhUaNOPQ+q9p\n3OMxAqrUYt26dVmW37vq/6jbsTvN/jkYr9IBABjZtmKACS4e2EX85fO0GT6Jyk1yPugNHTqUmHOn\nWDN9JEkxUWAYpCYmsPurf/Pw65/Q860VXD66j6hTR7ItW7nJ7fzj9f9QpmI1dn+9jHKht5IYHcHm\nD18ntP2DnNr2C9WqVcNkMnH7wKcJW/H+3+0+EREnyZppDcPAZDJlvo6Pj88xb+aW44cPH05AlVqc\n3Lwhy3odneNv7d4/W443mUy0HTGZ39+bzY+vPY9fSIVcW73143ew2Dyoc+8D+AaXxzswmB/nTuDJ\nJ5/k00//jw4dOnP06BEmTJjMxx//O8+9KSJFR2ewxO1t3LiRio1aZL4OqFKTLlPeJsNuZ/28CXR4\n5hV+eGU8PsHl8Qkqx9mzp6DyX8vfN/Vt9q/5jG+nDCG0Q3duaXsfpUoHkBJ3JXOehKjLlPIPomab\nTnh4+/Lru7PwC65AowcfzXbpYenSpWk3ZjoAseGnOL9vO7HnTuIXUgmv0v4AlKt7KxHHD1G2Wu3M\n5U7992eqtbwbk8lE9VbtCPt8CSazmbYjJgMQtuJ9Gj3Ql/DwcHyDymP19CItyT2f8SQi7i8oKJjI\nyMjM1xEREQQGBma+PnbsWI55s8493XLM8RUrVsQnqBwRxw5k2U5uOT4mJiZznvzkeE8fv2w5HqB8\n/aZ0nf4uANv+8y6VKlUi6ro27/hsMclXomkz9PnM91o8OhKAU8c2cu+9HYmNjSEkpBxms5n0dDsi\nUvzoDJa4vT179hBQ7ZZs7x/4/gtC2z+E2WrFq0xZEiIukhB5iXLlymWZz9s/kOZ9h9P5hTdJiYtl\nzbThmK1WylSsysWDu4CrxU/lJq0wmUxUue1Oukx5m9r3PMC2/7zH4Z9WZVnfZ599xsH/DUhxZOMa\nqjS7E9/gCsScO4k9NQXDMIg8fpDS5StnWS7s86VEnjwMwOWj+yhT4a9LCBOjLnPlwlkqNLiNoKAg\nEiIvYk9JxuLh8fc7UESkCJQJ8CE42C/zX6dO97Jp088EB/tx+fIZKlQoR7Vq5TOnV6pU6YZ58/oc\nHx4eTkLkJbwDst63m1uOr1mzZoFy/KEfv8mW4wG+nzOe5CvRpCUncWb777Ru3TrLchcP7iLi2AHa\nDH0ekznrn2f2lGTWr1/PfffdT9mygVy8eAHDyH6eTUSKB53BEpd18OABFix4nQsXzmO1Wtmw4Udm\nz57Lb7/9go+PL3fffQ9wdVj0Kv+77ONPKQlxXDy4iwZdrw7tXq/zw2x880WsXl50eHIhh4+lZtue\nh7cPjR58NPMm5FYDxrJp8av0+XoxpSvUyXKWDKBcaCPKhc4h3Z6W5f327duzYOAwjv/2PWUq16BZ\nnyGYzRYaPtCX72aMwmSxElKnIeXrNSHy5GHe+vX/oG1f2gydyB9LXrs6TLuHJ3eN/OtesZ0rP6BJ\nz0EAtGzZkoi3FrF2xmga/2PA3+xlEZGi4WE1Z32Gn6kqcUE1adPtYUxmM62feJqXwyI4snE1Ht6+\nvDv04RzzJuSc459++mkupVu59+nZOW//uhw/adIknnj6eQzDIPiW+nnO8VWbt2XD/ElZcjxAnfYP\nsG7WOKyepWjWewhly5YlcdchwlYs4c7Bz3Hw+y+Jj7jIdy+NuRqPrx/tx88BYO+3/+GpgQMxm81U\nrlwFgGHDnqBLl25/p8tFpJCYjDx+BXL5clxhx1Ig/v7exMS412VQw354AgCbzUpamp33Oi51ckSO\n9Xf3WZkAHzys+Tv5mt8H75a0+W/2++2Ov2fgvu0C57ctONjv5jM5QXE9lhU2VziuBAf7FbvcWNzm\nLymfX2fnL3ekPi24ghzPdAZLXE62bzlvYmLTmw/jLiIiIiLiCCqwREo4e4aRp29n/pwn1Z5BbHRC\nYYclIiLXyGuu/pNytYjzqMASKeGsZpPOCEqJ4evridVqcXYYRc5mu3q4N5lM2GxW/P29nRyR5FdB\ncrWr7meLxeyysRdX6tOipQJLRERKjPj4FGeH4BRpaVeH8/7zHqzieC9Gcb1vz5UVx/2cF7pfyPHU\npwVXkNykYdpFREREREQcRAWWiIiIiIiIg6jAEhERERERcRAVWCIiIiIiIg6iAktERERERMRBVGCJ\niIiIiIg4iAosERERERERB1GBJSIiIiIi4iAqsERERERERBxEBZaIiIiIiIiDWJ0dgIiIiIg4lj3D\nIDjYL8/zp9oziI1OKMSIREoOFVgiIiIibsZqNvFyWESe55/YNKgQoxEpWXSJoIiIiIiIiIOowBIR\nEREREXGQPF8i6OvridVqKcxYCsRiMePv7+3sMBzKZru6W0wmEzab1e3a5477rKRxl/3nzp9Fd26b\niIhIcZbnAis+PqUw4ygwf39vYmISnR2GQ6Wl2YGrhVZamt3t2vd391l+btoVx7NnGNhsef+ypTjf\nOO2O+eNPzm6bfk9FRKSk0iCEnCeMAAAgAElEQVQXIpIvunFaREREJHcqsMThygT44GG98e191367\nXZzPcIiIiIiI5IcKLHE4D6tZZzhEREREpERSgSVOl9+HIYqIiIiIFFcqsMTpdE+PiIiIiLgLPQdL\nRERERETEQVRgiYiIiIiIOIgKLBEREREREQfRPVgiIlJi+Pp6YrXm/UHZ7sJmu3q4N5lM2GxW/P29\nC3+jZjM2i6nwtyMOUySfizywWMzFJhZ3oT4tWiqwRESkxIiPT3F2CE6RlmYHrhZaaWl2YmISC32b\nwcF+GsDIxRTF5yIv/P29i00s7kJ9WnAFGelalwiKiIiIiIg4iAosERERERERB1GBJSIiIiIi4iAq\nsERERERERBxEBZaIiIiIiIiDqMASERERERFxEA3TLiIiIlLC2TOMfA1HnWrPIDY6oRAjEnFdKrBE\npFDpoC0iUvxZzSY9t0zEQVRgiUih0kFbREREShIVWHJTZQJ88LDqdj0RERERkZtRgSU35WE16wyE\niIiIiEge6LSEiIiIiIiIg6jAEhERERERcRAVWCIiIiIiIg6ie7CkxDIyMtj0/lyizxzHYrXR+sln\n8a9UjZdeeom1m7Zi8/QGoOEDfal4awt+nDeRlLgrtHxsDOVCGwGwfu4EHp8/i+t/leIunWfDGy/w\n4Oylme+FrViCp18ZaDqMFaMexicwBJPZQro9lYqNWtDsn4OJu3Ser57rT1CNuhgYWKw27pv8DFC5\nqLpFRMSt5Zb7N38wn0tH9mbm/tvHDSPdJzTX3N/6ifH4BIZkWfeNcn/9+3pmyf1hngZGzSa55v6m\n/3ySkNoNi65jRMRhVGBJiXV626+kJsbT7aWFXLlwli0fvUnHCXNJTEzkziETCaxeJ3Pec7u2UC70\nVmq17cyOTxZRLrQRZ8I2UbbaLZQvXx7O530QkD91fP41bF7eGBkZrJs1josHd+FdNoQyFavS5cUF\nAFy5cJbJkyfTeNQs/MpVcljbRURKqtxyf1pyUpbc365pEF98uDrX3H99cZVXf+b+5xqX5d6e/XLN\n/T/Om0iHZ19R7hdxQbpEUEqsKxfOEnxLfQBKl69MfMQFMjLSSUjI/pDb5LhYSpUpi7d/EMlxMWRk\npLN/zWc0erDf347DZDYTVKseVy6czTatdPnKDBo0iD2rPv7b2xERkdxzf1pSYrZ5CzP3m2+S+xs+\n0Fe5X8RF6QyWlFgBVWqyb82n1O/6T+IunCX+UjgpV2JJSEjgwBcfkBofh3dgMLc//hQ+gSGc27mZ\n2POn8Qksx5GfvqXmnR3Z/fUynv8mDnuLBwisUSfL+mPDT7N2+qjM1/GXz9Og2yPZ4rCnpnB+3w5q\nte2cY5z16tUj5oP/c2zjRURKqNxyvz0liZ3X5P5hr710w9yfFB1Bvc49C5z7k5OTb5j7A6vX5shP\nqxzbeBEpEnkusHx9PbFaLYUZS4FYLGb8/b2dHYZD2WxXd4vJZMJms7pd+4qLyk1bc/HwHtZOG0lA\n1VqUqVQNA4M+ffrwU2ogZSpWZdeXHxG24n1aDRjHkQ3fsvnD12nRdwQ7VrxP4+6PEXcpnKlTp/LA\nEyPp8NyrWdZ/7eUecPU6/Gv9MGc8JvPV36nQ9g8SUKUmcZfOZ4szLS0tc76SwJ5hEBzsl+f509IN\nyMgo0LbcMX/8yZ3bJvJ35Jb7Q9s/hH/lGpm5/+2336Zc16G55v7bBz7NxjenFjj37/Oz3TD3Z9jt\nJSr3i7iTPBdY8fEphRlHgfn7exMTk/20vitLS7MDVwuttDS7w9tXJsAHD6uuDgW4rfeQzJ8/H9OL\nUqUD6HhbKNv/92Dlai3uYtOSeZjMZtqOmAxA2Ir3afRAX+IjLuAbVJ5SpUrleGnJzfx5Hf7N7N27\nl7LVa+d7/a7Kajbl+8HWl6MK9jvijvnjT85uW36KZJGillPur9by7sz3qrW4i0OfvknDbrnnfqun\n19/K/RObBt0w10UcP1iicr+IO9ElgiWQh9Wc7z9g3VHUqSPsX7uCNsMmcXbnZgJrhGIymxk2bBhB\nD4/CN6g85/eHEVClZuYyiVGXuXLhLE17PUn4nq1cPLiLpKQkLB4ehRLjlQtn+fDDD2nxzGuFsn4R\nkZImt9y/fu5z3D7w6czcX7v2X8VNTrnfnpJcqLl/3+pP6Tz5jUJZv4gULhVYUmIFVKmFkZHBt1OG\n4OHtl/ktZb9+/Zgw6wWsnqWwennRZtgLmcvsXPkBTXoOAqB8/absW/Mpjz32GHU7P+qwuP68fj8j\nIx2T2cwbc+bwvam8w9YvIlKS5Zb763V6mA3z/8r98//1GotPG0DOuX/tjNE0/scAh8V1fe5vM/wF\nfIOU+0VckQosKbGuvezvWm3atOGB2XVzXOaOJ5/L/NlssdJxwrwcL/PwC6mQ5TkoAE17Dcr8udeC\nL3Jcv19IBfp/uD7Le82aBvF9Ps44iohI7nLL/ZUat6JS41aZrwMDA+H01dybU+7PiSNzv4i4LhVY\nIiJSYhTXAZsKmwZPksJQWJ8jDdLjeOrToqUCS0RESoziOmBTYXPE4EkaIEmuZc8wsNny/mVFqj2D\n2Ojsz5nMibMH6XFH6tOCK8igTSqwRERE5KY0QJJcqyAjvoqUFPoqSkRERERExEF0BktEXFp+H0yc\nn8tURERERPJLBZaIuDRdpiIiIiLFiS4RFBERERERcRAVWCIiIiIiIg6iSwSd7K23XmPfvr2YTCbG\njh1PvXoNMqdlpGVw9svTDPqkP0uWLMt8//jxo0ycOJ7evfvy8MO9nRG2iEuJPnOcH+dOoH7X3tB0\nWJZpv/66kY8+WorNZqNDh048/HBvkpOTmTVrGtHRUaSkpPD4409y551tnRS9yI3d6DiSkpLCq6/O\n4ujuI9wypDYASeGJ9OjRlUqVKgNQq9YtPPXUc1y8eIHZs2eQnm7HYrEydeoMAgN1Sa04xrX3yx4+\nfJgRI0bw+OOP069fvyzzffzxx3zzzTeYTGZuuSWUsWPHExFxmdmzZ5CWlkpGRgajRz9N3br1GDiw\nLz4+vpnLvvjiTIKDQ4q0XSI5UYHlRGFh2zl79gwLF37AiRPHmT17OosXf5Q5/dy6c3iVLwWn/lom\nKSmJ11+fy223tXRCxCKuJy05ic0fzKdCw+bZpmVkZPD663NZsmQ5ZcqU4ZlnxtC2bTv27NlF3br1\nePTRAVy4cJ5x40aqwJJi6WbHkXfeeZM6dUL5efeGzPcyUjNo1649Y8eOz7KuxYvf5cEHe9C+fUe+\n+OIzPv30Y0aMGFtkbRH39uf9smnJSax/dSqlazfl+zPxnL3mHtrUxAS+fmcRD7/5KZOal6dfv8fY\nu3cPGzf+yF13taN794fZs2cXixa9w/z5bwOwYMEiZzVJJFcqsJxo+/attG3bDoAaNWoSFxdHQkJ8\n5vSKHSuSfCUlS4Fls9mYN+9Nli+/egDVgx9Fbsxis9Fx4mvs+Xp5tmnR0dH4+voSEBAAwG23tWDb\ntv/StesDmfNcvHiRkBB9IyrFU27HkT+/1R86dCSxsbEs/vy9zGXSUzNyXNf48RPx8PAAwN8/gMOH\nDxZu8FIi3Sgnm61WzFYbaclJ2O12kpOTKV26NGXK+HPlSiwAcXFx+Pv7A5CYqAfnSvGkAsuJIiMj\nCQ2tm/m6bNmyREZGZr62eGZ/QrrVasVq/Wu35ffBj6BR1KRkMVusmC1//c5ce5mKYfiSkpJMQkIk\nlSpVYu/enbRs2TJzep8+fTh//gIvvzzfKbGL3Exux5E/Cyxvbx9iY2OzLJORmsHuvTsZP34MyclJ\nDBo0lGbNmlOqVCkA0tPT+fLLFTz++JNF1xApMa7PydeyenjSpOdAPh/Tix99vbnnno5UrVqN3r37\nMnjwAL77bjUJCQm88877AMTGxjJ9+mQuXAinadPmDB48HJPJVJTNEcmRCiynMrK+MgwlBpFCdv2w\n7rcOep7HxjyLzdsX36BybAxPIOp/05tMWMCLXpcZP/4ZPvzwP/r9lGIo/8cRr3JeDGzxJG3a3M3p\n06cYN24En376FTabjfT0dF56aSrNmjWneXNdii5FKzUxgd1f/ZuHX/+ESa2r0rdvP44cOczvv//C\nvfd2YMCAQfz++6/8619vMnv2XIYOHUmnTvfh6enFxIlP8/PPP9GuXXtnN0NEowg6U1BQcJYzVhER\nEdSoVRVPTxuenjbMZhMeHlasVjPBwX5Z/vn4eOLr6+XE6EXcQ/n6Tek6/V06TpiLzdsH3+AKRBw/\nSHzERQDq1atHeno6MTHRTo5UJLucjiOBgYE3XMYr2Is2be4GoGrVagQGBnL58iUAZs+eTpUqVXni\niSGFF7RILmLPncQvpBJepf3x8PCgceOmHDp0gD17dtOq1R0AtGjRioMH9wPQo0dPfHx8sVqt3HFH\nW44dO+rM8EUyqcByopYtb2fjxh8BOHz4IEFBQQSU8WN/dErmvyOxqVxIsvNyWESWf7+dT+T7M/E3\n2YKI3Mz3c8aTfCWatOQkzmz/nYoNm3PxwE72rf4PcPUP1sTERMqU8XdypCLZ5XQc8fb2ueEy0WFR\nrFjxCQCRkRFERUURHBzC99+vxWazMWjQ0EKPWyQnvsEViDl3EntqCoZhcPDgfqpUqUrlypXZv38v\nAAcOXH0vJiaGZ54Zg91uB2Dnzh3UqFHLmeGLZNIlgk7UqFFjQkPrMWzYE5hMJp5+egIrV64k/fAV\nLHVKk/L1aYy4NGKjYe30UdRp/yBlKlZl67IFxF8+j8lqpf/+37llyHQ8fUs7uzkixVLE8YPZfmeM\n0Fb4BVegWsu7qdP+AdbNGofVsxTNeg/Bq7Q/oR178Pt7c1jz4nD+a03n6acnYDbr+ygpfnI6jqxZ\nswofH1/uvvseJk+ewKVLF0mNTOH4h8cIbhlM6bql2fLLJjZu/JHU1FSeeWYiNpuNlStXkJqawqhR\nV89eVa9ek2eemejkFoq7uT4nn9qykSrN22Tm5IYP9OW7GaPYV9qLunUb0LhxUypVqsLLL8/gp59+\nAGDcuGfx9/enWbPmDB06EA8PG7Vrh9Ku3b1Obp3IVSqwnGz48NFZXt9xx23MiPoYAM+HqgLQ57aF\nWebp8uKCzJ8nNg3K9yAXIiVJUM26N/ydqd6yHdVbtsuyjNXDk7vHTMuc//LluKIIVaRArj+O1K5d\nJ/PnmTNfAWDYD08AYLNZSUuzM2/eW9lGof3iixVFEK2UdNfn5OvV7dCduh2680zjQKzmq/cTBgf7\n8dFHH2Sbd+zYkYwdOxKAVHsGsdEJhRO0SD6pwCpkGkZdRESKo/yOQqsRaKUoXT8g0c080zgwcwTY\nvFBBJoVJBVYh0wFMxLVdO6x7XuigLSJS9PJbkOnvLSlMKrBERG5AB20RERHJDxVYbuDY1t/4es5z\nXD55JE/zP5/P9Wt+ze/K8wdXr81Dz79KrRZt8rnmgtEZL3EX1x9bnP27rPndY/6izskizqACyw18\nOWs8kaePOzsMkWLp8skjfDlrPM98taVItqczXuIudGyRwlDUOVnEGUp8gZXfQSjSMgxs/xvVprCU\n9irPleQL//u5QqFuS0ScS2e8xFFudDyrEVSN8LhwAGoGVc/XZ07EHSn3SmFyuwKrIKP25ffb5sL+\ndvq2qn3Zemr5/35+5Kbz93jhNb55eQKXThzO97ZE3F1IjTo8OPEVZ4eRK53xktw48niW7tWD0xev\nHlfKBXfn5bCIm36WdGyRwlBccrJGKZTCVOQFVmGcMbr+A+/qf6yU8wulW8OX8jx/rRZteOqL3/M8\nf0GKRM2v+d1lfleXn29dg4P98n3WXX8U5F1RXAHhqONZfo8rkP3YUtx+lzW/e89f3BR2QZbf/FCQ\n+YtTPAU51uQ35zrzeGYyDMNwypYdZOPGjbRr187ZYRQKd22b2uV63LVt7toucO+2ScHpc+F46lPH\nU586nvq0aLn8E3B//vlnZ4dQaNy1bWqX63HXtrlru8C92yYFp8+F46lPHU996njq06Ll8gWWiIiI\niIhIcWGZNm3aNGcH8XdVr17d2SEUGndtm9rlety1be7aLnDvtknB6XPheOpTx1OfOp76tOi4/D1Y\nIiIiIiIixYUuERQREREREXEQFVgiIiIiIiIO4nIPGk5LS2PixImEh4djsViYM2cOVapUyTJPmzZt\nqFGjRubrDz/8EIvFUtSh5tns2bPZtWsXJpOJSZMmceutt2ZO27RpE/Pnz8disXDXXXcxcuRIJ0aa\nPzdqV/fu3fHz++t5DPPmzaNcuXLOCLNADh8+zIgRI3j88cfp169flmmuvM/gxm1z5f326quvsn37\ndux2O0OHDqVTp06Z01x5n92oXa68v8TxbpSTpWBulC+lYG6U0yT/kpKSmDhxIpGRkaSkpDBixAju\nueceZ4fl/gwXs3LlSmPatGmGYRjGxo0bjbFjx2aZnpGRYfTo0cMZoRXIli1bjCFDhhiGYRhHjhwx\nevbsmWV6ly5djPDwcCM9Pd3o3bu3ceTIEWeEmW83a9dDDz3kjLAcIiEhwejXr58xefJkY9myZdmm\nu+o+M4ybt81V99sff/xhPPnkk4ZhGEZUVJRx9913Z5nuqvvsZu1y1f0ljneznCz5d7N8Kfl3s5wm\n+bd69Wpj0aJFhmEYxtmzZ41OnTo5OaKSweUuEfzjjz/o2LEjcPVM1fbt27NMT0xMJD093RmhFcgf\nf/xBhw4dALjlllu4cuUK8fHxAJw5c4YyZcpQoUIFzGYzd999N3/88Yczw82zG7ULICHBOU/WdgQP\nDw8WL15MSEhItmmuvM/gxm0D191vLVq04M033wSgTJkyJCUlZeYJV95nN2oXuO7+Ese7WU6W/LtZ\nvpT8u1lOk/zr2rUrgwcPBuD8+fO6iqGIuFyBFRERQdmyZQGwWCyYzWZSU1MzpycmJhIZGcmYMWPo\n06cP//73v50Vap5EREQQEBCQ+TowMJDLly8DcPny5cy2AgQFBWVOK+5u1C6AmJgYxo8fT58+fXj9\n9dcxXGgwS6vVipeXV47TXHmfwY3bBq673ywWC97e3gCsWLGCu+66K/OyYVfeZzdqF7ju/hLHu1lO\nlvy7Wb6U/LtZTpOC69OnD8888wyTJk1ydiglQrG+B2vFihWsWLEiy3u7du3K8towDEwmU+brUqVK\nMXbsWB566CHS0tLo168fzZo1o2HDhkUSc35d/wfPte3J6Y+ha9tanN2oXQBPPfUUDz74IJ6enowY\nMYLvv/+ezp07F3WYDufK+ywvXH2/rV+/ns8//5ylS5dmvucO+yyndoHr7y9xnJvlZJHiJLecJgX3\nySefcODAAZ599lm++eYb/f4XsmJ9BqtXr1589tlnWf716NEj81u3tLQ0DMPAZrNlLuPr60uvXr3w\n8PDAx8eH1q1bc+jQIWc14abKlStHRERE5utLly4RFBSU47SLFy8SHBxc5DEWxI3aBdC3b198fX2x\n2Wy0a9euWO+j/HDlfZYXrrzffv31V9577z0WL16cZeAHV99nubULXHt/iWPdLCeLFBc3ymmSf3v3\n7uX8+fMA1KtXj/T0dKKiopwclfsr1gVWTu68806+++47ADZs2ECrVq2yTD906BATJkzAMAzsdjs7\nduygdu3azgg1T+68807WrVsHwP79+wkJCcHX1xeAypUrEx8fz9mzZ7Hb7WzYsIE777zTmeHm2Y3a\nFRUVxeDBg0lLSwNg69atxXof5Ycr77ObceX9FhcXx6uvvsrChQvx9/fPMs2V99mN2uXK+0sc70Y5\nWaS4uFFOk4LZtm1b5pnAiIgIEhMTs1wuLIWjWF8imJOuXbuyadMmHnnkETw8PHj55ZcBWLRoES1a\ntKBp06b4+/vTq1cvzGYz99xzT7EeirZZs2Y0aNCAPn36YDKZePHFF1m5ciV+fn507NiRadOmMX78\neOBq268dfr44u1m7WrVqRe/evfHw8KB+/fouddnS3r17eeWVVzh37hxWq5V169Zx7733UrlyZZfe\nZ3DztrnqfluzZg3R0dGMGzcu871WrVoRGhrq0vvsZu1y1f0ljpdTTpa/J6d8+fbbb6sw+Btyymmv\nvPIKFStWdGJUrq1Pnz688MIL9O3bl+TkZKZOnYrZ7HLnV1yOydBdzyIiIiIiIg6hElZERERERMRB\nVGCJiIiIiIg4iAosERERERERB1GBJSIiIiIi4iAqsERERERERBxEBZaIiIiIiIiDqMASERERERFx\nEBVYIiIiIiIiDqICS0RERERExEFUYImIiIiIiDiICiwREREREREHUYElIiIiIiLiICqwpETbsmUL\nnTp1Yu3ataxatYrOnTuzbdu2fK1j3bp1eZpv1qxZnDlzpiBhioiIiIiLUIElJdrWrVvp27cvXbp0\nYdOmTTz77LM0b948z8ufPXuW1atX52neF154gSpVqhQ0VBERERFxAVZnByBSFNLT05kyZQpnzpzB\nbrczZswYypYty8qVK7FarYSEhPDLL7+wd+9eSpcuTUxMDEuXLsVqtdKwYUMmTpxIWloaEydO5Ny5\nc3h6evLqq68yY8YMdu/ezYIFCxg1alTm9r766iuWL1+OzWajbt26vPjii/Tv358pU6bw3XffsXXr\nVgAOHz7MlClTaNeuHZMmTSI2Npb09HQmT55M3bp1ndVdIiIiIlJAKrCkRFi1ahXBwcHMnj2bqKgo\nBgwYwKpVq+jRowcBAQF07dqVX375hc6dO9OgQQP69evHp59+ioeHB2PHjmX79u0cP36coKAgXnvt\nNVavXs2PP/7IoEGD+Pjjj7MUVwBLlixh0aJFVKhQgS+++ILk5OTMaWPGjAFg//79zJgxg06dOrF4\n8WLatm1Lr169OHr0KLNmzeKDDz4o0j4SERERkb9PBZaUCGFhYWzfvp0dO3YAkJKSQmpqao7zHj16\nlPDwcAYNGgRAXFwc4eHh7Nu3j9atWwNw//33A1fv4cpJt27dGDlyJA8++CDdunXDy8sry/SkpCQm\nT57Ma6+9hoeHB2FhYURFRfHNN99kThcRERER16MCS0oEm83GsGHD6NatW57mbdiwIUuWLMny/s6d\nO8nIyMjT9oYOHcoDDzzAunXrGDBgAMuXL88yfdasWfTt25caNWpkbnPKlCk0bdo0jy0SERERkeJI\ng1xIidC4cWPWr18PQGRkJPPnz8913ho1anDs2DEiIyMBeOutt7h48SKNGjVi8+bNAGzYsIH33nsP\ns9mc7UxYRkYGr7/+OsHBwQwcOJAmTZoQHh6eOX3dunXEx8fTs2fPHOM7evSoLg8UERERcVE6gyUl\nQpcuXdi8eTN9+vQhPT092z1T1ypVqhSTJk1i8ODBeHh4UL9+fUJCQujatSubNm2iX79+WCwWXn31\nVWw2GwcPHmT27NlMmjQJALPZjI+PD71798bPz48qVapQr169zPXPnz8fHx8f+vfvD0Dnzp3p168f\nzz//PH379iUjI4MXXnihcDtERERERAqFyTAMw9lBiIiIiIiIuANdIigiIiIiIuIgKrBEREREREQc\nRAWWiIiIiIiIg6jAEhERERERcZA8jyJ4+XJcYcbxt/j6ehIfn+LsMPJFMRcNV4vZ1eIFxVxUXC3m\n4GA/Z4cgIiLiFG5xBstqtTg7hHxTzEXD1WJ2tXhBMRcVV4xZRESkJHKLAktERERERKQ4UIElIiIi\nIiLiICqwREREREREHEQFloiIiIiIiIPkeRRBkZKiTIAPHta8f/eQas8gNjqhECMSEREREVehAkvk\nOh5WMy+HReR5/olNgwoxGhERERFxJbpEUERERERExEFUYImIiIiIiDhIni8R9PX1LLYPurRYzPj7\nezs7jHxRzEWjqGJ21DbUx0VDMYuIiEhhyXOBFR+fUphx/C3+/t7ExCQ6O4x8UcxFoyAxBwf75Xs7\njuqXktLHzqaYC19Bfo9ERETcgS4RFBERERERcRAVWCIiIiIiIg6iAktERERERMRBVGCJiIiIiIg4\niAosERERERERB1GBJSIiIiIi4iAqsERERERERBwkz8/BEinpUhPj+fntaaQmJmDzKsXdo6fh6Vs6\nc3psbAx9+z5MjRq1APD3D2DmzFeIjIxg1qzppKQkExAQwKRJ0/D29mbgwL74+PhmLv/iizPx969e\n1M0SEREREQdSgSWSR/vWfEb5+k1p9MCjHPh+Jbu/Xk6LR0dkTk9KSuLWW5swZ85rWZZbtuxD2ra9\nmx49evLdd6v5/PNPeOyxJwBYsGBRkbZBRERERAqXCixxOWvWrGLnzh3ExMRw4sRxhgwZzvr16zh5\n8gRTp87k0KED/PDDWkwmM506daR7995cunSRl16aCoDdbmfy5OlUqlSZ3r2707ZtO/bs2YWvrx9z\n577Bu+++y9p1P2fZZutB4zm/dxtthk0CoGrztvw4d8LV9WUYBAf7ER19Hg8PK8HBflmWvXQpnEce\n6UVwsB9du3ZkzNixPPbYEyQmJhZBb4mIiIhIUVKBJS7pzJnTvPPO+6xa9RXLl3/I0qUfs3btKpYt\nW0pCQgLvvLMEgFGjBnP77XcTHR3JwIGDadasOd9++zUrV65g9OinCA8/x3333c+oUeMYMuRxjh07\nwvDhw4m9vVe2bSbFROFV2h+AUv5lSYyJAMBqNvFyWASXjoSz7cAROvQdREpcLPXu60nNOzoQVaYK\nMz9ZQ5OHy3P0l7VER0UBEBsby/Tpk7lwIZymTZszePDwIuo9ERERESksKrDEJdWtWx+TyURgYBC1\natXGYrEQEBDIsWNHsdvtjB49FIDExAQuXAinQoWKvPHGPJYsWUhc3BVCQ+sB4OPjwy231AYgJCSE\n+Pj4XLdpYFzzwsCEKct0n8ByNP7HQGre0YHkuFi+nTKE8vWacGv3/vyxZB5rpo+kStM7MIyr6xk6\ndCSdOt2Hp6cXEyc+zc8//0T37g84sptEREREpIipwBKXZLFYcvz5ypVY2rfvxHPPvQCAv783MTGJ\nzJ49nVatbqd7955s2I+1Th0AAB4JSURBVLCeTZt+y7YsgGEYuV4i6BMQTFJMJB7eviRGRVAqIDDL\nPD5lg6nVphMApcoEEFSzLrHhp6jQ4DbajZkOQGz4KbxO7wagR4+emcvecUdbjh07+rf6RERERESc\nTwWWuJXQ0Hrs2LGd5ORkPD09mTNnNk88MYyYmBgqVaqMYRj89tvPpKdn5LqO3C4RrHhrC05s3kCT\nfzzOyf9upFLj27NMP7drC+f37aB53+GkJScRdfIIpStU5dCP32BkpFO3Yw+ObFxDj3vvJSYmhpkz\np/Lyy/OxWq3s3LmDdu3aO7w/RERERKRoqcASt/L/7d15fFTlvcfx7yyZ7GRPAFkEBMIuyGrCJiKi\ngtwKwkWsgCsBihi0kUWxFUQKqAVbt4pKF3tBqMVCARW8tQgFjChLAC+yJCQhG2SDJJOc+0dkNLIk\ngZnMTPJ5v16+XnPmnOec7xyeifnlPOc5MTGNNWjQEE2d+rDM5spJLnx9/XT33T/Tyy8vUUxME40e\nPVaLFy/Qf/6zo1b77jh8jP53xa+04dkpsgUGa8C0ykkzFixYoOKeI9S4Uw99+78b9dG8R2VUlKvr\nqPsVGB6lFj37a+uy2Tr6+WaFNGulcePGKTe3WD169NSjj06Szeajtm3ba9CgW1xxSgAAAFCHTMaF\nG0KqkZVV4OosV+3CMDBvQua6cTWZo6KCtSg5u8bbJ3WPrPX2l/s+NZRz7G5kdr2fzqYJAEBDYXZ3\nAAAAAACoLyiwAAAAAMBJKLAAAAAAwEmY5KKOHcpN0R8Pvis/X6tGt75P7cNj3R0JAAAAgJNQYNWx\nPx9cpaziTPmUWfWXlD9q/s3PuzsS6pi9wrjiBAA/XVdqr9DZvCJXxwIAAIATUGDVsczidMfrjKJT\nbkzScISEBcpm9ZzRsFazqVazDs7qFlGrGdkoyAAAANyHAgv1ns1qrvU06p6ktgWZp+UHAABoSDzn\nz/oAAAAA4OUosAAAAADASSiwAAAAAMBJuAcLXsfTJq0AAAAALqDAgtfx9kkrAAAAUH9xGQAAAAAA\nnKTGV7CCgnxltVpcmeWqWSxmhYYGuDtGjfj4VJ5yk8kkHx+r1+SWvOs8N3R1+e/kjf2CzAAAwFVq\nXGAVFpa4Msc1CQ0N0Jkzxe6OUSNlZXZJlYVWWZnda3JLnnOea/PQ3YaqLv+dPKVf1AaZXY/vKQCg\noWKIIAAAAAA4CQUWAAAAADgJBRYAAAAAOAnTtMPjHD36rZKSEjV27Hjdc8/YKuuysk7riScSdKKg\nTJJUcPqUbvrvxxQU1Vj/eW+5fIMb6dZZL8pstaogM027/vQ7Ja16vcbHzj1+RONenKa0IrvCWrTR\nzQ89WaN2xWdy9PnvF8hecl5+jcLUP2GOfPwCdHDTB/q/zzfJZLYosnV79Xng8SrtTh/ep11/elVm\ni0UWH5sGTJ0nn4AgfbIkSSUF+er9819I3QdLkj7+zS/Vb3KiAiOia/x5AAAAULe4ggW3CwkLVFRU\nsKKighUYaNGKFcsUHx+noCA/x/sX/uvYsY1WrVql4c+u0LC5LyswMkYtesbr4KYPdEviQkW37aSM\ng19Jkr78nzd107hHapQhbe9OSdLOd1/R7NmzdeevXlNJYb5Sk7+4aNvz+XnKPppS5b2v/7ZKLW7q\nrzvm/04tevbXgY2rVVpcpH3r/6w75v9Odz73e51JPabTR/ZVabf/H+9rQMJcDX9mhaLadtahT/6u\njP1fKqZ9Vw2e+Wsd2rJOknQyebvCW95AcQUAAODhuIIFt/vxg4Mryu1qP22Rvvnwjzp+slCpl3ig\n8IUHB3/72QZd33ugfPwCVFJwVv6h4fIPjdT5gjM6fWSffINDFdK05WWPW1FRrmM7turgP9coonWs\nGnfqocLT6eratas2JGerRc94ndq3W82695MkFZxO176P/qy849+q531Tq+wrP+OkbhhwuyTpum59\ntO3leep05ziZrT4qO39OPn7+speWyDewUZV2g2c+L0kyDEPFuVmKie2q8wVn5R8SroDvP0t5ebkO\nbPgf3ZL4wlWeYQAAANQVCix4FLPFKrOlZt3y8KfrddvslyVJgRHRKshIU376CbXoNVBfr3tPN46e\nrM9fe0ELWoRLt02WxerzQ9utHyll81pd162Phsx6QX6NwlScmyVb0A9TS/uHROhcXo4KszP05ftv\nqDgvW51HjFe/yYkXZQlr3kapydsV2TpWaXt36Fx+nqw2X904epLW/GKMrL5+atXvVoU0bXFR29Sv\ndmjnOy8r5LqWahM/TJmHvlbaVzt0Nv2EAiNitGbNGrWOG6qvP1ylc3nZ6jBstCJatavtqQUAAEAd\nYIggvNLpw/sU0rSlbAGBkqROd47T9j/8RiVFBSrOy1KTTj106OMP1e2/fq527drp2I6tVdrvW/9n\nxQ4dpR73Piy/RmGSJOOioxiSSco8uFeFWemKnzJbzW7se8k8XUfdrzNpx7Xhuak6dyZXMgyVFhfp\n67+9p3teel+jf7taWd/uV+7xIxe1bXZjX/3spb8opGlLff3hKsW076rivGzteOcltR8yUh9//LEa\nNW4mk8mkvpOeUPLqt6719AEAAMBFKLDglU5++W817dLLsRzWvLWGz1uumx98Uke2/UMdho1WYdYp\nBUY1VtOmTVWYlV6l/e3PLFd+Rpo+mveIDm/9SBV2u/wbhamkIN+xTVFulvxDI9U6/jZ1GTlB//r9\nAn3+2kKdPXX8ojy+gcEa9IvndMezr6pFz3gFRTXW2bRjCo6+Tn6NQmWx+igmtquyjx6q0u74fz6T\nJJlMJl3fZ5AyD30tk9ms/glzNXzecp388t968MEHVZidoaDIxrL6+qnsnPc8bBYAAKChocCCV8r+\nv4MKa3nDRe8f3PyB2g+5W2arVX4h4SrKzlR6eroCwiKrbBcQGqGe46do2JxXVFJwVhvmT5HZalVI\n0xbavXu3pMrip9mNfWQymdT8pjgNn7dcbQeP0O6/vKbDn66vsr9Dn/xdKd9PSHFk2wY17xGnoKgm\nOpN2TPbSEhmGoZyjKWrUuFmVdslr3lbOscOSpKxv9yukyQ9DCItzs5Sfkaq+ffvKPyRcRTmZspec\nl8Vmu/YTCAAAAJfgHix4lOyjKdq1aoUKs9Jlslp1fOc23ZK4UCd2/0u2gCC17D1QUuW06P7fD+27\noKSoQJkpe9Xpjsqp3TsMu0fbXnlWJyOD1eaR5y55PFtAoLqMvE8d77hXktTngRlatmyZThaUKuqG\njlWukklSTPsuimn/gsrtZVXeb9Gzv7Yum62jn29WSLNW6jHuEZnNFnUeMV7//NU0mSxWRbfrrMYd\nbtTBgweVvPpDdR/zkOIfTdIXf1haOU27zVcDpj7j2OdXa1fqxtEPSpIad+yu/Rv+qo2/mq5uP3vg\nGs4wAAAAXMlkGMbFt55cQlZWgauzXLXQ0ACdOeMdw6Ye2zJZkuTjY1VZmV2vDX3bzYlqzlXnOSoq\n2DGLYE0kdY9k+2q2r8vvqzd9/y4gs+tFRQVXvxEAAPUQQwQBAAAAwEkosAAAAADASbgHC6hn7BVG\nrYZnldordDavyIWJAAAAGg4KLKCesZpNtb5nCwAAAM7BEEEAAAAAcBIKLAAAAABwEgosAAAAAHAS\nCiwAAAAAcBIKLAAAAABwEgosAAAAAHASCiwAAAAAcBIKLAAAAABwEgosAAAAAHASq7sDoP4JCQuU\nzUrtDgAAgIaHAgtOZ7OatSg5u8bbJ3WPdGEaAAAAoO5wmQEAAAAAnIQCCwAAAACcpMZDBIOCfGW1\nWlyZ5apZLGaFhga4O0aN+PhUnnKTySQfH6vX5Ja86zyjdq7l39Ub+wWZAQCAq9S4wCosLHFljmsS\nGhqgM2eK3R2jRsrK7JIqC62yMrvX5JZqfp6jooLrIA2c6Vr6oTd9/y4gs+vxcwAA0FAxRBAAAAAA\nnIRZBIEGzl5h1OpqQ6m9QmfzilyYCAAAwHtRYAENnNVsYlp9AAAAJ2GIIAAAAAA4CVewUK2QsEDZ\nrJW1ODeuAwAAAJdHgYVq2axmhpABAAAANcAQQQAAAABwEgosAAAAAHASCiwAAAAAcBIKLAAAAABw\nEgosAAAAAHASZhEEUCv2CuOi6fqvNH1/qb1CZ/OKXB0LAADAI1BgAagVq9nEtP0AAACXwRBBAAAA\nAHASCiwAAAAAcBKGCDZAIWGBslmprQEAAABno8BqgGxWM/fQAAAAAC7AZQwAAAAAcBIKLAAAAABw\nEgosAAAAAHASCiwAAAAAcBIKLAAAAABwEgosAAAAAHASCiwAAAAAcBIKLAAAAABwEh40jHrHqKjQ\n9rd+o7yTR2Wx+mjM0gWSQrRj5TKdPrJPPr4BkqTOI8aradde+mRJkkoK8tX7579QTPsukqSPf/NL\n9ZucqMCI6Cr7Ljidrq0vz9HIhW873lu+fLkOFPqo4+2jtXraPQqMiJbJbFG5vVRNu/RSj3sfVsHp\ndP3tqfsV2SpW+4KsSjsvdb/3IUW37Vxn58Vd7BWGoqKCa7x9qb1CZ/OKXJgIAADAdSiwUO+c2P0v\nlRYX6q5fv678jFQtXrxYrR5boLLz5xT3SJIirm/n2DZt707FtO+qNv2H6cv331BM+y767LPPFN7y\nhouKq5oa+vRS+fgFyKio0KYFjyszZa8CwqMV0rSFhj+7QkndIzV741f6ZEmSbn3yRQXHXOesj+6R\nrGaTFiVn13j7pO6RLkwDAADgWgwRRL2Tn5GqqBs6SpIaNW6mU6dOqaKiXGXnii/a9nzBWfmHhCsg\nNFLnC86ooqJc7777rrqMnHDNOUxmsyLbdFB+RupF6xo1bqbOI8brm/V/uubjAAAAwHPU+ApWUJCv\nrFaLK7NcNYvFrNDQAHfHqBEfn8pTbjKZ5ONj9Zrc3iSseWvt3/BXdbzjXhVkpOrkyZPqkX9W9pJz\n+uqDlSotLFBARJT6TpypwIhopX21Q2fTTygwIkZHPv1Id915p97/cJXO5WWrw7DRimjVrsr+z546\noY3PTXMsW/JPq9nQey/KYS8tUfr+L9Wm/7BL5oy4vq2OfLreuR++nnD198KbfmZc4I2ZAQBoiGpc\nYBUWlrgyxzUJDQ3QmTMXX53wRGVldkmVhVZZmd0tuWtzP4w3ata9nzIPf6ON86cqrEUbtW7dWoYM\ntR9yt0KbtVJI0xbau+5dJa9+S30eeFxHtn6kHe+8pF7jE/Tl6rfUcvB0mXYfVt9JT2jbK8/o1qcW\nV9n/haF+FwR+/hftKvxh/ZYXEmUyV/4xov2QkQpr3loFp9Mvyllhtzu2Q1Wu/l5408+MC7wtc33/\nOQMAwOVwDxbqpZvGPuJ4/fGT4+TfKEwtew90vNey1wBt/8MSmcxm9U+YK0lKXv2WuowYr1OnTiko\nsrGsvn6XHFZYnQv3YFUn+2iKwq9vW+v9AwAAwHNxD5aXCwkLVFRUcK3+q+9yjx/R568tlCSlfrVD\nHTt2lMls1se/eUqF2RmSpPQDyQpr3trRpjg3S/kZqWrS6SZFRkaqKCdT9pLzsthsLsmYn5Gq/f/4\nqzrdOdYl+wcAAIB7cAXLy9ms5lrN0CbV/1nawpq3kVFRoY/mPSJbQLBW/36Z3jxhqMNt92jrsjmy\n+vrL6uen+MfmONp8tXalbhz9oCSpd+/eyv7tG9r4q+nq9rMHnJbrwr1be/1NSjtXofgpcxQU2dhp\n+wcAAID7UWCh3vnxsD9JioiIkE5k67pufXRdtz6XbHPzQ085XlutVg395ZJLbhcc3aTKM7Akafr0\n6Y4id8yKDy7b7v53PpZUWeDWtigGAACAd2CIIAAAAAA4CQUWAAAAADgJBRYAAAAAOAn3YAHwKPYK\no1azXZbaK3Q2r8iFiQAAAGqOAguAR7GaTbWaBKS+z4oJAAC8C0MEAQAAAMBJKLAAAAAAwEkYIuhh\nQsICZbNS9wIAAADeiALLw9isZu4/AQAAALwUBdZV+O1vl2r//n0ymUyaMSNRHTp0cqzbtWun3njj\nVZnNFvXrF6eJEx9yrCspOa9Dr6QoemC0ontFS5LWrHlfy5e/pI0btyogIKDOPwvg7ewVhvLy0pWQ\nkKCJEydqwoQJVdaXlJRo3rx5+vbbb7V27VqV2iv0wZo1WrdunWObQ4cOasuWf+mpp2aqoCBfFotF\nkjRt2kzFxnao088DAAC8GwVWLSUn71Fq6km9/vpKfffdUS1c+JzefPNdx/pXXlmipUuXKyoqWgkJ\nD2ngwFvUqlVrSdI77/xB1gCLY9u8vXnKCc5RZGRUnX8OoL4oPX9OD//yGTVq212bTxYq9SdXgHes\nXKbg6BbKOJeiRcnZSuoeqXvuuUdDhgyXVPmd/vTTjyVJ584Va/HilxUcXPNp4gEAAH6Mm31qac+e\nXerff5AkqVWr1iooKFBRUaEkKS0tVcHBjRQT01hms1n9+sVpz57/SJKOHz+mY8e+U1DbH35xaxTb\nSI8+OlUmk6nOPwdQX9hsNg1NWqqAsEsPl71p3KNq0WvgZdu/885bmjjxQUlScXGxSzICAICGgwKr\nlnJychQaGupYDg8PV05OjiQpNzdHoaFhjnURERGOdStWvKTp02dW2ZfF1yIA18Zqtcpq873seh//\nwMuuO3hwv6KjYxQRUVmcnTtXrGXLXlRCwkNasmSRSkpKnJ4XAADUbxRYtWZUXTIMxxUow/jpOsnP\n36Z///sT9e7dU926xcpqschqtchsNsnX10dRUcGyWMyKjAxSVBTDkoC6tH793zR8+F2O5fvvn6Sp\nUx/Xq6++qfLycq1du9qN6QAAgDfiHqxaioyMclyVkqTs7GxFRERIkqKiopWb+8O6rKzTuu66GP1+\n3SYVnj6lP/9ji7IysmSymJRuNslyfZAWJWfrbEm5ln2dIx+/c8wKCNSh5OQ9mjnzKcfyj4utAQMG\n6pNPtrgjFgAA8GJcwaql3r37atu2TyRJhw+nKDIyUgEBlUOQmjRpqqKiIqWnn5Ldbtf27Z8rLi5O\ngx//tUYs/IPuev5NWbuGyXpztCzXB7nzYwANXnZ2lvz9A+Tj4yNJKi8v14wZUxz3VCYn71Hr1m3c\nGREAAHghrmDVUpcu3dS+fQc99thkmUwmPfHEL7Vhw3oFBgZp4MDBmjUrSfPnz5Ek3XLLULVq1Uq6\nzHOtyr44rY0fTdO5s7na8kKiotp1lro/W5cfB/B6+/bt08bnnldhVrpMVquO79ym5j3jFRzVRC17\nD9TWl+aqKCdTZ0+d0Mbnpil28niNGjlS5eXFiomJqjI0d+zYMXriiany9/dXTEyMnnoqURYfX53N\nK3LjJwQAAN6EAusqTJkyvcpy27btHK9vvLGHXn995WXb+sTF/PC6X7SG37TC+QGBBqRz584a/uzl\nv0eDZz5fZXlU98jvH+bdWDdMXVT1wd4t4tR7Xpxj8ZWUIiV193d2ZAAAUI8xRBAAAAAAnIQrWABw\nBfYKo1YzfJbaKxhSCABAA0aBBQBXYDWbqg4jrAYzgQIA0LBRYHmQ/9v1uTqMf1opKSk1bvP0VRyn\ntm3Ynu09eft3Y2MVP/MFtekVX8uWAAAAztfgC6yQsEDZrDW/Fa2swpCP2eSSLOsWJCrnxFGX7Buo\nr1JSUpS1IFGz/rbT3VGuSm1+BkVFBTMEEQAAD1fvCqzaFkySaj3851qGCzXya6z88xnfv25S4/0A\nqJ9sVjNDEAEAqEfqXYHl6b+s3NRivHYd/+P3r/+7yrr/mrNU/355tg4ePFinmQBv1qFDB8U9vtDd\nMRxqOymGq/df26vuXCEDAODamAzDMNwd4lpt27ZNgwYNcneMWiFz3fC2zN6WVyJzXfG2zN6WFwAA\nZ6kXz8H67LPP3B2h1shcN7wts7fllchcV7wts7flBQDAWepFgQUAAAAAnsAyf/78+e4O4QzXX3+9\nuyPUGpnrhrdl9ra8Epnrirdl9ra8AAA4Q724BwsAAAAAPAFDBAEAAADASSiwAAAAAMBJKLAAAAAA\nwEm85kHDZWVlSkpK0qlTp2SxWPTCCy+oefPmVbbZsGGD3n77bZnNZvXr108zZ87Upk2btGTJEjVu\n3FiSdPPNN2vKlCkuz7tw4ULt3btXJpNJs2fPVteuXR3rtm/frmXLlslisWjAgAGaOnVqtW3cmXfH\njh1atmyZzGazWrVqpQULFujAgQNKSEhQy5YtJUnt2rXTvHnz6ixvdZlHjRql4OAfHsa6ZMkSxcTE\nuPUcXylzZmamZs2a5dju5MmTSkxMlM1mc0v//bHDhw8rISFBEydO1IQJE6qs88S+XF1mT+3PV8rs\nif35cnk9uS8DAFAnDC+xdu1aY/78+YZhGMa2bduMGTNmVFlfXFxsDB482CgoKDAqKiqM0aNHG0eO\nHDHWrl1rrFy5sk6z7ty503jkkUcMwzCMI0eOGKNHj66yfvjw4capU6eM8vJyY+zYscaRI0eqbePO\nvEOHDjXS09MNwzCM6dOnG9u2bTN27txpPP/883WW8aeqy3z33XfXuo2r1fT4ZWVlxrhx44zCwkK3\n9N8fKyoqMiZMmGDMnTvXWLVq1UXrPa0v1ySzJ/bn6jJ7Wn+uLu8FntSXAQCoK14zRPCLL77Q0KFD\nJUnx8fHas2dPlfX+/v76+9//rqCgIJlMJoWGhurMmTMqKipyS9Zbb71VknTDDTcoPz9fhYWFkir/\nmhsSEqImTZrIbDZr4MCB+uKLL67Yxp15JWnt2rWOvzqHh4crLy/PLef1x6rLfKl87jzHtTn+unXr\nNGzYMAUGBrr9PNtsNr355puKjo6+aJ0n9uXqMkue2Z+ry+xp/bm6vBd4Ul8GAKCueE2BlZ2drfDw\ncEmSxWKR2WxWaWlplW2CgoIkVQ5dSUtLU7du3VRcXKwtW7Zo8uTJmjRpklJSUuoka1hYmGM5IiJC\nWVlZkqSsrCzH55CkyMhIZWVlXbGNO/NKP5zX06dPa/v27Ro4cKCKi4u1Z88ePfTQQ7rvvvu0Y8eO\nOsla08xnzpxRYmKixo0bp5deekmGYbj1HNck8wWrV6/W6NGjJckt/ffHrFar/Pz8LrnOE/uydOXM\nkmf25+oye1p/ri7vBZ7UlwEAqCseeQ/W6tWrtXr16irv7d27t8qyYRgymUwXtT127JgSExO1dOlS\n+fj4qG/fvuratav69u2r3bt368knn9T69etdmt/4yaPFfpz1p+skyWQyXbGNq9Xk2Dk5OXrsscf0\nzDPPKCwsTLGxsZo6daqGDBmi7777TpMmTdLmzZtls9k8IvPMmTM1cuRI+fr6KiEhQZs3b3brOb5w\nvOqOn5ycrNatWzuKAHf035ryxL5cU57Wn6vjif25Ot7UlwEAcCaPLLDGjBmjMWPGVHkvKSlJWVlZ\nio2NVVlZmQzDkI+PT5VtMjIyNHXqVC1evFgdOnSQpCo3fffs2VO5ubkqLy+XxWJxWf6YmBhlZ2c7\nlk+fPq3IyMhLrsvMzFRUVJSsVutl27jalfJKUmFhoR5++GHNmDFD8fHxkqQ2bdqoTZs2kqRWrVop\nMjJSmZmZF0084q7M48ePd7weNGiQDh06VG0bV6vJ8bdt26Z+/fo5lt3Rf2vKE/tyTXhif66OJ/bn\n6nhTXwYAwJm8ZohgXFyc/vnPf0qStm7dqj59+ly0zZw5czR//nx16tTJ8d6rr76qTZs2SaocOhge\nHu7y/6HHxcU5jnngwAFFR0c7/orbrFkzFRYWKjU1VXa7XVu3blVcXNwV27hadcdetGiRHnjgAQ0c\nONDx3po1a/Tee+9JqhwqlpOTo5iYmDrJW13m3NxcPfzwwyorK5Mk7dq1S23btnXrOa4u8wXffPON\nYmNjHcvu6L815Yl9uSY8sT9fiaf25+p4U18GAMCZTMalxvl4oPLycs2dO1fHjh2TzWbTokWL1KRJ\nE73xxhvq1auXQkNDNWrUqCp/JZ04caLat2+vp59+WoZhyG6319lUxkuWLNHu3btlMpn07LPP6sCB\nAwoODtbQoUO1a9cuLVmyRJJ022236cEHH7xkmx//cuKuvPHx8erVq5e6d+/u2Pauu+7S7bffrlmz\nZqm4uFilpaWaNm1alV9Y3Zl56NCheuutt7RhwwbZbDZ17NhRc+fOldlsdus5ri6zJI0YMUIrV650\nXIlITU11S/+9YN++fXrxxReVlpYmq9WqmJgY3XLLLWrWrJnH9uUrZfbU/lzdefa0/lxdXsnz+jIA\nAHXFawosAAAAAPB0XjNEEAAAAAA8HQUWAAAAADgJBRYAAAAAOAkFFgAAAAA4CQUWAAAAADgJBRYA\nAAAAOAkFFgAAAAA4yf8DyULHQ+rH5SAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdoAAAFTCAYAAAAugr49AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3XeYFeX5//H32bO998bSy9B7sYCo2EDFrmCLiRpjixKNLRqN8RcTo19NTIzd2LGAGgs2itIF6W2oC2xle+97fn/MWVzWXVhgd+fsns/rurhgz5lyz8y13PPc88zzOFwuFyIiIiIiIiIiIiIicmx87A5ARERERERERERERKQzU6FdREREREREREREROQ4qNAuIiIiIiIiIiIiInIcVGgXERERERERERERETkOKrSLiIiIiIiIiIiIiBwHFdpFRERERERERERERI6DCu3iFQzD+K9hGDsb/ewyDOPBRj/fZxhGsWEY5e6fexqG8aNhGDWGYdxnR8yewjCMUYZhbHefi5l2xyMiItKYcvyx66gcbxjGqe7rMrG99iEiItJWmsuPhmH8yzCMcsMwttgdXwPDMHq58+vVdsciIhZfuwMQsUkSUAJgGEYQ8BjwOvBn9/e/BgYDJwE77AjQg9wNhAIjgP02xyIiInIkyvGtd9w53jCM54Es0zQfacO4RERE7HRIfjQMoz9wK9a9xAtttRPDML4EZpum+d9j3MR+rPuewraKSUSOjwrt4pVM08xq9GM44AQWm6aZ6v4sGsg2TXNVR8fmgaKB7aZpesyTexERkZYoxx+VtsjxJwAft1E8IiIinuCQ/GgYxmD35wtM00xvix0YhuEAxgOzj3UbpmnWAVlHXFBEOozD5XLZHYNImzIMoyfwMjARyAeeBQYCE03T7OdexgU8BCwBFjbZxHfA5EY//8k0zUcMwzgZ6wn2SKxhl74G7jRNM8O9zUeAG4AHgaeA50zTfMgwjG7unydiJey1wN2maS53r3eqO4YTgXuAM4Ay4F3gLtM0Xe7lhgFPu5crBD4B7jNNs9j9/WDgCWAcEAIsBe4wTXPbYc5VEPA4cBkQB2QAbwGPmKZZaxhGKtCz0Sq/bO5pu/t83gqMBi4HyoGHgc+BV4GTsZ6232aa5rfudXyA3wPXAn2wbhCeB55odMw9gL8DZwLBQCrwjGmazzfZ92/c27gOCHSfzxtN08xxL3MFcB8wAKgGVgCzDnduRETE8yjH25LjW8yhzWyjN7AX+Iv7fAUD3wJvA+8Bk0zTXGIYRh/3eTsZCAN2Af9nmuarLR2PiIhIWzAMIwAr518I9MBqYz7RkIOay4/Aa41+3muaZi/DMCL4qa2aCGwD/mia5qeN9tUD+AcwBagCvsHK/5nu+5WDTNN0tBDvbVht7V5AKdZ9xR3ubfQC9gDXmKb5VtNtNvKnhjfPDMOYDtwPDHHH9DHWvUtRC+uKyFHQGO3SFb0H9AXOwkp6/YFzWlh2GTDc/e87sV67uhh4A0hz//ykYRgDsZJiAXAKMBWrsPulYRjORtsLAmZiNRyfNgzDH5iPlcSuwmog7wS+cTcyG3sW+BCrkf80MAu4BMAwjHj3dtKxnnpfDpwNvOL+PhZYhNVYPRerwe8CFrhvAFryGnAF1mv0A7EKE3cAf3V/Pw4rkS93n4v3DrOtO4AfsYrtX2HdULwKPOM+pv1YxZEGD2Hd4PwbGAY8ilWc/32jZd7GathPAQz3eXnOMIym1/N3WIWLicAMrGv/MID72r0NvIN1HSZjFQo+dfciEBGRzkM5vgNzfCty6DisRvpT7m3sB27CeqjwZ6xX7udgFd4bewvrbYMz3bE9B7ysMdxFRKQDPA/cCDyC1Q59CXjJMIzL3d83lx/PdX93ift7gI+w7hlux8rvXwMfGYZxEoBhGIHuz4Kw7i/Oxrpv+cS9ftN7lJ8xDOMsrHb1X7Dy5TQgBXizhWNLavLnj1h5+lP39k51x73WfRwzgdOxOgCISBvQ0DHSpRiGMQCYAMw0TXOx+7NfY/Wu+hnTNKsNw8hx/1jU8Lq5YRgVQF2jn+/AGu/1StM0q9yfXQdsxEqun7m3EQ082tDDzN0LzABGmaa5zv3ZjVgNy1uwxn5r8LFpmu+4l3kSKymOx2qY/wKrV9hvTNOscC9zO3CJYRi+wPVAJHCZaZoH3N9fjdXgvQb4VzPnKgWrMX+TaZqfuz/ebRjGIOA2wzDuN00zxzCMasCnyav4zdlumuZ/3Nv+J1ZP9UWmaX7h/ux54EPDMCKxiuJ3YfUIfM69/k7DMIYAdxuG8aRpmvXA1UC1aZqZ7mVeMAzjfqwCy5eN9r3PNM1H3f/eYRjGIve5A+sGxgn8t1EP919g3eQ4sIoVIiLi4ZTjbcnxh82h7m0AlDY6n9cC35im+U/3Nna699t44tmRwMOmaa53//ycYRirsR5UiIiItAvDMJKx2ql3NeRl4CnDMBrePHu/ufxoGEa+e9l89/cTgNOAi0zTbLhPuNcwjClYncCWAedjdRo7yzTNfe7t3AL81v0Q/Wf3KM0YidWL/R33MDF7DcO4BIhvbuHG2zEMYyTwANZbaD82xAhsNE3zloZV3PdBnxqGMdQ0zU2HPYEickTq0S5dTcPYaesaPnAnpOMdh3UCsLShAe7e7iYgDyv5NbamyXoFDQ1w93rVWIm36XqrGi1T7952lPujscDWhga4e5kvTNO83jTNWvd+NjU0wN3f5wKbm9lPg9FYheblTT7/AavXXP8W1mvJhkb/brgRWdfMZxHAIPc+FjTZxiKs19uT3T8HAH8zDGOPYRjFhmGUYr3eF91kvabXN4efzt0yrF6KCw3DuM0wjIGmaRaaprnKfZ5FRKRzUI7/6fuOyvHHkkMHc2j+B2u4mcY+Ax4xDONJwzBOMwzD3zTNH0zTzEdERKT9jMWqgzXXDh1+FG88T3D/3dx2GnLzWCCvocgO4M6f17jzeGt8i9UmXmwYxvWGYfQ0TTOz0YPqZhmGEQ58AMxt6AzXKO6mMX/n/rulewoROQrq0S5dTZj77/Imn5ce53bDgfPdhd7GgrHGY2tQ17ih7F4vspn1AgCzyWdNY3ZhNZLBaoyXHSG+Ec3sJ5CWJ0cJd/9d3OTzkibft1bj427oJV7ezGeORtt+zzCMukbLNDz8SzQMowgr6RdgvY63E6jFGpamqRbPnWmaaY16KDwMPGsYxmbgdtM0m47dKyIinks5/lDtnuOPMYeGceRr9Aus3H4V1htuxYZh/ANr/Hg9BBcRkfbSkP+WNxnP3BfwA2KA1hTBG7aT4X6zq4EfUOP+95Hy+xGZprnGMIxJWG/J/R8QbhjGcuDmIxTbX3bH8etm4r7N/UZgU4nNfCYiR0mFdulqGhJZcJPPI49zu0VYBd47m/muaSO26Xp5WJObNVXTzGctycHqBX64/WzAmvCsqYpmPmtYB6we5o1FNPm+PTRs+xZgcTPfp2NNGJcIXGKa5rKGLwzDiDnanZmmaQLXG9YErCcAjwGfGYbRXb3nREQ6DeX4n2v3HH8MObSMI1wj9wOLJ4AnDGtC2V9jTTSbgTV2roiISHtoyH8XAbub+b7wKLczAWsM9ObkcPSd137GNM1VwBWGYfgBp2JNwPqFYRjdm1vesCZPnQaMN02zaaG/CKun+5PNrKp2sUgbUKFdupqGHmTjsGb9xjCMIKyJy44ncfyANUnILtM0Dz75NgxjMD+NrdbSendijTN+8JUxwzD60XIvtOasAS41DCPSNM1C9zamYs0Wfo57P1OAzMbJ1D2JWfZhtlmPdW42Nvr8RKwEvOMo4jta27CKF8mmaR4cj9VdRPczTbPCPckcNOpRYBjGeVhFglZPYmoYxggg2jTNhe5ecssMw7gL6/h7oxsKEZHOQjm+g3P8UeTQxnnZ5KeJ4hqc0WibUViTyr1rmmadaZrpwMOGYVyINeGqiIhIe1mNlR/jTNP8uuFD99jtFe4h21rjB/ffkaZpLm20nZ5YD+HBypVRhmEMMk1zq/v7kVhzq1zDTw/LW2zbGtbEqrXu4dVqsCZc/xMwl5+GoGu8/FisCcp/aZrmlhbi7tukDe4E+qsDmkjbUKFduhTTNDcbhrEB+KNhGLuwirn38fNXmI/Ws8AvsSbjfBaodv88C2sc1M0trPcJsAuYbRjG3Vg9tU5zb+9OrFe6WuMVrJ5e/zUM4x4gFuvVsW2maZYbhvEa8HvgHcMwHsV6En8h8FesxuzXTTdomma6YRjvAH8yDCMD2OSO7VbgiaO4yThqpmnWuF8Rv9cwjP1YvdqTsW4KaoGJwI9AHTDLMIwnsMa4+x2wBBhiGEaKaZpprdjdCcDfDcO4GViKNev7HVgF/OZuPkRExAMpx9uS41uTQwuAEw3DGA7sA951r3OLO7bJNCq0YxUUngcmus93CXAK1sSyf25lXCIiIkfNNM1MwzDexspTZVhzivQH/o1VhL66ldtZaRjG98DL7gnMd2LdM/wHeAkrr3+MdZ/wqmFNlu6LVWQPAlKxhoBzAacahrEG2N5kiDqwJlS91jCMm7DebosCbgQ2m6aZZxhGw7B6GIYRAbzv3u8CwzAaDwVT7S6kPwV85b6feAdrqJvfARcahjGgYeJzETl2mgxVuqLLsBq7C7EaeFuAD49ng+6nwWcAA4GVWAn5JOBs0zRbaoBjmmYlVi+0/cDnWD3I7sGa5by1DXDcPdzOwJoEdB0wB6s4/Uv39wewGrJ+WBOwbAGuBGY0flLfjBuxGsQvYPVAewD4k/tPe3sY+AvwCLAd64ZgI3ABgGmaqcBvsIoIm7BeK78Sq4BhAB+1cj8vAv/PvZ9tWOctATinmRsZERHxbMrxHZvjW5ND/4JVkF+MNQTOP4B/Yg0xsx7rocDtjY43Hzgb63wvc2/3XuBu0zSP61qKiIi0wo3A21hF753A68D/3J8fjQuwOoG9g3UP8BRW/vsjHJyw/Wyst79WAN9g3cNMN03T5c6jT2Ld2yzAetDe1B/dsT7n3sdXWEO0XdDMsqOw3ja7HMhs8meuO6ZvsYbNORcrRy/Hyuunqsgu0jYcLpfryEuJiIiIiIiIiIiIiEiz1KNdREREREREREREROQ4qNAuIiIiIiIiIiIiInIcVGgXERERERERERERETkOKrSLiIiIiIiIiIiIiBwHFdpFRERERERERERERI6D77GumJNT4mrpu9DQAEpLq451052Otx0veN8xe9vxgvcds4636+tsxxwXF+Zo620eLne3p8527r2Frovn0rXxXLo2nslTrkt75O6jkZNT4vKUcyEWXQ/PouvhWXQ9PIuux5G1Js+3S492X19ne2zWY3nb8YL3HbO3HS943zHreLs+bzxmT6Fz75l0XTyXro3n0rXxTLouP9G58Cy6Hp5F18Oz6Hp4Fl2PtqGhY0REREREREREREREjoMK7SIiIiIiIiIiIiIix0GFdhERERERERERERGR46BCu4iIiIiIiIiIiIjIcVChXURERERERERERETkOKjQLiIiIiIiIiIiIiJyHFRoFxERERERERERERE5Diq0i4iIiIiIiIiIiIgcBxXaRURERERERERERESOg6/dAYiI5yurrqW+HsIC9V+GiIjI0aqrdx3MpZHBfnaHIyIiIsfA5XJRWFFDTZ0LgLhQfxwOh81RiYgnUdVMRJq1Ia2IF7/byYaMYjKLqwAI8XcyID6US0ckcXr/WHydeilGRESkObll1czbks2323PZmlWCy/15cngAo7pHMnN0N4z4UFtjFBERkcNzuVws2Z3PvK0HWJdeRE5p9cHvIoP8GNktnKmDEzi1Xww+KrqLeD0V2kXkEGmFFTz+zQ5+2FdIWIAvJ/aK4qLhIfg5fcgqrmTpnnz+8Pk2ksIDePgcgzHdI+0OWURExGPU1rt4b006Ly7bS3lNHYMSQrluQncig/yod8GGjGK+25nLF5uzOWdQPL+d3IfYEH+7wxYREZEmlu7O599L9rAjp4zoYD/Gdo9kSFIYQX5OautdbMkq4Ye9BSzamUfv6GBundSLyf1i7Q5bRGykQruIANaT+s+3ZPP3+btw+ji47xyDc/rHEOJ/6H8Tv3O5WLo7n2e+283N72/gugnduemkXjh99PReRES8W05pFXd9vJmt2aWc3DuaOyf3oVdM8M+WK6ms5fVV+5m9Jp0f9xfy9wuGMDgxzIaIRUREpKnSqlqeXrSL/23KpkdUEI+cY3D2wLhm3+iurXexYHsOr6zYx92fbGH60AR+d1rfn7WjRcQ76DdfRHC5XDz7/R7eXJ3G6JQI/jTVYGCPaAoLy3+2rI/DwaS+MYzpHslTC3fy2sr95JRW89DZA/SqnIiIeK3tB0qZ9dEmSqvqePy8QUwZENviuK1hgb7cNqk3Zw+M466PN/Pr99bz2LSBnNpfveBERETstL+ggjvmbiS9qJJfTujODSf0xN+35SFTfX0cnDUwntP6x/Lisr28/sN+NmQU8+wlw0gMD+zAyEXEE2iAZREvV+9y8bf5O3lzdRqXjkjiucuGt+qGINjfyUNnG/z6xJ58tjmbx7/ZQb3LdcT1REREuhozu5Rfv7cegJdmjOAMI65Vk6P1jwvlv1eNon9cCA98vpU1aYXtHaqIiIi0YHNWCde/u47iylpeuHwEt0zsfdgie2N+Th9undSbf182jJzSaq5/dx178n7ecU1EujYV2kW83NOLdjNnfSbXjkvhnin9jnoImBtO7MGvJnTn441ZvLRsbztFKSIi4pnSCiv47dyNhAb48srMkQw4yglOo4P9efqioSSHB3L3x1vYnVfWTpGKiIhISzZnlXDL+xsI8vPh5ZkjGZkScUzbGdcjihevGEFtvYsbZ68jVcV2Ea+iQruIF5u9Jp3Za9KZObobt03q3ared005HA5+c3IvzhuSwMsr9rF0d347RCoiIuJ5CstruH3ORurqXfzrOF4Rjwzy45+XDMPf14e7P95MWVVtG0cqIiIiLUnNK+eOORuJDPLlpRkj6RX98/lVjsaA+FBenjESp4+D2+ds5EBJVRtFKiKeToV2ES+1ZHceTy/axeS+Mdwxuc8xFdkbOBwO7p3SjwFxITz0xTbSCivaMFIRERHPU+9y8dC8bWSXVPH0RUObnfT0aCRHBPKX8waSVljJ419ua6MoRURE5HByS6u4bc5GnD4O/nXpcOLDAtpku92jgvjHxUMprqzlt3M3UqqH6CJeQYV2ES+UXlTBH78w6R8Xyp/PHXjUw8U0J9DPyd+mDwbg4XkmdfUar11ERLqu/67cz4rUAu46rS/DksPbZJujUyK5Zlx33ludxnc789pkmyIiItK8mrp67vt0K0UVNfzz4mF0jwpq0+0PTAjjiQsGk5pXzp++NHFpTjORLk+FdhEvU1NXzwOfbcOFi7+eP4ggP2ebbTslMoi7T+/LhoxiZq9Jb7PtioiIeJK1aUW8sCyVswfGcfHwpDbd9m9O7smgxDD+8s12SirV+01ERKS9/OO73azPKObBswZgJBzdHCutNaFnFLef0odFO/N4Y1Vau+xDRDyHCu0iXubZ7/ewJauEP55tkBLZtk/sAaYOiueUvjH8Z2kqqfma+EVERLqWypo6Hv3KJCk8kAfOHHBcQ681x8/pw+MXDaOgvIYXl2uScRERkfbw9bYDvLc2gyvHdOPsQfHtuq8rx3TjTCOO55bs4cf9he26LxGxlwrtIl7kh70FvLsmnctHJnNa/9h22YfD4eD+M/oR4OvDX77ertfjRESkS/nP0lTSCit56OwBBPu33VthjQ1JDuei4Ul8sDadnbll7bIPERERb5VeVMFfvtnBsKRwbp/Uu93353A4ePCsAaREBvHwPFPjtYt0YSq0i3iJ0qpa/vzVdnpEBXH7Ke17MxEbGsBtk3qzNr2Yr7fltOu+REREOsqGjGLe/TGdS0ckMaZ7ZLvu6+aJvQgJ8OWpBTv10FpERKSN1NbV89Dn1qTjj507EF9nx5TFgv2d/GmqQW5pFX9fsLND9ikiHU+FdhEv8fSiXRworeKRcwwC23Bc9pZMH5rIoIRQ/vH9bsqr69p9fyIiIu2prt7FX7/dQXxYALe18wNrgMggP246qRer9xexLLWg3fcnIiLiDV5buZ+NmSU8cGZ/kiMCO3TfQ5PC+dUJPfhiywHmb1eHNJGuSIV2ES+wMrWA/23K5ppx3RmWHN4h+3T6OPj96f3IKa3m1ZX7OmSfIiIi7eWjDZnsyCnjzsl9CPH37ZB9XjQ8keTwAF5Ymqpe7SIiIsdpa2Yxr6zcx9kD4zhrYPuOy96SX03owaCEUJ6Yv5OiihpbYhCR9qNCu0gXV1FTx1++3UGPqCBuPLFnh+57WHI45w6O550f08gsruzQfYuIiLSVwooanl+aytjuEUwZ0D5znDTHz+nD9Sf0ZGt2Kd/vyu+w/YqIiHQ1tXX13Dt3IxGBvtx9ej/b4vB1+vDgWQMoqqjhme922xaHiLQPFdpFurgXlu4lo6iSB87sT4Bvx//K/+bkXvg4HLywbG+H71tERKQtvLA0ldKqWu4+vR8Oh6ND9z1tSAIpkYG8sCyVevVqFxEROSavr9rP1qwS7jujP5FBfrbGMiA+lGvGdeezzdms1PBwIl2KCu0iXdj2A6W8uyaNC4cltvukbS1JDA/kilHJfLE5m505ZbbEICIicqz2FVTw0YZMLhqeRN/YkA7fv6+PgxtP7MmOnDIW78rr8P2LiIh0dvsKKnh1xT6mDknktP4d92ba4Vx/Qg96RAXxxIKd1NTV2x2OiLQRFdpFuiiXy8UT83cSHujH7R0wadvh/GJ8d0IDfPnX4j22xiEiInK0nl+air+vDzd08PBrjZ01MJ7k8ADeXJVmWwwiIiKdkdUu3oGf04cHzx1odzgHBfo5+d2pfdlXUMHsNel2hyMibUSFdpEu6ostB1ifUcztk3oTHmjvq3HhgX5cN747S/fksyGj2NZYREREWmtbdgnfmDnMHJNCTIi/bXH4+jiYOSaF9RnFyqMiIiJH4ettOazcW8gtE3sTHxZodziHOLlPNCf3juaVFfvILau2OxwRaQMqtIt0QaVVtfzz+90MSwrjvKEJdocDwGWjkokK8uOl5RqrXUREOod/L0klItCXa8am2B0K04cmEh7oy1ur1atdRESkNcqr63jmu90MTgzjkhFJdofTrFmn9qGqtp7n9Pa3SJegQrtIF/Tqin0UlNfw+yn98OngSdtaEuTn5OqxKaxILWBTpnrjiYiIZ9uYUcyK1AKuHWcNf2a3YH8nl4xIYtGOXPYVVNgdjoiIiMd7Y9V+csuqufu0vjh9PKNd3FTP6GBmjO7Gp5uz2ZxVYnc4InKcVGgX6WLSCiuYvTadc4ckMCghzO5wDnHpyGQi1atdREQ6gVdW7CMi0JdLRybbHcpBl4/qhtPHwftrNZariIjI4WQVV/LW6jTOHhjHsORwu8M5rOtP6EF0sB9PLdhJvctldzgichxUaBfpYv69eA9Oh4ObT+5ldyg/E+zv5Kox3Vi2p4DN6tUuIiIeamt2CUv35HPlmBSC/Z12h3NQbIg/UwbE8tnmbCpq6uwOR0RExGM9tyQVgFsn9bY3kFYIDfDltkm92ZhZwpdbD9gdjogcBxXaRbqQ9elFfLs9l2vHdSc+LMDucJp12ahkIgJ9eXnFPrtDERERadarK/YRFuDL5aM8pzd7g8tGJlNWXcdXaoiLiIg0a3NmMfO2HuDKMd1ICvesCVBbcu6QBIYkhvHs93v0MF2kE1OhXaSLqHe5eHrRbuJC/bl6nP2TtrUkxN+XK8eksGR3Pls0Bp2IiHiY3XllLNqZx+Wjkj1ibPamhieH0y82hA/WZeDS6+UiIiKHcLnbxdHBfvxifHe7w2k1H4eDWaf2IbesmtlrNEScSGelQrtIF/HNthw2Z5Vwy8ReBPl5zmvuzbl8VDLhgb68rLHaRUTEw7yzOp0AXx+u8MDe7AAOh4NLRyaxPaeMTZl6YC0iItLY/O25rM8o5uaTexHi73kPzA9nRLcIJvWJ5vUf9lNYUWN3OCJyDFRoF+kCKmvq+NfiPRjxoUwbnGB3OEcUGuDLzNHdWLw7n23ZKhKIiIhnyC2r5out2Zw3JIGoYH+7w2nROYPiCfF3MmdDpt2hiIiIeIzq2nqe/X43/eNCOH9oot3hHJNbJvWmvLqO/67cb3coInIMVGgX6QJmr0knq6SKOyf3wcfhsDucVpkxuhuhAU5e/0E3ECIi4hk+WJtObZ2LK8d47hBsYA3DdqYRx3wzh7LqWrvDERER8QhzN2SSUVzFHaf0wenTOdrFTfWLDWHakAQ+WJdOVnGl3eGIyFFSoV2kkyuqqOH1VfuZ2CeasT0i7Q6n1UIDfLl0RDLzt+eyN7/c7nBERMTLVdTU8eH6TCb3i6FHVJDd4RzR+UMTqayt51szx+5QREREbFdRU8drK/cxtkckE3pF2R3OcbnppJ64gBeXaahVkc5GhXaRTu71H/ZTVlXHrRN72x3KUZsxuht+Tgdvrk6zOxQREfFy87ZkU1xZy1Ue3pu9wbCkMHpFB/Hppmy7QxEREbHd7DXp5JfXcMvJvewO5bglhQdy2chkPt+Sze68MrvDEZGjoEK7SCeWXVLF++symDY4nn5xIXaHc9RiQvw5f2gin2/O5kBJld3hiIiIl3K5XHywLhMjPpQR3cLtDqdVHA4H5w9JZH1GMal6M0xERLxYcWUNb65KY1KfaIYld448fiS/HN+DID8nzy1OtTsUETkKKrSLdGIvLd9LvcvFr0/qZXcox+zqsSnUu1y8uybd7lBERMRLrU0vYmduGZeNTMLRSeY6AZg2OB6nAz7brF7tIiLivd5anUZJVS03T+xldyhtJjLYj2vGpfDdrjw2ZhTbHY6ItJKv3QGIyLFJzSvn001ZXD6qG8kRgXaH8zPl5eU899w/+OSTudx//x+ZNu38ZpdLiQziTCOOOUs3su+zf7J92xZcLheDBw/ljjvuolu3zvEKv4iIdF4frM0gPNCXswfG2x1Kq73//rv8738f4Z+ezvvzo4jNmMmMK65qcfndu3fxwgv/YvPmTVRXVzNu3Hh+97t7iYmJ7cCoRURE2la+rKa9AAAgAElEQVReWTXv/pjO2QPj6B8Xanc4rdKQw7OzM0lISGT69Iu4/PIrf7bczNEpzF6TwYvL93JC5Ro++uhD8vPzSU5O5tprf8VZZ021IXoRORz1aBfppP6zNJVAXye/nNDd7lB+Zt++VK67biZgvY5/JFeNTqL2+xfIrXby5pvv8+67c4mMjOTuu39LbW1te4crIiJe7EBJFQt35jF9aCKBfk67w2mVefM+4+WXn+d3v7uH+599n8rhl/Lyyy8wb95nzS5fWlrKrFm3EhISyjvvzOHDDz8lJCSUBx74fQdHLiIi0rb++8N+aurqO81b3o1z+BdfLOD3v/8Dr7zSfA4P9ndyzdgUVn31Ie9/+AF//vNfmTdvAddffxOvv/4KBw7ojTYRT6Me7SIebOLEsfzhD4/wzTdfsWHDWuLjE3jwwT+xaNV6lrz1Gv6uav5Tcjr33fcQTqdVHFiw4Fvefvt19u3bS0BAAJMmncrtt99JcLA1hvvmzZv4z3/+ya5dO3G5XAwdOoxZs+452HP80kvP57LLZpCVlcaXX36Fj4+DKVPOYtase3A4HMyadSvr169tNt5rr/0V1113A3l5ecya9XvGjTuBjz+ec8TjzN+9EZ+yHNJ7/Y7AkDAC/ZzcdtudnH/+WSxfvoRJk05tmxMqIiLSyMSJY5l4xe34LP6a/322l5UJVp7dvn0bb7zxGmVlpZxyymntkmf37k1l4cL5x5RnP/zwPc49dzqjR4+lsqaOvyb1J2H4ZN5//x2mTj3vZ+tt3LiOvLxcbrnlDsLDrbFrZ826h6lTT2PLlk0MHjy0PU6viIhIu5k4cSy33fUH5r41h4D8Pdy3OvGIOfyrr77kxRdf8pgcDjBixEjOPXd6izl8+uBYXtyxgLAzr2PQoCEAnHbaGZx22hltfk5F5PipR7uIh3v33Te5+ebb+eKLBSQnd+PBB+/l6x+3EHz+Q/z7uVeYP/9rli9fCsCqVSt57LGH+cUvrufLLxfywguvYZpbeOaZJwGorq7mnnvuYMiQYXz66dd8+OGn1NXV8fjjjx6yz3feeZNJk07h00+/5uGH/x9z537AsmVLAHj66X+zYMGyZv9cd90NAIwaNYYTT5zY6mPcvHkjcQnJFNX788nGLADCwyNITu7G5s2bjvscioiItGTZV3MYdOZM5s37Kc+mpaXx7rtzeP7519otz5544skt5tk1a9a1mGerq6vZuXP7wcZ2oJ+T0wbEst8Rx65dO6msrGzmKK1x512u+oOfBAYGEhAQwNatW9r6lIqIiHSI1998A9ew83jrw3mtyuEPPHB/u+fww7WVm+bwBoMGDWkxh6el7oCaCnZkFzHzmhmcddZkbrjhWlatWtEep1REjpMK7SIe7uSTT6F//wH4+/tz0kmTyMvPJz3ldH55cl8GD+hP3779SE3dDcDcuR9wyimncsopp+J0OunWLYVf/eomvv56HlVVlfj7+zN79sfccMNv8PX1JTQ0lEmTTmXLlkOL2cOHj+T006fg6+vL+PEnEBkZxa5dO9rtGAsLC4iLjmJ4cjjvrEmntt4abiYyMpKCgvx226+IiEh1/CBmnj7hYJ4tKMjnxhtvJiAgkN69+7Rbnp006dRjyrPFxcXU1dUd7JkOMHVgPJXOIOrr6ykqKvzZOsOHjyAmJoZ//esZCgoKKC8v48UXn6O2trbZ5UVERDqDoiiD6RPH0D0mvFU5fMqUMzwuh4PV7m0ph2dnW8PDBKStIuzUG/noo88ZPXos99wzi7S0/cdy2kSkHWnoGBEPl5iYdPDfAQEBOALDiIsI4eLhSe7PAqmqqgKssdHT0vbz/fcLD9mGy+UiJyeHlJTuLF++hNmz32L//v3U1dVSV1dHXV3dIcunpBw67ntgYGALPeTa1lVjU7j3f1tYtCOXM4w4ABwOR7vvV0REvFdwZByT+8UAVr6LioomICDg4PedIc+O7RFJeKAvlTSfN0NCQnnyyX/y7LNPM3PmRURGRnHxxZfTp09ffH3VHBARkU4qOIrrxls5tbU5/NtvvzlkE3bn8Maab/tandCmXnQ1c7P92FVUz0033cqXX37Ot99+dfCtchHxDLqzFvFwPj4/vXiyJ6+cmnoX143v3uyEbQEBAVx00WXceefdzW5rzZrV/PnPf+TWW+9g+vSLCQ4O5uOP5/Dkk48fstzhitutGXfuaEVHx1BcvJrJfWNIiQzk7R/TmDIglsLCQkaNijnq7YmIiBxJblk1AMOSI/Bz/pRrG+fdpjwhz1511S9wOp0UFxcd/Nzp42B4tJOVDh98g0KbXbd/f4N//vP5Qz57441XDnmgLyIi0hnklFrF8+HdIkkMDzz4+ZFy+IwZM7n55jub/d6uHA5QWFiI0+kkIiLyZ+vFxlod0M4b3YcFiwp5aflenr1kGImJSZoMVcQDqdAu0km4XC4W7czDx+HggmHNN4q7d+/Bjh3mIZ+VlJTgctUTHh7B5s2bCA4OZsaMqw9+3/RVuCN5+ul/H33wRzB06HDeeONViosKmDk6hb8v2MmSLamkp6cxYsSoNt+fiIjI55utxunIlIhWr9NReTYyMpjCwvIWlzGMQWzevJGzzpp68LPAor24IruzYn8p0waHHLJ8dXU1ixbNZ/TosQcb7Fu2bKKoqIiRI0cfVXwiIiJ2e3NVGgAn9Ylq9Trdu/dg27ath3xmR1u5uRy+YcN6Bg4cfEhv/Aa9evXG6XSyZ+c2rhk7lmcX72FdWgFZWZlMmnTqUcUnIu1PY7SLdBIr9hawv7CCsABfAnyb/9W97LKZbNiwjjlz3qeqqpK8vFweffRB/vjH+wHo1i2FyspKTHMb5eXlfPzxh+zbtxeArKysDjsWgCuvvISFC78FYNy4CfTu3YdnnnmSyd0DCXNU8uT//Z0+ffoxduz4Do1LRES6PpfLdbDQHhvi3+r1PCXPXnHFVXzxxaesXv0DNTU1rFq1gh++/4rQYWcwf3suAHfccTPvv/8uAP7+/rzxxms8++z/UVFRQXZ2Fk8++VemTj2P+PiENotLRESkveWWVTN3QyYAUUFHl8PXrFnjkTl83rxPmTHjqoPLNM7hERGRTJs2nddee4kRwcVE+Ll47P+eoaKigqlTz2uzuESkbahHu0gn4HK5eGHpXiICfQny//mQMQ2GDh3Oww8/xhtvvMq///0MoaFhjB9/ArfdNguAyZNPY+rU8/jtb2/Cz8+fadPO4/HHn+L222/i2muv4NVX32qTeP/2t8f46qsvDvn5yScfJyEhkXffnQvAvn17KS0tBcDpdPLEE8/w9NNPcPXMC6mvd5ET3Y9HH/8rTmfLxysiInIstmaXsie/nJ/3Gzs8T8mzU6acSUlJMU888f/IyTlAQkIid9xxNztChzFnfQalVbWkp6dRWFhwcJ3HHvsbTz75ONOnn0VAQCBnnHE2t9zy2zaJR0REpKO8vTqNmrp6/I5yvaFDh/O3v/2d55//j0fm8NNOO+PgMk1z+KxZv+e55wJ48P5Z1JSUkBGWzCOP/h+xsbFtEpOItB2Hy+U6phVzckpaXPFIr7t2Nd52vOB9x2z38S7dnc+dH23iD2f258LhHTOWqp3HnFtaxfSXf+DCYUncM6Vfh+zT7mvc0bzteKHzHXNcXFibzwR8uNzdnjrbufcW3nxd/j5/Jx9vzOTL35xIWKDn9Ts51muzPr2IG2av59FpBlMHqad6e/Dm3xtP5inXpT1y99HIySlxecq5EIuuR9sqKK9m+ks/cFr/WB6dNvCo1+8K16O4sobzX/yBU/rF8OdjOAeepCtcj65E1+PIWpPnNXSMiIdzuVy8sCyV5IhAzhviHY3m2NAAzh4Yz6ebsiiqqLE7HBER6UJq6ur5atsBTukb65FF9uMxLDmc+FB/5pu5dociIiLS5t75MZ2q2np+NaGH3aHYJjzQjwuHJ/LNtgNkFFXaHY6INKFCu4iH+35XPluzS7n+hB74Or3nV/aqMSlU1tYfHH9PRESkLSzdnU9RZW2XfHjt43Bw+oA4lqfmU1pVa3c4IiIibaa0qpYP1mUwZUAcvWKC7Q7HVleOScHhcPD26jS7QxGRJrynaifSCdW7e7OnRAYybXDXKwgcTr+4EE7oGcV7azOorq23OxwREekivth6gOhgPyb0irI7lHZxxoBYqutcLNmdb3coIiIibebDdRmUVddx3fjudodiu4SwAKYOiueTTVkUlFfbHY6INKJCu4gHW7Qzjx05Zdx4Yk98fWwd8tEWV43tRl5ZNV9tO2B3KCIi0gWUVtWydHceZxpxXTavHhw+ZnuO3aGIiIi0iaraet5dk84JPaMwEkLtDscjXDOuO9W19by3NsPuUESkERXaRTxUvcvFS8v20jMqiLMGxtsdji0m9IyiX2wI7/yYzrFO3CwiItJg4Y5cqutcnN2F86qPw8Fp/WNZtiefsmoNHyMiIp3f51uyyS+v4drxKXaH4jF6xwQzuV8MH6zLoLy6zu5wRMRNhXYRD7VwRy47c723NzuAw+HgyjHd2Jlbxsq9BXaHIyIindzX23JIjghkaFKY3aG0qzMGxFnDx+zS8DEiItK51dW7eGvVfgYlhDK2e6Td4XiUa8d1p7iylo83al4zEU+hQruIB3K5XLyyYh89o4I4w4izOxxbnT0wntgQf95enW53KCIi0onll1ezal8BZxlxOBxd+wH28G7hxIX6862GjxERkU5u4Y5c9hdWct347l0+fx+tYcnhjOkewdur06it07xmIp5AhXYRD7Rkdz47csq4bkJ3nF7am72Bv68Pl49KZsXeAnbmltkdjoiIdFLzt+dS56JLDxvTwMfh4PT+sSxPLdDr5CIi0mm5XC7eWLWfHlFBTO4Xa3c4HunqsSkcKK1mwY5cu0MREVRoF/E4LpeL11buIzk8gHO8oBjQGhcPTyLA14f31qhXu4iIHJtvth2gT0ww/eJC7A6lQ5w+IJaq2nqW7tHwMSIi0jmt2lfI1uxSrh6b4vUd0FpyUu9oekQFMVttZRGPoEK7iIdZvb+QjZklXDu+O75O/YoCRAT5MXVQPPO2HqCwosbucEREpJPJKa1iXXqxVw3HNiI5gsggP77bqR5uIiLSOb3+w35iQvyZNjjB7lA8lo/DwRWjktmYWcKmzGK7wxHxeqriiXiYV1fuJzbEn/OGJNodike5YlQ3qmrr+WRjlt2hiIhIJ7NwRx4urElCvYXTx8GkPtEs3ZOvcVtFRKTTMbNL+WFfITNHdyPAV6Wrwzl3SAIh/k71ahfxAPrfSsSDbMgoZvW+Qq4em6KbiSb6xYUwtkckH6zLoLbeZXc4IiLSiSzYkUPvmGB6xwTbHUqHmtwvhtKqOn5MK7I7FBERkaPy1o9pBPs5uXh4kt2heLwQf18uGJbIt9tzyS6psjscEa+mSp6IB3lt5T4iAn25eIRuJpozY1Qy2SVVeg1eRERaLa+smrVpRUzp732TqE3oGUWArw/f78yzOxQREZFWyy6p4hszhwuGJRIW6Gt3OJ3C5aOScblcfLguw+5QRLyaCu0iHsI8UMqS3flcOSaFID+n3eF4pIl9YkiOCNSkqCIi0mrf7cyl3gVTvGjYmAaBfk5O6BnFd7vycLn0NpiIiHQO769Nx+VyMWN0N7tD6TS6RQRxSt8YPtqQSWVNnd3hiHgtFdrlqPllrMSxb7ndYXQ5/125jxB/J5eNTLY7FI/l9HFw+chk1qYXY2aX2h2OiEin5U25fP72XHpEBdE31ruGjWkwuV8M2SVVmAeUN0VEOpI35dq2VFZdy9wNmZzeP5bkiEC7w+lUZozuRlFlLfO2HrA7FBGvpUK7HDW/9OU49i6xO4wuZU9eOfO353L5qGS9GncE04cmEuTnw+y16tUuInKsvCWXF1XU8OP+Qk7vH4vD4bA7HFtM6hODjwMWafgYEZEO5S25tq39b1M2pVV1XDU2xe5QOp3RKREMiAth9pp0vckmYhMV2kU8wOs/7CPA14eZejXuiMICfTl3cAJfbTtAfnm13eGIiIgHW5aaT53L6tXtrSKD/RiRHM73u1RoFxERz1Zb72L2j2mMSA5naFK43eF0Og6Hgxmju7E7r5xV+wrtDkfEK6nQLmKz9KIKvtx6gItHJBEV7G93OJ3CFaO6UVPn4uMNWXaHIiIiHmzxrnyig/0YnBhmdyi2mtwvlh05ZaQXVdgdioiISIsW7cglo7hKvdmPw1kD44kI9GXuhky7QxHxSiq0i9jsjR/S8PFxcLVuJlqtV0ww43pE8tGGTOrq9UqciIj8XE1dPctT891Dp3jnsDENGnr0f6fhY0RExEO5XC7e/jGNlMhATunrvW+iHa8AXx/OG5LIop155JZW2R2OiNdRoV3ERnll1Xy2OYvzhyQSFxpgdzidyqUjksgqqWLpnny7QxEREQ+0Nq2I0qo6JvWNtjsU26VEWpPBqtAuIiKeakNGMZsyS5g5OgWnj3c/ID9eFw1PpK7exf82ZdsdiojXUaFdxEbvr02nps6lV+OOwSl9Y4gN8WfO+gy7QxEREQ+0eHc+Ab4+jO8ZZXcoHmFy3xjWpRdRWF5jdygiIiI/M3tNOmEBvpw/NMHuUDq9ntHWG+Afb9Qb4CIdTYV2EZuUV9fx4fpMTu0fS4+oILvD6XR8nT5cOCyR5XsKNOasiIgcwuVy8f2uPMb1iCTIz2l3OB5hcr9Y6l2wZI96tYuIiGfJKq5k4Y5cLhyWqLzdRi4ZkURmcRUrUgvsDkXEq6jQLmKTTzZlUVxZyzXqzX7MLhyehI8D5q7XpKgiIvKT3XnlZBRVMkljvB40KCGU+FB/DR8jIiIeZ876TFzApSOT7Q6ly5jcN4YYvQEu0uFUaBexQW29i3d/TGNkt3CGJYfbHU6nlRAWwKS+MfxvUxbVtfV2hyMiIh7i+11WMXlSH43P3sDhcDCxTwwr9xZQpZwpIiIeorKmjo82ZHJK3xiSIwLtDqfL8HX6cMHQBJbuySeruNLucES8hgrtIjaYb+aQWVzF1WO72x1Kp3fJiCQKK2pYsCPX7lBERMRDLN6Vz6CEUE003sSkvtFU1NSzJq3Q7lBEREQA+HpbDkWVtcwY3c3uULqcC4cn4XLBxxv1BrhIR1GhXaSDuVwu3lydRq/oICb1VU+74zW+ZxQpkYF6JU5ERADIL69mU2axho1pxtjukQT4+rB4V77doYiIiOByuZi9Np1+sSGMTomwO5wuJyk8kJP7RPPJxixq6/Q2m0hHUKFdpIOt2leIeaCUq8ak4ONw2B1Op+fjcHDx8CTWpRezM6fM7nBERMRmS3bn4wJO6aNCe1OBfk7G94hk8a48XC6X3eGIiIiXW5texI6cMq4YlYxDbeN2cfHwJHLLqvl+tx6yi3QEFdpFOtibq9OIDvZj6uAEu0PpMs4fmoi/06Fe7SIiwuJdecSH+jMgPsTuUDzSpL4xZJVUsTNXD6dFRMRe763JICLQl3MGxdsdSpd1Uu9oEsIC+GhDpt2hiHgFFdpFOtDOnDJWpBYwY3Q3Anz169dWIoP8mDIgjnlbD1BZU2d3OCIiYpOq2npWpBYwqW+Mesa1oGGCWA0fIyIidsoqrmTRzlwuGJZEoJ/T7nC6LKePg/OGJLAytUCToop0AFX6RDrQ7DXpBPj6cNHwJLtD6XIuGJZIWXWdJkUVEfFiq/cXUllbr/HZDyM2NIBBCaEs3p1ndygiIuLFPlhn9bC+bKTaxu3tvCEJuIAvthywOxSRLk+FdpEOUlhew5fbDjBtcDyRQX52h9PljE6JICUykE80o7qIiNdaviefAF8fxnaPtDsUjzapbwybM0vIK6u2OxQREfFClTV1fLIxk1P7xZIYHmh3OF1eSmQQY7pH8OnmLM3RItLOVGgX6SAfbcykqraeGaO72R1Kl+RwOJg+NJE1aUXsL6iwOxwREbHBitQCRqdEaHi2IzilTwwuYKkmRhMRERt8ufUARZW1XDE62e5QvMb0oYmkFVayNr3I7lBEujS1QkQ6QG1dPR+sy2BCz0j6xGhytvZy7uAEfBzw6Wb1ahcR8TYZRZXsLajghF5Rdofi8QbEhxAf6q/hY0REpMO5XC7eW5tB/7gQRnWLsDscr3F6/1hC/J18uinb7lBEujQV2kU6wPztueSUVqs3ezuLDwvgxF7RfLY5m9p6vRInIuJNVqRavbNP7BVtcySez+FwMKlvDCtSC6iqrbc7HBER8SJr0orYmVvGjFHdNHF5Bwr0c3KmEce3Zg5l1bV2hyPSZanQLtIBZq9Np0dUECf1VuO/vU0flkhOaTUrUwvsDkVERDrQ8tQCEsMC6BUdZHconcKkPjFU1tazen+h3aGIiIgXmb0mnYhAX84aGGd3KF7n/KGJVNbW862ZY3coIl2WCu0i7WxjRjGbMku4YlQyPnpi3+4m9YkmKsiPTzZp+BgREW9RW1fPqn2FnNArSr3jWmlsj0gCfX1YvEvDx4iISMfIKq7k+115XDAsiUA/p93heJ1hSWH0ig7S8DEi7UiFdpF2NntNOiH+Ts4dkmB3KF7Bz+nD1MHxfL8rj4LyarvDERGRDrAxs4Sy6jpO1PjsrRbg68OEnlEs2Z2Py6Xh1kREpP19sjELlwsuHpFodyheyeFwMH1oIusziknNL7c7HJEuSYV2kXaUXVLF/O05XDAskRB/X7vD8RrThyZSV+/iiy0H7A5FREQ6wIrUfJwOGNdDhfajMalvNNklVWzPKbM7FBER6eJq6118simLE3pF0S1Cw7zZZergBJwO+GyzerWLtAcV2kXa0Zz1GbiAy0cl2x2KV+kbG8LQpDA+2ZSlXnoiIl5geWoBQ5PCCQvUQ+2jcXKfGAANHyMiIu1uya48ckqruWREkt2heLXYEH9O6h3N55uzqatXW1mkranQLtJOaurq+WRjFif3jtYTextMH5rInrxytmSV2B2KiIi0o4LyarZll3KCho05arEh/gxJDGPx7ny7QxERkS5uzoZM4kP9Dz7kFfucOySB3LJqVu0rsDsUkS5HhXaRdrJwRy755TVcMlK92e1wxoA4/J0ODR8jItLFrdxbiAs0PvsxmtQ3mi1ZJeSWVtkdioiIdFFphRWsSC3gwmFJ+Ppo0nK7TewTQ2iAk3lb1VYWaWsqtIu0kw/XZ5IcEaiGv03CAn05pW8sX5s51NbV2x2OiIi0kxWp+UQE+jIwIczuUDqlSe6ehUvUq11ERNrJRxuycDrggmGaBNUTBPj6cMaAOBbuyKWips7ucES6FBXaRdrBrtwy1qYVcfHwJHwcemJvl2mD4ymsqGFZql6JExHpiupdLpanFjChZxRO9ZA7Jv3jQkgIC9DwMSIi0i5q6ur5dFMWk/rGEB8WYHc44jZtcAIVNfUs3JFrdygiXYoK7SLtYO76TPycDqYPTbA7FK92Yq8oooL8+GKLZlQXEemKduSUkV9eo/HZj4PD4WBSn2hW7i2gUr3aRESkjS3ckUtBRQ0XaxJUjzKiWzjJ4QHM01CrIm3K1+4ARLoKv/TlhH73B3wLtnOSazJF/R8kKti/xeUDzLkEr/k3zsI91AdGUZs0hrIJ91IX1Rdc9YQsfZRAcw4AlQMvp+ykP4DDejbmU5ZF1LtTKB91MxVjbju+wF0ugn98lgBzDs7SDOrCe1Ax4gY46fpj32ZdDUHrXiDQ/BBn8X7qg2KoHHQF5eNmHTyGgB2fELTuRZwFu3C4aqmNHUrZuDup6XFqs5t0VJcS/MNTBOz5Cp/SLFz+oVT3OoOyE+6lPiQBR3kOYQvvxS99Ka7AaMom3AXGpZw1MI6PNmRSu+MbEr+5nsILP6Q2efyxH5uIiHQ4R1UxoUsewS9tCY7qEmpjBlN24n2s2G+9gt5cod1ZsJOQJX/CP2MlLh8ntfEjKT3lz9RF9YOacsK+ux//Pd/g8g2iYuSNVIz6zU/r5m4h6oNzKZnyNFUDLjy+4OuqCVn+FwL2fINPeQ610f0pH3sH1b3POuZNOqpLCV79D/x3z8NZmkldaBIVI26gcth1B5cJ3PQWQZvewFm0B5dfKJX9zqPspAfA9+cTtE/qG8OH6zNZvb+QiX1iCPvqZgJ3fgpAzq1pAPhmrz14n1MbbVA6+S/Uxo84uI2QZY8RYM6lYOZ8XIF68CEiIpa5GzKZFraLacsewffz7VQOvIySKU8fdh1PbytXDp557Nv0kLZylXEp5wxO4L8r91Gx7Uu6L/i12soibUA92kXaQOjCe4j8+DJ8KvMAqK13cemIlidB9d/1BeHf/hZHVRFlJ95Pdc9TCdj1BRGfXg11VQTs+ITg9S9T3esMqnudSfC6FwjY8b9D9lcX0ZuKUTcfdaw+xWkEr3qa4B+eAiBw0+uErHyC+pB4ysbfhaOqiLCFv8exa36L23CU5xK07kVCv/tDs9+H/PAUoSv+Ci6XldxDkwhZ9TTBq6wbKr+0pYR/fSu++TuoGH0r5SNuxDd7DRGf/xJnwa5mtxm6+CGC179EfWAUpSc/SG3cMAK3vU/YV7dY+1z5d/z3fkvFqJupD0kgbP5d+JRmMHVwAoF1pYQvuoeKETfqxkFEpBMKW/h7Are9T3X3SVSMuAG/7B+J+OwXbN2zh76xwcSFHvoquqOygMiPLsMv60fKx9xGVb/p+KctJvzLm8BVT/D6Vwg051A5aAa18cMJXfYYvlk/WivX1RD+7Z1U9z7zmIrszvzthCx7jMBNbwAQsuJvBK9/mdrYQZSNuwNn4W7Cv/w1zjyz5Y0U7T8kVzcVuuhegtf+B1dgFGUn3As+/oR9/yABW98HIHDzW4R9dx+OijzKxt9FTfwwgje+Rth3DzS7vTHdIwny82Hxrnz8d31OwO55P1sm7Jvf4lOWRdmEe/ApzSTsm9sPfueb9SNB616i9NS/qcguIiIHpeaVc0nmkzxX89DBtvKRdIa2st++RS1uozO1lacNiifUVZYwP3YAACAASURBVEb09/errSzSRtSjXaQN+GWvo/jMZ6GumvAFdxEW4GREt/AWl/fN2URN0jjKR95EdZ9zAAjY8zXOkv345m7FL2s1AKUT/wRA4Lb38ctaTdWACwncMhv/tKUUXPEV+DhbF2Dt/2fvvqPjqs61gT9nelGXZtRlWbKs5oZ7N+7GduidJCRASAiXhFTy5d4QwoUkNzc3JIEktECAQIAECMa4YwOuuGBbslWsZhWrjNpIM5Kmn++PEcLGsi3bkvaU57cWy1ia8pyRNXv2e/Z5dx+0VRv9j9OwGxJk9E71D7r6Y68AAGzL/gBfRAp8hgREbXsQik9fBJbP+fwxfB5oTn4AXdmb0NR+AMnngWPc1YM+nfaEf3WBfeFjcKcvgCP3BsS/OBX6ohfRO/1BqPuLGc7Mpeid7p+oa+p3Qm05ApXlqH+lwhdfs6YDAIDemT+Aa8wSuNMWIO4fi6FuOQzIMtTNh+CJz0fvjAfhic9H9Ma7oWo5jIKs1fhf46vo9GqhnfWjob1eREQUMKTeVmiqN8ITnQn7Ev/EV2FvhL70DWS3bIJ54tlXYOmOvwpFXytsi38DR97NkDwO9Mz7GWRNBABA1XwQPm00euY/DGVbCbQnt0LddBCepGkwHPw9FL0tsF7zj6FndHZDW7EOurI3oG45DBkS7AsfA3we6Er+AVllQPeKPwFKLSSvG8b9v4Wu5DX0LPjF5w9y2litatgN9Wlj9Rm8Tmir3gcAdC/7I3wxY+FOnYvYN1fBcPR5OPNvhq78bQBA76wfwFFwO/om3YX4v02Htvxt2Of+DLI+7oyH1KoUmDUmFsVVNYis/0/0TfgqDEUvfH58fR1QddWgd/I96JtyLxT2RhiOPg/J0QlZpUPkB9+HM/cGuMYuH/JrRkREoe/toiZ8RVGNxoVPIEIlI2r79y94n2CYK+uPvXLm6vIgnSuPyV6DJyJfQ4dXCz3nykTDgoV2omHQedN7gFKLtn0vIQrAmDgDpPNsgto7+8foPe3viq5aSC4bAEBWagCvx///qtNW6HndUNgbYdz9KFwZVyJyy/1Q2k7BY5oA27Lfw2c8ewd3Vcth6Epeh7ZyHRQuG3y6OPRNvhuO/Fvhjc8DPH1QdpyATxsNX4R/Bb4nLh8AIDUeBuBfmacrfQO68reg6GuDT22EI/dGOApugydp2qDHJ7l6/Pk1kf4/9fGQ1UYonFYou07Clb4AhgO/g7rlCJRtJZA8fVB21cCnNsKdMnvQx3SNWQJV0QvQVG+GJyYb2uoN/q9nXAlIEuBzA2rjGa+b5HVDe3Irlnt34h3vXKx9dTHU3j44xy6HfdGvAAXfAomIAp2q7Tgk2QdvXO7A17zx/rGqAJXwZsScdR/NqT3++7YcRfyuR6Fw2+GJzYFt6e/gSbwCks8DWdk/xn72p88NVWsxDJ/+Cc7sNYh55wYo+trhTpkN29InBor0p1PX74Su9A1oazZB8jjgjUhGz/TvwpF/K3xR6VB2VkHh6oY7oXDgeTzxef77Wo72Zzx7rPbN/Ca6sm70j9VfILn7IPn6Pydo/Sf1vZFp/kPpKAM8fZBcdv8hafpP+is18BkToXJ0QNVaNOil5wuy42Gu/TncGhV6Z/34zEK7z33ma6X8bJx1wXDwj/7PMJ4+xL04FVBq0TvlXjgmff2s5yAiovDhcHux/ngLrJl/xqMTJwP9V11dSDDMlVWWIwCCf66sqdmCxe6P8Y53Ltb8/UpofA7OlYkuE39ziIZD/4TzYJ0V+QBSo3VwDPGuUm8bojfcBcnngSt9EbwJBfDE+4sJ2sr3/QMj/BPzyO0/gjd2HFQtR+CNzkT36r8iauM9MO7+b9hW/Omsx47afB8U9ka40xbAkX8rnFkrAeXnfeMVzi5IkOHrH3QBfF5I6PNf2hfx0U+hadwHd9I09Mz+CRw5VwNqw3mPyZN0BTR1H0F/+Gn0zH4I2upNULi6/cfr6IAneQa6Vz2LyA++h7g3/D1qvQYzbKtfgC9y8JY7PfMfgeTpg77kVehLXgUAuNIXoXvFU/77x+VCXf9x/8rEbQAAX0QSIjd/G7b0JbiubhsOGW5E7uSFiNr6ADymyXBM+PJ5j4OIiMRTODoB4IxCt6z2/3+cZEN6WvTZ97E3AgA09R/BvuiXUDcfgv7YS4ja9E103PERPP1jhvrUHqha/CeWvbHZiNz2INxp86Gt2QznmGVwFNyG6Pe/BsOhJ9Ez5/+d9Twx626DrFDDlem/rX9C+3lnRumz7OrTsvdPrCVHB4DBx+qY+Bh4raeXGT4n62LgicmGyloFw8E/oG/SXdAX/83/mLIPCocV7qSpULWXQF/0Irzx+VBZDkPZ4W9Vo+jrGPRxVykPIFW5D28m/w8Wf+Gkgs9ggk8XB3XDbiisNVCf2gOfPgHKrhroi16Aa+xy6CrfQ/eyP0LVWoSInQ/DnTYf3ricQZ+LiIhC37YTrbA5PbhmyphLfoxAnSsr+vzjeyjMlXszluK62q34RHcDCqcu4lyZ6DKxRzvRMLE7PTje7D/TrlYO7VdL2VmJ2LeuhqqjHG7TRHQv+wMAwJF/GzzxBYja9h1EbX0AbvNkSLIP6qb96J16P5S9LXBlXwV3yiy4k2dC07DrnM8ha6LgMRXCYyo844OD32Cr7uWzvier9PAkTIDHNOGCHxwAwD7/UXiiM6GrWo/4VxdAf/zv8EZl9D+sEipLESK3fReyUovupU/AtuiXkLxORG24+5x95wyf/Bb6kn/AmbkcXSufRl/hl6Gp/whRW/yX9fXM+B6g1CDujRXQF/8NfRPvhO7YK5B1sVBmzIFCkvHnrjlw5FwLnzYa6vO8ZkREFEjOPVYZNWpEaAdZN9K/4rtnxvfgzL0e9oWPwRuRDKW9EeqWI+i74l74IlMR8++bEbH3V3BmLoe65QgkRyccOddC8jjgHH8d3BmL4Ikbf94xw6ePh8c0wb9SXfrC+D/Y1W3yIOPsecfqs9mW/B98ehMMRS8g/u/zoW46MLB6XVao0DPzh3CbJkHT9AniXluEiN2PwRs33n/nQVaoSY5OJO99GDvV8/Fie/7ZTygpYJ/7X1C1HUP8qwugaj2Onlk/QsT2H8KRfysgKeHTRsOZe72/VQ9kqPuvKiAiovD09tEmjInVY+ogJ8SHIqDnylLozJWRPhsKScZT1tnoHce5MtHl4op2omGypcwCj08GhtgKTtVajOh3b4XC2QXHuKthW/y/gKb/bLlaj86bN0DVegyQJPi0MYh9YyXsc34KX/8mY5+tjpPVBkgO66DP0TPrh9AfewWGT/8Mw6d/hitlFhz5t8GZvQZQ6+HTxUCWlJDcPQP3UTj9Z9NhNAGAfxOZohegO/4K9MdegjthAhwFt8I5/jrI2sE/NHljs9F523aoOsoBrwse0yTEvXYlAP+Zc+Oex6Fw2WCfej+ceTcBAJSdVTAU/RW6439Hz/yfn/mAnj4YPvWvQrBf+Wv4jIlwZa+GtvI9aE9ug7KtBN6EAnR8ZQ+UbaWQ9fFQdpQjasv9sN74HjS1/o1dK7sllDTbsEClh8I5+GtGRESBxadPAICBdigA4O71v4crI82D3kfWxQFdJz/fmFOS4DMmQ2lvgtTXDl/qHHTcvgOqthLIKj0krxMxb1+H7lXPQepfVTawgl5tgKLHMujz2Of9HLqyN2D85H9h2P87uDIWwZF/K1yZywGlGj59vP/p3Z9nl1xd/uMy+I9rsLFamnYnkLwcUOsHfV5P8nS0f2UPVO2lgEIFT3w+Ep4dD1mp9R+7Qgnrje9B2XkCCmc33OZJiF7/NQCAd5DL5w0Hn4SirxVRCbOxuvkF4ONNn39v32/gyl4NZ/7NcGcshLLrJDzRWTAcehKSz4ueeT9D1MZ7IA9cku7PzHGWiCh8nbDYUdxkw/euzDpvS9VzCfS58mefTUJprlzXq8SheitWca5MdFm4op1omKw71gJzxOCr0BQ9LVB2VkLqb8eisDch+r0vQ+HsQs/MH8K28s+ff3AYuJMKnsQp8JgmIfLDh+AxT4Jj4tcGBuzPLkdX9LV/Xkj4AmfujbDe8C46bv8IvVO/DWXXSUR98CDi/zYVuuKXAKUWnoQCKJxdA5fZq9qOAwDkNP+O467Mpei6+lV0fGUfemb9CAqXDZEf/xfiX5wKw77fDPq86obd0B95FrJSC0/SNCht9VB218IbNcbf387n9R+D1zlwH8nT32xH9n9P0XUSys5KwN0L+HyA7PN/3+vy/+nzDqxYlPq/J2si4UmZCZ8uFpEf/RS90x6AxzQBvv7XLFHZi80ljVA4uwY+hBERUWDzmAohK1RQtZcNfK2n3t/fXJE6w//nF8ZZd9J0ABjYUAxeN5TdtQAAX3Sm/2sqPTxJ0/wtYz74Ppzjr4dr7HLIWn/P98/GWam37ZxjRt+Ub6Dz1m3ovGkDHBO+DHXzp4jedC/iX5oBTdUG+KIy4NPFQWWtAfrHOVVbif+4+jMONlar3vv252P1IDTVm2E48jS8kWnwmCdB3bgXks8Nd/IMQKGEquUw9EeeheSyw50yC5LXDXXLIfjURnjME/2vR2elf5yVZSic/mOd3PYeHlD9G6biPw88l/HQH6Hsz+wzJsGdMhsqaxX0x16GbclvIWsiIGujITm7AdkHRf/PgOMsEVH4+ndxMzRKCWsKEi9422CcK7uT/WN4KM2VU9S92FraxLky0WXiinaiYeDc8RhWtTVjjakNcPp3Sv9sYO2d/WMY9/0aurJ/onfqt9Ez56cw7n4Uir52eCPT4DOaoSt5beCx3Cmz4Y3JGvi77tjLULUcQeet2wBJgjd2HLwRydAf/zsknwfqU/vgzPnSefN5Y7PRM+en6Jn1EDR1H0JX9ubARL9v4teh3v59RG25H86xK6E/8hxkSQHfjHvPeAxfZAp6p38XvdO/C3XjPuhK3xz4oPFFKssRROz7NTwV6+DIuxG6ktcB9F+yBsA5bi10VeuhL3oBslILyeuE7sTbkCUFXNlrAAAx794Kpa0B1rWvwD1mMVyZS6E9uQ2R2x6EK3s11I37oHD3wBM7Hp7TNsgD/L3yvBHJ6J3+Hf9rmjYfMiQ8EvE2Sso+goQ+uNMXnfc1IyKiwCDrYuEcfx10Zf9E5LYH4Y1MQ1zjRrTK0YibfjMAnDXO9k36GvTH/w790echKzVQtZf5NzZNnum/tPs0xk/+F5LbDvv8RwAA7qRpkFV6GA7/Baq241B11aBn+nfPm9FjngS7eRLs8x6GtnoLdGVvQNVxAq7s1eibeCeMB55A1OZvwZ003Z9JpUNf4R1nPMbpY3Vsxz54D748MFZ/kabuQ+iPvwL1qb1wZSyGvuivkCUFeqc9AABQdtcjYu/j8Eamo2/S16Gteh+Sx4HemT8AVHoouusHVs+1frMStqVP+Dd8lWVc8/x+jEsw4pXGVf7v399w5pO7exG5/Qfom/BVuNPmAQBcaQugrXofETsfhrKz0j+epy04/w+WiIhCksPtxaZSCxbnJCBarx6YF6vaS/1/hsBcuW/SXWc8RijMlX9ufAdFlR9CkjhXJrocLLQTDYO0kqfxgAqA/8Q5VO2lAx8kemf/+Kzbq/s3XlPaGhC548zvdy/53cCHB0V3HSL2PA77/Ifhi0rz30ChRPfKpxH54UMwHHoSrvT5sM/92dCCKpRwZS6FK3PpwJlyZ/7NsDs6oS96AcZ9/+PfOGbhozCkzQTOsRGbO2W2f8fz/sf4or4r7oPC2QVt+Vsw7v0VvNFj0L3k/+DMuxEA4Bq3Ft2+J6E//DSMB54A4N/ApveK++BOmTXoY9qW/QHeA09AW/EejLsfhayNgiN7LXrm/hRQqgdup614D9qaLei8ecNAH1pv7DjYF/8Psvb8FulyKaqzvozI/svwiIgo8NkW/hKyQgVt1UZInj4UK/PxQuR9+E/j4CuufFEZsF77Jox7HoPh8F8gK9Rw5N4wUEz/jKr5EPRHnkPX2pcha/t7nOti0L3iz4jY9Qj0RS/CMf469E69f2hBlVo4c77kn9T3j5G90x+E5HVCW/YvaOo+hic+Dz3zfgbfZ/1Yv0ihhDxuOboT5p1znLXPfxiQvdDWbIa66SA8ceNhv/LXA4VvZ87VsNuboC/+G4x7/ZeR2+f8P/Rd8e3zxpckCQuy4vHuseZzzhIi9jwGWVKgZ85PB77mKLgVqo5SaE+8A1ml9/eQjxl7gReLiIhC0YeV7bA5Pbh6gr9VmfHQH8/4fijMlT1J0875MME6Vx6797dIRQlOZNyOWM6ViS6ZJA9syHRxWltt57xjTIwB1nMU6EJRuB2v4cDvodOp0TFxiJPOEHC+n7Hb68OaZz7BlLRo/ObqglFONnJC8d+1w+3Fqqf3Yen4BPxs5Zln9kPxeM8n3I4XCL5jNpkiL76h5QWcb+weScH22oeDYB7Lux1uLPvTXnxj7hh8Y84Y0XFGhMjfmX0nO/DAW8fwu2sLsSA7XkiGQMb3s8AUKD+XkRi7L0Zrq00OlNeCgnusvRz3/bMIjV0OvHP3DCguoT/7SOLvx7l5fDLWPLMPk1NHr67Bn0dg4c/jwoYyzrNHO9Fl2lXdgc4+N66ecOH+cySWTq3ElePisaOiHS6PT3QcIiK6BIfquyADmJEeIzpKSJqaFgODWomd1e2ioxARUZBpsPbhYJ0VV09IDLgiO52fSiFhRZ4Zu6vbYXN4RMchClostBNdpnXHmpFg1GB2ZpzoKDQEK/LMsDk92HuyU3QUIiK6BAfrrNCpFChMjhQdJSRpVArMyozFruoOXOqVr0REFJ7eO94ChQSsLUwSHYUuwao8E1xeGTsq2kRHIQpaLLQTXYZWuxN7ajqwpjARKgXP2AeDmRkxiNGrsaXMIjoKERFdggP1VkxJi4ZayY+xI2VBVhxa7S6UWeyioxARUZDw+mSsP9aM2ZmxSIzUio5Dl6AgKRLpMTps4lyZ6JJxhkJ0GTaUWOCTgS8Vsm1MsFApFVg6PgEfV7Wjzz34BjVERBSY2npcqGnvZduYETYvKw4SgJ1VbB9DRERDs6+2Exa7C9dM4Gr2YCVJElblm3GwzopWu1N0HKKgxEI70SWSZRnrjjVjSmoUxsQZRMehi7AizwSHx4ePK1lAICIKJofqrACA6RkstI+kOIMGE5KjsLOqQ3QUIiIKEuuKmxGrV3Mj7SC3Ms8MGcCWslbRUYiCEgvtRJeoqLEbdZ19+BL7zwWdKanRMEdosJmXxBERBZUD9VZEaJXINUeIjhLyFmTHocxih8XGFW1ERHR+Hb0ufFzVjqsKzGztFuTGxBmQnxjBuTLRJeI7INEl2lhqgValwNLcBNFR6CIpJAnLc83Ye7ITXX1u0XGIiGiIDtZZMS0tBkruizLiPluRuKuaV38REdH5bSixwOOTcc1ELkILBavyzShtseNkR6/oKERBh4V2okvg8viwtbwVV46Lh1GjEh2HLsHKfBM8Pu6oTkQULBq7HDjV5WDbmFGSHW9ASpQWO6vZPoaIiM5NlmWsP96MCcmRyIo3io5Dw2BFrgkSgM2lXNVOdLFYaCe6BLtqOtDt8GB1ATdBDVZ55ghkxOqxpZy954iIgsHBen9/9hkstI8KSZKwIDseB+qscHDzcCIiOocTrT2oauvFGs6NQ0ZChBbTM2KwqcwCWZZFxyEKKiy0E12CjSUtiDOoMXNMrOgodIkkScKKXBMO1VvR1uMSHYeIiC7gYJ0VcQY1suK5AfloWZAVD6fHh09qraKjEBFRgNpQ0gKVQsKyXJPoKDSMVuWb0WB1oKTZJjoKUVBhoZ3oIln73NhV3YFV+Wao2CM2qK3MM8MnA9u4qp2IKKDJsoyD9VZMT4+BJHHsHS1T06Nh1Cixk33aiYhoEF6fjM1lrZg3Ng4xerXoODSMluQkQKOUsJHtY4guCgvtRBdpW3krPD4Zq/N5aVywy4w3YLzJiC3cUZ2IKKDVdvah1e5if/ZRplYqMDszFruqO+DjpeNERPQFB+o60d7jwuoCs+goNMwitCrMz4rH1v76BxENDQvtRBdpQ0kLshMMGG/mRi+hYGWeGcVNNtR3ckd1IqJAdbCO/dlFWZAVj/YeF0pb7KKjEBFRgNlQYkGEVol5WfGio9AIWJlvRkevGwfrOkVHIQoaLLQTXYS6zj4UN9mwOj+Rl66HiOV5/l6C7xc1CU5CRETncrDeiqRILVKjdaKjhJ15Y+OgkIBdVWwfQ0REn+t1ebGjog3LxpugVbG0FIrmjY1DhFaJTWwfQzRkfDckuggbS1ogwX9ml0JDcpQOk1KisL6YhXYiokDkk2UcrLNiegb7s4sQY1BjYnIUdlZ3iI5CREQB5MPKNjg8PqwuYEvVUKVVKbAkJwE7KtrhcHtFxyEKCiy0Ew2RLMvYWGrB9IwYJEZqRcehYbQyz4TyFjuq2npERyEioi+oaO1Bl8PDtjECLciOR7nFjhabU3QUIiIKEBtLLEiO0mJyapToKDSCVuWb0ev28oQ70RCx0E40REWN3TjV5cAanrEPOUvHm6CQgC3lraKjEBHRF3zWn31aOgvtoizIjgMA7Kpm+xgiIgLa7E7sr+vEVflmKHi1WUibmhaDBKMGm9k+hmhIWGgnGqKNpRboVAoszkkQHYWGWbxRg9lZ8dhaZoEsc0d1IqJAcrDeioxYPa8mE2hsnAGp0TrsrOJqNiIiAjaXtcInA1dxEVrIUyokrMgzYXdNB7r63KLjEAU8FtqJhsDt9WFbeSsWZsfDoFGKjkMjYO3EZNRbHShtsYuOQkRE/TxeHz6t72LbGMEkScKC7HgcqOtEH3u0EhGFvQ0lLShIikRmnEF0FBoFV+Wb4fHJ2F7RJjoKUcBjoZ1oCHZXtaPL4cGKPG6CGqpWFCRCpZCwpYztY4iIAkVpix29bi8L7QFgQVYcXF4Z+2s7RUchIiKBKtt6cKK1B1flc24cLnLNERgTq8cmto8huiAW2omGYH1RE6J0KswdGys6Co2QaL0ac8fGYWu5BT62jyEiCggH6/v7s6ex0C7aFWnRMGqUbB9DRBTmNpZYoJSAFXkm0VFolEiShFX5Znza0IXmbofoOEQBjYV2ogtwuL3YWtqCxTkJUCv5KxPKVuSaYLG7cPRUt+goREQE4ECdFTkmI2IMatFRwp5aqcCczDjsrG7nCWkiojDlk2VsKm3BnLFxiDNoRMehUbSy/+r+reW8ApzofFg1JLqAndUd6HV5sZJn7EPewnHx0KkU2FzGS+KIiERzenwoauxm25gAsiA7Dh29bpQ220RHISIiAQ7VW2Gxu9g2Jgylx+oxITkSG9k+hui8WGgnuoAtZRaYI7WYysvWQ55ercSC7Hh8cKINHh9X6xERiXSsqRtOjw/T0zn+Boq5Y+OgkICPq9k+hogoHG0sscCoUWJhdrzoKCTAyjwzKlp7UNXWIzoKUcBioZ3oPGwOD3bXdGD1hCQoFZLoODQKVuaZYO1z40AdN3sjIhLpQJ0VSsnfG5wCQ4xejckpUdhZ1S46ChERjTKH24vtFW1YkpMAnVopOg4JsDzXBIUEXgFOdB4stBOdx46KNri9MtZOShYdhUbJnMw4RGiV2FLG3nNERCIdrLMiPykSEVqV6Ch0mkXjElDR2oMGa5/oKERENIo+rmpHj8uLqwrYNiZcxRs1mJkRi82lFsjcr4VoUCy0E53H5jIL0mJ0mJTK1XThQqNS4MpxCdhR0Qanxyc6DhFRWOp1eXGs2ca2MQHoyhx/u4AdFW2CkxAR0WjaWGqBOUKDaRybw9pVBWY0djtx5FS36ChEAYmFdqJzaOtx4WC9FSvyzJAkto0JJyvzTOhxebG3hj1oiYhEOHKqC16fjOncCDXgpEbrkWeOYKGdiCiMdPS6sLemA6vyE6Hg3DisLc5JgEGtxPrjzaKjEAUkFtqJzmFbeSt8sr/oSuFlekYsYvVqbGb7GCIiIQ7WWaFWSpicEiU6Cg1icU4CiptsaLE5RUchIqJRsKWsFV4ZbBtD0KuVWDo+AR+caEOf2ys6DlHAYaGd6By2lFmQYzIiK94oOgqNMpVCwtLxCdhZ3Y5eFz88EBGNtgN1VkxMjuJmawFqSU4CAOBDrmonIgoLG0paMN5kxLgEzo0JWDshET0uL69uIxoEC+1Eg2iw9qG4yYaVeTxjH65W5Jnh9PjwcVW76ChERGGlq8+NcoudbWMCWGa8AWPjDdhRyQk2EVGoO9nei9IWO1YXJIqOQgFiSmo0UqJ1WH+8RXQUooDDQjvRILaW+1uGrGDbmLA1OTUK5ggNtpRZREchIgornzZ0QQYwk4X2gLY4JwGHG7rQ2esSHYWIiEbQxtIWKCS2VKXPKSQJawsScbDOiuZuh+g4RAGFhXaiQWwus2BSShSSo3Sio5AgCknC8lwz9p7sRFefW3QcIqKwcbDOCp1KgYKkSNFR6DyW5CTAJwMfVvLKLyKiUOWTZWwstWBmRiwSIrSi41AAWV1ohgxgQwkXphGdjoV2oi+obO1BVVsv28YQVuab4PHJ+JCXxhMRjZoDdVZckRYNtZIfUwPZeJMRKdE69mclIgphR091o6nbyU1Q6Syp0XpMS4/G+uPNkGVZdByigMEZDNEXbC6zQCkBy3ITREchwfLMEUiP0WFzWavoKEREYaHV7kRNRy9msG1MwJMkCUtyEnCgzgqbwyM6DhERjYANJS3QqxVYnMO5MZ1tbWEi6q0OFDV2i45CFDBYaCc6jSzL2FLeihkZsYgzaETHIcEkScLyPDMO1VvR1sMetEREI+1AnRUAMDMjVnASGoolOQnw+GTsrGb7GCKiUOP0+LDtRCuuHJcAvVopOg4FoCU5JujVCrzHTVGJBrDQTnSa4iYbGrsc3ASVBqzMM8EnAx+Uc1U7EdFIO1BnRbROhRyzUXQUGoLC5EiYIjRsH0NEFIJ2V7fD7vRiNdvG0DkYNEosGW/CI+p24gAAIABJREFUtvJWONxe0XGIAgIL7USn2VxqgUYp8dI4GpAVb8S4BCO2sNBORDSiZFnGgTorpqXHQCFJouPQECgkCYvHJWDvyU70ujjBJiIKJRtKLIg3ajCDV5nReXypMBE9Li+286Q7EQAW2okGeHwytpa3YkF2PCK0KtFxKICsyDOhqLEbTd0O0VGIiEJWg9WBFpuT/dmDzJLxCXB6fNjF9jFERCHD2ufG7poOrMwzQangyW86tyvSopEeo8O/i5pERyEKCCy0E/U7UNeJzj43Vubx0jg60/JcfyuhLdwUlYhoxByo6wQAFtqDzJTUaCQYNdjKK7+IiELGtvJWeHwyVhckio5CAU4hSbhuUjIOn+pGdXuP6DhEwrHQTtRvc1krIrRKzB0bJzoKBZi0GD0mJkdiU6lFdBQiopB1oM4Kc4QGGbF60VHoIigVEpblmrC7pgN2p0d0HCIiGgYbSizITjBgvIl7ptCFrS1MhFop4e2jXNVOxEI7EQCH24sPK9qweFwCtCr+WtDZVuUnorKtBycsdtFRiIhCjq+/P/uMMbGQ2J896KzINcHtlfFhJfuzEhEFu/rOPhQ3deOq/ESOyTQksQYNFo9LwIYSCzdFpbDHiiIRgN01HehxebEyn21jaHArcv39CTeUcFU7EdFwq2jtQZfDg5lsGxOUJiRHIjlKyxZrREQhYGNpCyQAqzg3potw/eRk2JwebDvBzwIU3lhoJwKwqdSCOIMa09M5wafBxRjUmDc2DpvLLPD6ZNFxiIhCysE6KwBwHA5SkiRhea4Z+2s7Ye11i45DRESXSJZlbCy1YFpGDBIjtaLjUBCZmhaNzDg928dQ2GOhncKezeHB7poOrMgzc0d1Oq/VBWa09bgGNuwjIqLhcaDOijGxepg5qQ9aK/JM8MrA9gquZCMiClbFTTY0WB1YzdXsdJGk/k1Ri5tsbLdKYY2Fdgp7Oyra4PbKWJVnEh2FAtz8rHhEaJVsH0NENIw8Xh8ON3RhBtvGBLXxJiMy4/TYUs5COxFRsNpQ0gKtSoHFOQmio1AQWlOQCI1SwttFXNVO4YuFdgp7m8osSIvRoSApUnQUCnBalQLLxpuwo6INvS5u8kJENByON9vQ6/ZixphY0VHoMkiShBW5Znxa34VWu1N0HCIiukhurw/byluxKDseEVqV6DgUhKL1aizLNWFTqYXzZQpbLLRTWGuzO3GwzoqVeWbuqE5DsrogEQ6PDx9WtomOQkQUEvbXWSEBmJYWLToKXabluSbIALad4BhJRBRs9tR0oMvhweqCRNFRKIhdPykZPS4vtpTxKnAKTyy0U1jbeqINMoCVeexBR0MzOTUKKVFabGT7GCKiYXGgzopccwSi9WrRUegyZcYbMN5kxFZOromIgs6GEgti9WrMGsNWbnTpJqVEYVyCEf880ghZlkXHIRp1LLRTWNtcasF4kxFj4w2io1CQUEgSVhUkYn9dJ9p4aTwR0WXpcXlQ3NiNmWwbEzJW5JlR3GTDqa4+0VGIiGiIuh1u7Kxux4o8E1RKlono0kmShJuvSMGJ1h582tAlOg7RqOM7KIWt+s4+HG+2YRV3VKeLtDrfDJ8MbCrjhm9ERJfj0/oueHwy5mSy0B4qluf6N5ffwjGSiChobC1vhdsrY20h28bQ5bsq34xonQqvf3pKdBSiUcdCO4Wtzf2XNX82ISQaqjFxBhQmRWJDSYvoKEREQW3fyU7oVApMSokSHYWGSUq0DpNTorChpIWXjBMRBYn3j1uQFW9ArjlCdBQKATq1EtdPTsZHle1osPIKNwovLLRTWJJlGZtKLbgiLRpJUTrRcSgIrS5IREVrD8pb7KKjEBEFrX21nZiWHgONih9JQ8mawkSc7OhDSbNNdBQiIrqA2o5eFDd1Y21hIiRJEh2HQsRNU1KgUEh483Cj6ChEo4qzGgpLJyw9qO3sw6o8rmanS7Mq3wSNUsK7x5pFRyEiCkqNXQ7UdfZhFtvGhJzluSZoVQqsP84rv4iIAt2GUgsUEthSlYaVKUKL5bkmrDvWDLvTIzoO0ahhoZ3C0obSFigVEpaMZ6GdLk2UTo3FOQnYVGqB0+MTHYeIKOh8UtsJAJjNjVBDToRWhSvHxWNLeStcHCOJiAKWT5ax4XgLZo6JhSlCKzoOhZjbpqaix+XFOi5OozDCQjuFHY/P3zZm/tg4xOjVouNQELt6QhJsTg8+rGgTHYWIKOjsO9mJxEgtMuP0oqPQCFhTmIhuhwc7q9tFRyEionM43NCFZpsTawq4CSoNv4KkSExJjcIbhxvh9XHfFgoPLLRT2Nl3sgMdvW6s4Y7qdJmmZ8QgJUrLM/RERBfJ45NxoM6K2WNi2Q82RM3MiIUpQsP2MUREAWz98RYYNUpcOS5edBQKUbdNTUVjlwM7q3jincIDC+0Udt4/3oJonQrzs+JER6Egp5AkrJ2QhP11VjR2OUTHISIKGqXNNticHvZnD2FKhYSr8hOxt6YD7T0u0XGIiOgL+txebD/RhqXjE6BTK0XHoRC1cFwCkqO0eO3TU6KjEI0KFtoprHQ73Pioqh0r88xQK/nPny7flwoTIQFYf5yr2omIhmpfbSckADMyYkRHoRG0tjARXhnYVGoRHYWIiL7gw8o29Lq9vNKbRpRKIeGWK1JxuKELx5q6RcchGnGsNFJY2VreCrdX5ocJGjZJUTrMGhOL9461sO8cEdEQ7TvZiYKkSO6VEuLGxhtQmBSJ9cdbIMscI4mIAsn7x1uQEqXFlNRo0VEoxF07KQnROhVe/KRedBSiEcdCO4WV94+3YGy8AfmJEaKjUAi5emISmm1OHKjrFB2FiCjg2RweHG/qZtuYMLGmMBGVbT04YekRHYWIiPq12JzYX2vF6oJEKLhXCo0wo0aFW6am4uOqdlS02kXHIRpRLLRT2DjZ0YviJhvWFiRy4zUaVouy4xGtU2HdMW74RkR0IQfrrfDKwOwxLLSHgxW5JqiVEtaXcIwkIgoU7x9vgQzwSm8aNbdckQKjRslV7RTyWGinsLGhpAUKCbiqwCw6CoUYjUqBVflmfFjZBmufW3QcIqKA9kltJ4waJSYmR4qOQqMgWq/Gwux4bCxpgdPjEx2HiCjs+WQZ7x5rxvSMGKTF6EXHoTARpVPjhskp2FbeitqOXtFxiEYMC+0UFnyyjA0lFswcEwtThFZ0HApB10xMgtsrYwNX7BERnZMsy9h7shPT02Og4qbkYeO6ScnocniwvaJVdBQiorB3sM6Kxi4HrpmQJDoKhZnbp6VCo1Lgpf1c1U6hizMcCgsH66xosTmxtoCXxtHIyDFFYGJyFN4+2sQN34iIzqHe6kBjlwMz2TYmrMzIiEF6jA5vHWkSHYWIKOytO9aMKJ0Ki3MSREehMBNv1ODaiUnYUGpBU7dDdByiEcFCO4WF90taYNQosWhcvOgoFMJumJyM2s4+HKrvEh2FiCgg7apuBwDMy2KhPZwoJAnXT07B0cZuVLZyU1QiIlGsfW5sr2jDVflmaFUsB9Ho+/L0NEgAXjnQIDoK0YjgOyuFPJvDgw9OtGF5rgk6tVJ0HAphS8cnIFqnwltHG0VHISIKSLuqO5AVb0BqNHvChpu1hYnQKCWOkUREAm0qtcDtlXE128aQIElROqwpTMS7xU1otTlFxyEadiy0U8jbWGqB0+PD9ZOTRUehEKdTK7GmMBE7KtvRZueHBiKi09mdHnza0IX5WXGio5AAMXo1luWasLHUgl6XV3QcIqKwI8sy3i1uRn5iBMabI0THoTD2tZnp8PpkPLuzWnQUomHHQjuFNFmW8U5RE/LMEchPjBQdh8LA9ZOS4fXJWHeMm6ISEZ3uk9pOeH0y5mexjVu4un5SMnpcXmwqs4iOQkQUdkpa7Khs68G1E7mancRKi9FjTWEiXjtQDwtXtVOIYaGdQtqxJhsq23pwHVez0ygZE2fAjIwYvFPUBK+Pm6ISEX1mZ3UHonQqTEyJEh2FBJmUEoUck5EbhxMRCfBucRN0KgVW5JlFRyHC3bPHQJZlvPBJnegoRMOKhXYKaW8XNcGgVmJlnkl0FAojN05ORrPNiT01HaKjEBEFBJ8sY091B+ZkxkKlkETHIUEkScL1k5JRbrHjeLNNdBwiorDR5/ZiS1krluaaEKFViY5DhJRoHW6aloZ3i5txqqtPdByiYcN3WApZNocHW8tbsbrADKMmeP6pt7Q045ln/oRPPz0Iu92GCRMm4fvffwgZGWPOuq3b7cY993wFPT09+Ne/3gMAdHd345FHfori4qMYOzYbv/jFL5GcnDJwn/r6OvzgBw/g2WdfQkxMzDlz/Od//hTV1TX4y1/+etb3Hn30Z7BYWvDUU88CAP7jP+5FUdERqFSfv85xcfGYOnU6vvGN+2Aymc+6nSzL0Gg0GDs2G4sXL8V1190EjUZzaS9agFmYHY8EowZvHW3Cgmy2SCAiKmm2obPPHTRtYwJlLH788UfQ0FAfUmPxVQVmPPlxDd462oQJyby6gYhoNGwtb0WPy4trQ3AT1Isbs124885bOWYHiPsWZeNfhxrw1711eHhVrug4RMOCK9opZG0sbYHT48N1k4KnbYzX68WPf/wgOjra8fzzL2Pdui0oKJiAH/zgATidZ/cue/HF59DS0nzG115//e9QqVR4//0PkJubj7/+9ZmB7/l8Pvzyl4/gO9/5/nk/JFyKZctWYvv2Pdi+fQ8++GA3fv/7P6OpqRE//vGD8Pl8Z91ux469eP31d3DnnXdj8+YN+Na37oLNFhqr21RKBa6ZmIQ9NR1o7HKIjkNEJNzO6g4oJGBOZqzoKBfEsXhkx2KjRoWrCszYWt6Krj73iD4XERH5vXW0CZlxekxODa0TnBc7Zv/lL3/hmB1AkqJ0uHFKCt4vaUFtR6/oOETDgoV2Ckn+TVD9O6oH0yaodXW1qKqqxD33fAsJCSYYDAbcc8+34PF4sGvXx2fctqysFG+//U/ccssdZ3199ux50Gg0mDt3HkpKjg1877XXXkZ6+hjMn79oRI9DkiSkpaXjm9+8HxUVJ1BXVzvo7WJj4zBnzjw8+eQzsNlseOaZP41ortF07cQkSJK/fRERUbjbVdWOySlRiNarRUe5II7FIz8W3zg5BU6Pj2MkEdEoONbUjZJmG26akgpJCq32bRc7Zr/++j84ZgeYO2emQ6NU4Lm9gx8zUbBhoZ1CUnH/JqjXBtFqdgADH3xOP4OtUCgQFRWFsrKSga+53W788peP4N57v43ExKRBHwMAvF4fFAr/r3l1dSXWr1+HFSuuwn333YWvfe12vPbaKyN5OPB6/cdx+iVxgzEaI3DddTdg27ZNZxx7MEuK0mFhdjz+XdQEh9srOg4RkTAWmxMnWnuCpm0Mx+KRH4vHmYyYPSYWbx5uhMsTGuM+EVGgevNwI4waJdYUht4mqBc7Zn/nO9/lmB1g4gwa3DI1FVvKWlHZ1iM6DtFlY6GdQtI7QboJanp6BrKysvH880+jpaUZTqcDb731Bk6dakBXl3Xgdi+88CxiYmJx3XU3nvUYEyZMxL59u+F0OrF798eYOHEyPB4PHn/8F/jBDx7CU0/9HtdeeyOefPIZvPbay6iurjxnnmPHirBkydyz/tu2bfN5j8Pn86GurhbPPPMUpkyZitTUtAse+5gxY2G32884zmB327RUdDk82FBqER2FiEiYXf0bQ8/LihOcZGg4Fo/OWHzH9FS09biwuYxjJBHRSGnvcWHbiVasLUwMqn3Lhupix+xbbrn1rMfgmC3eV6anwaBR4pndJ0VHIbpsofdOS2Gv2+EOyk1QAUCpVOLXv/4d/vCH3+LrX78DOp0Oq1atwaxZc6BU+o+lrKwE77zzT7zwwquDXvp388234b//+2Fcc81KjBs3Hj//+WN46aW/orBwAgoLJ6Cy8gTmz18IozECkyZNwZEjh5GVNW7QPBMmTDrvZi6n27ZtMz788IP+v0lISEjArFlzcc893xzSJYper3fgNQgVV6RGI9ccgdcPncJ1E5NC7lJNIqKh2FXVjpQoLbLiDaKjDAnH4tEZi2eNicW4BCNePdSAtYWJHCOJiEbAv4ub4PbKuHFKyoVvHIQ4ZofG/Dlar8ZXZqTh6d21OHqqC5NTo0VHIrpkwVWFJBqCd4ub4fT4cMPk4PwwkZKSiv/5nyfO+No993wV48fnwe124/HHH8E3vnEfUlJSB72/0RiBX//6dwN/LysrxY4d2/D8868MnO3W6w39f+rQ3d01LLmXLVuJhx/+70u+/4kTZYiPT0BUVOgMqpIk4fZpqfj5xnJ8UtuJ2ZnBsZqTiGi4ONxe7K+z4poJwXWykWPxyI/FkiThjump+MWmE9hX24k5HCOJiIaVx+vD20ebMHtMLDLjguNk96XgmB0a8+fbp6XhzcONeGpnDZ69ZXJQfW4kOh1bx1BI8fhkvHG4EdPS/SuJg9GOHdtQW3ty4O9tbW2oqCjH1KnTcexYEWpqqvHCC89izZqlWLNmKZ544n9hsbRgzZqlKCo6csZjuVwu/OpXv8BDD/0XdDodjEb/a2KzdQMArNauga+J1NVlxbp172D16i+JjjLslo03Id6owWuHTomOQkQ06g7Vd8Hp8WF+dnAVUTkWj46VeWaYIjR49WDDqD0nEVG4+KiqHRa7CzddEZwL0IbqYsbs+fPncswOUHq1EvfOHYMjp7rxcVWH6DhEl4wr2imk7KhoQ4vNiR8tGfxSrmDw/vvr4HA48PjjvwEA/OpXj2LKlKmYOHEyXC4X3n77/TNuv2PHNrzxxmt4+ukXEBMTe8b3nnvuL5g1ay4mTpwMAIiIiMDYsVnYvn0b5s9fiGPHjuJb37p/dA5sEB6PB4cPH8KTT/4OyckpuPPOu4VlGSkalQI3Tk7GM3tqUdPei7FB0jqBiGg4fFjZBoNaialpMaKjXBSOxaNDrVTg5ikp+NOukzhhsWN8kC6SICIKRG8ebkRKlBbzxgbXye6LdTFjdlSUHu+++x7H7AB1zYQkvHboFP60qwbzsuKgUnBVOwUfFtoppPzjUAPSY3RYEGQr5073k588jN/85jHcdNM1UCgUmDdvAb773R8CADQaDczmxDNuHxkZBYVCcdbXi4qOYP/+fXjuuZfO+PpDD/0Mjz32czz33F9wxx13Iicnd2QP6AtO70UnSRLS0tKxfPlVuOWW26HRaEY1y2i5fnIyXvykDm8cPoWfLMsRHYeIaFR4fTI+qmzHvKw4aFXBdRElx+LRc/3kZLzwSR1eO9SAR67KG9XnJiIKVRWtdnza0IXvLBwLZYgXKy9mzI6JMXDMDmAqpQL3z8/EQ++V4v3jzbhmYrLoSEQXTZJl+ZLu2NpqO+cdY2IMsFp7LzlUsAm34zUc+D10OjU6Joo7kzuY4sZu3PWPI/jRkmzcfMXg/dcuVbj9jIHwO+aRPt7HNp/ApjIL1t87CzF69Yg9z1CF288XCL5jNpkih31WdL6xeyQF22sfDkZjLD9Ub8W33izCr9bmY1muacSeJxSF2+/Mb7dX4l9Hm7DunpkwR2pFxzmvcPvZBItA+bmMxNh9MVpbbXKgvBYkdt78y60nsKHEgvfvnYXoAJh7BAr+fgSWwX4esizjrn8cgcXmxFt3zYBOHfybvQYL/n5c2FDG+eBaXkR0Hq8dOoUIrRJrC5NERyE6y61TU+H0+PDvoibRUYiIRsX2E23QqhSYG+KXrNPlu21aKmRZ5n4mRETDoLPXhQ0lFqzKM7PITkFHkiQ8sHAsLHYX3jjcKDoO0UVjoZ1CQnO3AzsqWnHtxGQYNDzjSYFnnMmIGRkxePNII9xen+g4REQjyifL2FHZhjmZsRyX6YJSo/VYmWfGv442oqPXJToOEVFQe/NwI5weH748PU10FKJLMjUtBvOz4vC3/XWw9rpFxyG6KCy0U0j47EznLSG+ozoFty9PT0Or3YWNpRbRUYiIRlRxYzda7S4sGZ8gOgoFibtmZ8Dt9eGVAw2ioxARBa0+txf/PNKIRdnxyIw3iI5DdMkeWDgWfS4vnt1bKzoK0UVhoZ2CXq/Li38XN2FxjglJUTrRcYjOaU5mLMabjHh5fz18l7g/BhFRMNhe0QaVQsKCrHjRUShIZMYZ/Kvaj3BVOxHRpfp3cTO6HB58dWa66ChElyUr3ojrJiXj7aONqG7vER2HaMhYaKegt+5YM+xOL26fNrwboBINN0mScOfMdNR29uGjynbRcYiIRoQsy9hR0YZZY2IRoVWJjkNB5K7ZGXB5ffg7V7UTEV00j9eH1w424IrUKExKiRIdh+iy3Tt3DPQaJf7wUbXoKERDxkI7BTW314e/H2zA5JQoTOSHCQoCS8abkBajw9/210PmqnYiCkFlFjuaup1YksO2MXRxPlvV/k+uaiciumhbylvRbHPiKzO4mp1CQ6xBg7tmZWBPTSf2nuwQHYdoSFhop6C2scSCFpsTX5+dIToK0ZCoFBK+Mj0NJc02HKy3io5DRDTstp9og1ICFo5j2xi6eFzVTkR08WRZxisHGpAVb8C8rDjRcYiGzS1XpCItRofff1gNj48L1SjwsdBOQcvrk/HSgXrkmiMwNzNWdByiIVtTmIR4owYv7a8XHYWIaFjJsoztFW2Ylh6DGL1adBwKQplxBqzoX9XeyVXtRERDsudkJyrbevDVGelQSJLoOETDRqNS4IGFWahu78W7xU2i4xBdEAvtFLQ+ONGKus4+fH1WOiR+mKAgolUpcPvUVHxSa0Vpi010HCKiYVPV1ou6zj4sGc+2MXTp7p7lX9X+Cle1ExENycv762GO0GBFnkl0FKJht3hcPKamReOZ3bWwOz2i4xCdFwvtFJS8PhnP761DZpwei9kDloLQ9ZOTEaFV4mWuaieiELK9ohUSgEXjODbTpcuM9/dqf/NIIyw2p+g4REQB7eipLnza0IU7pqdBrWSJh0KPJEn43pVZsPa58cK+OtFxiM6L78IUlDaXWVDT0Ytvzs3kpXEUlCK0Ktw4OQUfnGjDyY5e0XGIiC6bLMvYdqINU1KjkGDUiI5DQe5b8zLhk2U8vfuk6ChERAHt2T21iDOocd2kZNFRiEZMXmIk1hQm4vXDp9Bg7RMdh+icWGinoOP2+vDMnlrkmiN4aToFtdumpUKrUvCsPBGFhIrWHtS092JFnll0FAoBKdE63DwlFeuPt6Ci1S46DhFRQPq0wYr9dVbcOTMderVSdByiEfXt+ZlQKSQ8+XGN6ChE58RCOwWdd4ub0djlwH3zuZqdglucQYObr0jxX6HRzlXtRBTcNpVaoFRIWDae/WFpeNw1Ox2ROhX++BEn1EREXyTLMp7eXYsEowbXczU7hQFThBZfnZGO7RVt+LTBKjoO0aBYaKeg4nB78dd9dZiSGoW5mbGi4xBdtq9MT4dOpcTze2tFRyEiumQ+WcbmMgvmZMYixqAWHYdCRJROjbtmZWBfbSf2newQHYeIKKAcqLPicEMXvj4rHTquZqcw8eXpaUiM1OK326vg8cmi4xCdhYV2Cir/PNKIth4Xvj1/LCSuZqcQEGNQ45apKdha3orKth7RcYiILsnhhi5Y7C6sYtsYGmY3TUlBSrQOf/y4Bl5OqImIAHy+mt0cocG1E7mancKHTq3E967MQkVrD94+2iQ6DtFZWGinoGF3evDS/nrMyYzFFWnRouMQDZs7pqXBoFHiuT1c1U5EwWlTqQV6tQILx8WLjkIhRqNS4P75maho7cGGkhbRcYiIAsLek50oburG3bMzoFGxrEPhZUlOAmZkxODp3SfR2esSHYfoDHxHpqDxj0On0OXw4L75maKjEA2raL0at01NxfaKNpRbuOEbEQUXp8eHD060YdG4BG7ERiNiea4JhUmReHr3STjcXtFxiIiE8q9mP4mUKC2+NCFJdByiUSdJEn60ZBx63V48tZP7uFBgYaGdgkJbjwuvHmrAkpwE5CdGio5DNOxun5aGCC1XtRNR8NlZ1Q6b04O1BYmio1CIkiQJDy7KgsXuwouf1ImOQ0Qk1MdVHShtsePuOWOgVrKkQ+FpbLwBt09NxbpjLTjW1C06DtEAvitTUHjq42q4vD78x4KxoqMQjYhInQp3TEvDR1XtKG2xiY5DRDRk64+3wByhwfSMGNFRKIRNSYvGVflmvHKwAbUdvaLjEBEJ4fH68NTOamTE6rGaJ7gpzN09JwOmCA1+80El93GhgMFCOwW8o6e68H6JBXdMS0N6rF50HKIRc+vUVETrVPgTL38joiDRZndi78kOrClMhFLBTcppZH1nURY0SgV+u70KsswJNRGFn3eKm3Gyow/fWZgFFcddCnNGjQrfXZiF0hY73i3mxqgUGFhop4Dm9cn47fYqmCM0+PqsDNFxiEZUhFaFu2Zn4JNaK/ae7BAdh4jogjaWWuCTgTVcVUejIMGowbfmZWJfbSd2VLSJjkNENKpsDg+e3VOL6enRWJgdJzoOUUBYkWfCtPRo/GnXSbT3cGNUEo+Fdgpo7x5rRpnFju8uyoJBww3WKPTdNCUFaTE6/OGjal7+RkQBTZZlvHe8BZNSojAmziA6DoWJG6ekIMdkxP/tqEIfN0YlojDywid16Opz48ErsyFJXM1OBPj3cfnJ0hz0ub343Y4q0XGIWGinwNXV58afd9Zgalo0lueaRMchGhVqpQL/sWAsqtp6sf54s+g4RETndKzJhpr2Xqwt5Gp2Gj0qhYSHlo6Dxe7C83u5MSoRhYcGax/eOHwKX5qQiFxzhOg4RAElM96Ar8/KwJbyVuyu5pXhJBYL7RSwnt59EjanBz9cwjP2FF6W5CRgYnIU/rK7Fr0urtYjosD0TlETDGolVuTxZDiNrsmp0VhbmIhXDzWgpp0boxJR6HtqZw1UCgnfmpcpOgpRQLpzRjrGxhnw620VnEOTUCy0U0Aqb7Hj7aIm3Dg5BTkmnrGn8CJJEh68Mgt83rY2AAAgAElEQVTtPS78/WC96DhERGexOz3YUt6KlfkmGDUq0XEoDD2wcCwMaiV+ufUEfNwYlYhC2JGGLnxwog1fnZEOU4RWdByigKRRKfCfK3LQbHPi6d0nRcehMMZCOwUcj9eHRzeXI9agwTfnjREdh0iISSlRWDY+Aa8caECr3Sk6DhHRGTaWWuD0+HDdpGTRUShMxRk0+N6VWThyqhv/OtIoOg4R0Yjw+mT87sMqmCM0+PL0NNFxiALa5NRo3DA5GW8cPoXjzTbRcShMsdBOAeflAw040dqDnywdhyidWnQcImHuXzAWHp/MM/JEFFBkWcY7RU3IM0cgPzFSdBwKY2sLEzE7MxZP/f/27jw8qur+4/j7zkwy2ReSkAUIAQKXfRMVlSIiigvigkurttX+2qqt1mrF2tqqrVqXunRTq7a2rq11Q62KCC4VFwTZt8ueAIGQkH3PZO7vjwkIyJKQ5c7yeT3PPENu7ky+Zw5zzz3fc+65H2+mqLLB6XBERDrda8t3sKa4hp9M7E9MlNvpcESC3rXf6EdafDR3z1mHr8XvdDgSgZRol6CysbSWv31ewGlmBpMGpjsdjoijeqfEcvGYHN5cWczKHVVOhyMiAsCqndWsL6nl/JFZTociEc4wDG49bSAGBnfPWYetJWREJIzsrm3ikfmbOTY3RfdDEWmjBK+Hmyfns76klqcW6Kbp0v2UaJeg0eK3ufPddcRHe5g5eYDT4YgEhR+c0Jf0hGjueW89Pr8SCCLivBeXFBEf7WbqkJ5OhyJCVlIM103sxxeFFby5stjpcEREOs0fP9pEo8/PzafmYxiG0+GIhIxJA9M5c0hPnvq8UEvISLdTol2Cxr8WB9bRmjl5AKlx0U6HIxIUErwefnbKANaV1PKfJdudDkdEIlxpbRNzrRKmDcvUTVAlaFwwKpuxvZN5+KON7KrWfU1EJPQtKqzgnTW7+PaxfcjrEed0OCIhZ+bkfNLio7n97bU0NLc4HY5EECXaJSgUltfz10+2cPKANE4zdVmcyL4mD0znxH6pPP5JAcVKIIiIg15bvgOf3+ai0TlOhyKyl8sw+NXpg2husbln7notISMiIa25xc9989bTKzmGK4/r43Q4IiEpMcbD7WeYFJTX85ePNzsdjkQQJdrFcb4WP3e8s5Zot4ufT9FlcSIHMgyDmZPzabFtHvpgo9PhiEiEam7x8+qyHZyQl0pfza6TINMnNZZrv9GP+ZvKeG35DqfDERE5as8t2saWsnpmnpqvG6CKdMBxfVO5ZEwOLy4p4ouCcqfDkQihRLs47onPClixo5pfnjaQjASv0+GIBKXeKbH83/hc3l9fyiebypwOR0Qi0PvrSimtbeKSsb2cDkXkoC4ek8P4vqk89OEmtpTVOR2OiEi7bauo5++fFzJ5YDon9evhdDgiIe/ab/Sjb2osv5ltUd3gczociQBKtIujFhaW888FWzl3RBZTtGSMyGFdPq43/XrEcf+89VpnTkS6lW3bPLtoG31TYzkhL9XpcEQOymUY3HbGIGI8Lm57ey3NLX6nQxIRaTO/bfPbd9cR5Ta48ZQBTocjEhZiotz85qzB7K5t4nfvrdPyctLllGgXx1TUNXPb2xZ9e8TyM51IiBxRVOvySkVVjTw6f4vT4YhIBFlYWIG1q4bLx/XGpSXeJIhlJHi59fRBrCmu4YlPC5wOR0SkzV5eWsSSbZXcMGkAmYm60lukswzLSuSaCf2Yu66Ul5YWOR2OhDkl2sURtm3zm3ctKhuaufvsIcRq7TmRNjmmTwoXjc7h34u3s3hbhdPhiEiEeHbhNtLiozlzaKbToYgc0SkD0zl3eBZPf7FVbaWIhIRtFfX8+X+bOSEvlXOGqa0V6WzfPrY3E/r34OEPN7FqR5XT4UgYU6JdHPGfJUXM31TG9RP7M6hngtPhiISUa7/Rj5zkGH47ex31WkJGRLqYtauGzwvKuWRMDl6PTh0lNNx4ygB6p8Rw+9sWVQ3NTocjInJIftvmznfX4XYZ/PK0gRi6ckyk07kMgzvOMMlIiOYX/11DZb3ODaRrqLck3W5FURV//N8mJvTvwcVjcpwORyTkxEW7ue2MQRRVNvDQBxudDkdEwtwzX2wlLsrNjFHZToci0mZx0W7uPGswpbVN/Ga21mQVkeD18tIiFm+r5IZJ/clKinE6HJGwlRwbxT3ThlBS08Qdsy38OjeQLqBEu3Sr0tomfv7manomeLnjDFOj9SJHaWzvFL59bB9mrdjJ++tKnA5HRMLUlt11vGeVcOHoHJJiopwOR6RdhmUncf3J/fnfxt08t2ib0+GIiHzNniVjxuelMn14ltPhiIS9YdlJ3DCpP/M3lfH0F1udDkfCkBLt0m18LX5++eZqqhp83D99KMmx6rCLdMQ1J/VlaFYid7+3np1VDU6HIyJh6B9fFOL1uLhsXC+nQxE5KpeMyWHKoHQe+XgzS7ZVOh2OiMhevhY/t729FrfL4FYtGSPSbS4ancOUQRk8Nn8LH23Y7XQ4EmaUaJdu84ePNrFkexW/Pn2Q1mUX6QQet4u7zhqMr8Xml/9dQ5PP73RIIhJGtpbXM3vNLmaMyqFHXLTT4YgcFcMwuPX0QfRKieXWt9ZQVtfkdEgiIgA8+VkBK3ZU84spA7VkjEg3MgyD288YxODMBH799hqs4hqnQ5IwokS7dIu3VhXz4pIiLj2mF1OH9HQ6HJGw0Sc1ltvPGMSKHdXc//4GrUErIp3mqQWFRLldXH5sb6dDEemQBK+He88ZQlWDj1+9tZYWv9pKEXHWosIK/rFgK+cMy1T/WMQBMVFuHjpvGIleDzfOWsmu6kanQ5IwoUS7dLlVO6u5Z+56xvVJ5rqJ/Z0ORyTsTB6UwZXH9+H1FTt5dfkOp8MRkTCweXcdb68uZsaobNLjNZtdQt/AjARunpzPwsIK/vrJFqfDEZEIVlHXzG3vrCU3NZabJuc7HY5IxEpP8PLw+cOpaWzhxlmrqG9ucTokCQNKtEuX2lHVwI2vrSQtLorfTRuCx6V150S6wlUn5nFiv1QeeH8jy7ZrDVoR6Zi/frKFGI+bK47r43QoIp1m+ogszh+ZxT+/2MrsNbucDkdEIpBt2/z2XYuK+mbuPnsIcdFup0MSiWiDeiZw97TBrC+p4de66k06gRLt0mVqGn389NWVNLX4+cMFI0jV+q4iXcbtMrjrrCHkJMdw8xurdembiBy1VTureX99KZeP6622W8LOzMn5jO2dzJ3vWqzcUeV0OCISYV5aWsTHm8q4bmJ/zEzdt0wkGEzon8YNkwbw0cbd3Dt3vZZjlQ5Rol26hK/Fzy1vrqagvJ77pw+lX1qc0yGJhL3EGA+/P3coDc1+Zr6xmromXfomIu1j2zaPfLyZlNgoLh3Xy+lwRDpdlNvFfecMJSPBy02vr6ZYA9Mi0k2WF1Xx8IebmNC/B98ck+N0OCKyj2+O7cWVx/dh1oqd/Ol/m5Vsl6OmRLt0Otu2uW/eBhYUVPDL0wZybG6q0yGJRIz+afHcefZg1hZXc/Mbq2jy+Z0OSURCyPxNZSwsrOD/xucSH+1xOhyRLpESF8WD5w2jobmFm2atokFrsopIFyupaeTnb6wmK8nLb840MQwtqSoSbK45KY+LRufw3KJt/GPBVqfDkRClRLt0un9+sZVZK3Zy5fF9mD48y+lwRCLOxAFp/Or0QSwoqOD2d7TOnIi0TXOLnz98tIm+qbFcOCrb6XBEutSA9HjuOnsw1q4abn/HUlspIl2myefn52+sobbJx+/PHUZSTJTTIYnIQRiGwU2TB3DmkJ489skWXly83emQJAQp0S6d6tVlRTw6fwtTB2dw9Ul5TocjErHOGZ7FDZP6M3ddqdaZE5E2eWlpEYXl9dwwaQAet04RJfxN6J/GTyf15/31pdw/b4PaShHpEg98sIEVO6q4/QyT/PR4p8MRkcNwGQa3nWFy8oA0HvhgI6+v2OF0SBJidE2wdJo5a3dx79wNTOjfgzvOMHHpcjgRR116TG8q65t5asFWkmKiuG5iP6dDEpEgVVbXxJOfFTA+L5UT+2nJN4kclx7Tm7K6Zp7+YispcVFco4kiItKJVmyv5LVVO7niuD6cOijD6XBEpA08LoO7pw3hplmruGvOenx+mxmjdF8FaRsl2qVTfLKpjNvesRjdO5l7pg3RTDiRIHH1SXlUNvh4ZuFWXAb8aEKe1oQUka/5w4ebaGj2c+OkATpGSMT58YQ8KuqaeerzQlJjo/jmWN0IWEQ6bntlAx+uK+GEvFRd7S0SYrweFw+cN4xb3lzNvXM30Ojzc+kxvZ0OS0KAEu3SYUu2VfLzN1czMD2eh84bRkyU2+mQRKSVYRjMnJyPbQfun1Dd6OPmU/OdDktEgsiCgnLeWbOL/xufS7+0OKfDEel2hmFwy2kDqWxo5sEPNpIc6+HMIZlOhyUiIWx9SQ1frtlFcmwUd509GLdLg9giocbrcXH/9KHc+tZaHv5wE80tNt89ro/TYUmQ07Rj6ZCl2yq54bWVZCV6+dOM4SR4vxq7aWho4IEH7uWii6YzderJXHXVlSxc+Pkh3+vLLxdyzTXfY+rUk5k+fSp33nkb5eXl3VEMEUcVFW3n2mt/yIQJ49ixo+iw+7744vNceukMpkyZwAUXnM0DD9xDdXX1YV/jdhncMiWf7xzbm1eW7eD2dyyaW/ydWQQRCVGNPj/3zV1PbmosVx6fe9B91J5LsOuMdtTjMrjr7CEc0yeZ38xex1yrpJuiF5Fws7OqgetfXUmUx+D8MTmHvflpe9tYgHnz3mPatClce+0POzt0kZDUnvMA27Z55ZUXOe20b3D33Xcc8b2j3C5+d/ZgTjcz+MvHm3n8ky26p4sclhLtctS+3FrBT15dQVp8NI9cNJLUuOj9fv/QQ/excuVyHnzwz7zxxhzOPHMaP//5jRQWbvnae23YsJ6ZM6/n1FNP56235vHEE/9k06YN3H//3d1UGhFnfPTRB1x11ZVkZWUfcd///ncWTzzxKDfd9Aveffcj/vjHx1i6dAl//OMDR3ytYRhcN7E/P5qQx+w1u7ju30tp9CnZLhLp/vrJFrZWNHDLlHy8noOfFqo9l2DWme2o1+PigXOHMSI7kVvfWsPbq4u7OnwRCTOV9c385JWV1De3cNbQTBK9h06yQ/vaWIA77riVZ555ij59Dj44LhJp2nMe0NTUxPXXX8OHH75Pz55tv3LN43bx27MGM21YJn/7vJB75gbWbRc5GCXa5agUlNVx/asryUqK4fFLRpGZ6N3v91VVVcyZ8w7f+94Pyc3ti9fr5bzzZtC3bx6zZr3ytffbvbuU88+/iAsv/CYej4esrGzOPHMaixcv7K4iiTiiurqSRx55kqlTzzrivmvXrqF//3zGjh2H2+2mT59cTjrpG6xZs6rNf+/K43O5+dR85q3dxY9fWk5ZXVNHwheREFZUUc/zi7YxY1Q2x+Ye/Aaoas8l2HV2O5rg9fCnGSMY2yeFO96xeG35jq4MX0TCSENzCzfOWsW2ynoeOHcYaQdMRDtQe9tYgF69evPkk0+Tna17SYhA+84DGhsbOe648fzxj4+RlJTcrr/jdhncNnUQVxzXh9eW7+Tm11fR0NxytGFLGFOiXdqtsLyeN5YV0Scllr9ePJL0+K+fQFjWGnw+H0OHDttv+5Ahw1i1auXX9j/++BO47rob9ttWVLS9XaOMIqFo2rTzyM3t26Z9J048hc2bN7Jw4ef4fD6Kirbz6acfM3nyae36mxeNzuGPF49i7a4arnh+CetLao4mdBEJYc1+P++uKSY7OYafTOx/yP3Unkuw64p2NDbKzcPnDeOEfqn87r31vLh4e1eELiJhpKG5hZmvr2ZFURW/PXMwx/RJOeJr2tvGAvzgB9cQHX34BL5IJGnPeUBiYiKXX34FLtfRpUINw+DH3+jHzafmM39TGde8tJxyTVyTAyjRLu0yZ+0uZq/ZRVpCNI9dPJIehxilr6gIrMWamJi03/bk5BTKy8uO+HcWLfqCWbNe4fvfv6bjQYuEieOOG8+Pf/xTZs78KaeccgIXX3wu/fsP4Morf9Du9zprRDZPXDIKn9/m//61lI82lHZBxCISrD7ZVE5lXTO3TR1EXPShb2Ku9lzCSXva0ZgoN7+fPoxJ+Wk88MFGHv9kC36tySoiB1Hf3MINs1axoKCcX50+iClmRpte19E2VkSccdHoHO6bPpT1JbV8/9/LKCirczokCSJKtEub2LbNPxcUcutba8lMjOaCMb1JiT38enOHYhiHv+P6nDmzueWWG7n++ps4+eRTjupviISjefPm8MQTj3LffQ8zd+58nn32P2zbto17773zqN5vaFYiT182hrweccx8fTX/WFCoJIJIBJi9Zhdri6s5Nq9Hm2bcHYracwk17W1Hoz0u7pk2hHNa12T95X/XUN+ky8RF5Cu1TT6uf3Uli7dWcMeZJtNHZHXK+x6pjRURZ50yMJ1HLhxBVYOPK15YwiebNTgmAUq0yxH5Wvz87r31PDJ/C1MHZzBtWBYxh7hh2h49eqQBUFVVud/2ysqKvb87mKeeeoKHHrqPO++8l/PPv7DjwYuEkRdffIFTTz2d448/Aa/XS79+/fnOd67knXf+S11d7VG9Z0aClycuGcVpZgaPzt/CDa+t1OVvImGsoKyOe95bT1aSlxP69zji/mrPJZwcTTvqcbv49dRBXH9yf95fV8q3/r6A4urGbo5cRIJRTaOPn7yykuXbK/ntmYM5a2j7lkk72jZWRILDqF7JPHP5GHKSYrjh1ZU888VWbE1ci3hKtMth1Tb5uGHWKmat2Mn3ju/Db88ajNt15NF10xxCdHQ0q1at2G/7ihXLGDVqzEFf8/TTf+eNN17jscf+zgknTOiU+EXCid/vx+/ffyadzxf4uSMNekyUm7vOHszNp+azqLCCy55dzJdbKzoUq4gEn5pGHzPfWE2U22DKoAxcbZgtp/ZcwsnRtqOGYXD5uN48dP4wtuyu5bvPL2FFUVWXxioiwa20ppEfvbScVTuruXvaEKYO6dnu9ziaNlZEgkt2Ugx/+9ZoTh2UwZ8/3syv316rm6RGOCXa5ZA2lNZyxfNLWFhQzq2nDeSaCf3a1CkHSEhI4KyzpvP3vz9OYWEBDQ0NvPDCs+zcuYPzzptBSckuLr10BitXLgdg7do1PP30UzzwwJ/o1+/QN2UTiSSrV6/k0ktnsHPnTgBOPnky77//HosXL8Ln87F9+zb+/e9nGT/+ROLjEzr0twzD4KLROTx16Rhio9z86KXlPPlpAT6/RuRFwoHftrnt7bUUltVxzzlDSPB62vQ6tecSyjq7HZ3QP42XfjAer8fFD15cxlOfF9KidlIk4ljFNXz3+SVsKavj99OHcuqgtq3JfqD2trEi0j4Hngd0ldgoN7+bNpgfTchjztoSrnhhCZt2H90V5xL62tbLkojz31U7uXfuBuKj3fzlwpGMy23/Gq4/+cmNPPron/jRj75PXV0dAwcO4sEH/0xWVjY7dhRRWFhAfX09ALNmvUxzcxM//OF3v/Y+Dz30F0aPHtvhMokEo2996wKKi3fi9/sBuPTSGRiGwdSpZ3HaaWdQWFiAz9fcuu/lADz44L3s3LmDmJgYJk6czNVX/7jT4jF7JvDs5WO5b956nvisgPmby7ht6iAGpMd32t8Qke73yMdb+HhTGTMn53NsbioUt/21as8lmHV3OzowM5FnLx/DvXM38NgnW/h0cxm/OcukV3Js5xdORILOh+tL+fXba0mK8fDkN0dj9uzYZJf2tLFLly7mxhuvBcDn82HbNpMnnwiojZXI1Z7zgNmz3+L+++8GoLm5mVWrVjBv3hwAXnjhFbKyso86DsMwuPL4XAZnJnD72xbfeW4JN0/O55zhmbrnQoQxjna5gZKS6kO+MCUljoqKyLnrbjiVt6G5hd+/v4E3VhZzTJ9k7jp7COnx0fvtE7fwD8TERFE2ovOSe8EunOq4rSKtzCrv171nlXD/vA3UNvn4wQl9+faxffC0YemoYBVqdZyRkdjpH/bh2u6uFGqffbj59+LtPPjBRmaMyubnp+ZjGEZEtuWhRN+Z4LWnbmzbZvbaXdw3dwO2DT+bPIBzhqkz7ZRg+c50RdvdHiUl1XawfBbhxrZtnl24jb98vJmhWYk8cO5Q0hO8h32N2trgo+9HcAnX+iitaeTX71gsKqxg6uAMbpkysM1XkzopXOujM7WlndfSMbLXqh1VfOf5Jby5spjvjc/lkQtHfi3JLiKR4zQzg/9ccQwnD0jn0flbuPL5JVjFNU6HJSLtMHvNLh78YCOT8tOYOTlfSUCRTmIYBmcOyeRf3z2GwZkJ3PnuOn7w72WsKa52OjQR6WTldU3cOGsVf/54M6cOyuCvF488YpJdRCJXeoKXv8wYwTUn5THXKuGyZ75kwZZyp8OSbqJEu1Df3MLDH27ke/9aSm2jjz/NGM41J+W16aanIhLeUuOiueecIdx3zhB21TTynecXc+/c9VTUNzsdmogcwXtWCXe8s5axvQNXqKldF+l82UkxPHrRSG49bSCF5fV897kl3PXuOnbXNjkdmoh0gs+3lPGtZxbzRUE5PztlAL+bNpiYKLfTYYlIkHO7DL43PpfHLxmFx+3i2ldWcOe7FtUNPqdDky4W/NcuSJdaWFjO3XPWs72ygRmjsrn2G/1C4pIWEelekwdlcGxuKo9/uoWXlxbxnlXC1Sflcf7I7JBeTkYkXM1es4vb31nLqJwkHjp/GF6P5laIdBW3y+C8kdlMMTP422eF/HvJduauK+FbY3txyZhepMRFOR2iiLRTk8/PI/M388KX2+mXFsefZwxnYEbH1mMXkcgzqlcyL3znGJ78rIDnFm7l083l3HxqPpPy03SlaZhSRjVCFZTV8cj8LXywvpTc1Fgev2QkY3u3/4anIhI5EmM83DQ5n/NGZvPg+xu4f94GXl5axNUn5elEQSSIvNi6JvvYPsk8fP5wYjXzTqRbJHg9/HRSf84bmcUjH2/mb58X8tyibZw3MpvLjulFVlKM0yGKSBt8ubWCe95bT0F5PReNzuEnE/tpFruIHDWvx8W13+jHlEHp3PnuOm5+YzXH903hp5MGkJ8e73R40smUaI8wu2ubePKzAmYt34HX4+aHJ/bl2+N668RBRNosPz2eRy8ayfvrS3l0/hZufmM1QzITuPqkPE7IS1XCXcQhftvmTx9t5vkvt3HygDTuOluXt4s4Ia9HHL8/dxibdtfyzBdbeWlpES8tLWLKoHTOGZ7FsbkpuNRWigSdHVUNPDp/C7PX7CInOYY/zRjOCXk9nA5LRMLE4MxEnr5sDC8t28HfPivgsme+5LwR2Vx1Ul96xOn+iOFCifYIUVzdyH+WbOelpUU0tdhcMCqH75+Qqy+ziBwVwzA4dVAGJ+en8/bqYv72WQHXv7qSkTlJfPe4Pkzo30NJBJFuVFHfzG1vr+WzLeVcPDqHG08ZoDXZRRzWPy2eO84czFUn5fH8om28vXoX764tISvRy9nDMjl7aCZ9UmOdDlMk4lU1NPOPBVt5ccl2XIbBlcf34XvH52qwWkQ6ncft4ltje3HWkJ48+VkBLy/bwbtrd3HZMb25eEwOybFabi7UKdEe5tYWV/P8l9t5zyrBtm2mDMrgqpPyyNVJvYh0Ao/LYPrwLM4c0pPXV+zkHwsK+dmsVeSmxnLpMb04e2imOikiXWxFURW3vrWG0tombpmSzwUjs3VliUgQyU6K4abJ+Vw3sT8fbSjlzVXFPPV5IX//vJCBGfFMyk/j5Px0BmXE67sr0o1qm3y8snQHTy/cSnWDj7OHZXLViX21zJOIdLnk2ChumpzPhaNzeOTjzTzxWQHPf7mNGaNyuGxcL02KDWFKtIehuqYW5q0r4Y2VO1m6vYr4aDeXjMnhkjG9yEnWSYOIdL4ot4sLR+dw3ogs5q0r5fkvt3Hv3A08Nn8L04dnMX14FnlpcU6HKRJWmnx+Hv+0gOcWbaVngpcnLxnFsOwkp8MSkUPwelycPrgnpw/uSXF1I3OtEj7aUMrfPy/kyc8KyU7yMj4vleNyUxmXm0KKZrWJdInS2iZeXLydl5cVUdPYwvi8VH4ysZ9udioi3W7PcnMbSmr5x4JCnlsUuLrmnGGZXDAqW8elEKREe5jw2zZLt1fy35XFzF1XQn2zn9zUWK4/uT/njcgiwauqFpGu53G7mDqkJ6cPzmDJ9kr+9eV2XvhyG88u2saI7CSmD89kipmhY5JIB32yqYwHP9jA1ooGzh2exU8n9df3SiSEZCZ6uWxcby4b15uyuibmbyzjo427mbO2hNeW78QAzJ4JjO2TzIjsJEbkJJGZ6HU6bJGQZhXX8PKyIt5eXUxzi83kQel8e1xvDVKLiOPyM+K5e9oQfljWl6e/2MobK3fy8rIdDM9O5PyR2ZxmZhCrK8VDgnpkIay5xc/Cwgo+3FDKRxt2U1bXTFyUm9PNnpwzPJOROUm6/FREHGEYBmN7pzC2dwqltU28s7qYN1cWc/d76/n9+xsYn9eDyQPTmTggjcQYNUUibbWmuJrH5m/hsy3l5KbG8ucZwxmvG7WJhLQecdFMH5HF9BFZ+Pw2q3dWs7CwnC8KKnh5aREvfLkdCCTnA0n3REbmJJGfHq/l2USOoKK+mXfX7OKNlTtZV1JLtNtg2rAsLhvXW8upikjQ6dsjjtvOMLn+5P68vWYXry3bwZ3vruPB9zcyoX8PJg9K58R+PZR0D2LKboSY7ZX1LCioYMGWchYUlFPb1EJclJsT+6Vycn46J+en6QsnIkElPT6abx/bh8vH9WbljmrmWCW8v66E/23cjcdlMC43hRP79WB831TyesRqgFDkALZts3hbJc8v2sbHm8pIjvHwk4n9+ObYXkS5XU6HJyKdyOMyGJmTxMicJP5vfF+aW3OV+swAABZdSURBVPys21XD8h3VrCiqYkVRFXPXlQDgNqB/ejxmzwQG90xgcGYCg3omqC8gEa+yvpmPN+3mw/W7+XRLGc0tNkMyE7j51HymDs4gKUbLMolIcEuOjeJbY3vxzTE5LNtexVuri/low27mWCV4PS5OyEvlxH49GNcnhd4pMepDBxEl2oOYbdvsqGpkWVEly7ZX8UVBOVsrGoDAjJYpZgaT8tM4NjcVryf0OtqPPvpnfv/7e6itrXE6FJGgFx+fwMyZv+BHP7rO6VCOmmEYjMgJXP5+w6T+rN5ZzfvrSvlo424e+mAjAD0Tohmfl8qY3smMzEmmj04aJIJV1DUze21gFt76klpSYqO46sS+fHNsr6BaJkbtuYSCUG1Ho9wuhmUnMSw7iW+N7QVASU0jK3ZUYxVXs3ZXDZ9uLuO/q4oBMAis92pmJjAoI578jHgGpMWTkRCt9lTClm3bbC6rY2FBBR9t3M3irRW02IHzyhmjcjhnWCaDeobmOsdqY0U6LlTPASDQhx7dO5nRvZP5+RSbZdsreX9dKR9uKOXDDbuBQH5wXG4Ko3OSGJKZSP/0OE3GcZBh2/ZRvbCkpPqQL0xJiaOiou6ogwo1nVXeivpmrF01WMU1rCmuYXlRJbtqmgCIj3Yzpncyx/dNZXzfVPo6OOszbuEfiImJomzEjzv0PiNGDKK4eGcnRSUS/jIzs1ixYl2nvFewHaeLKhtYUBC4UmdhYQVVDT4AUmKjGJGdyLDsRAZmJDAwI56sRO9RHf+CrcxHkpGR2OkH+cO13V0p1D57J+2sauDTLeV8sK6UhVsraPHbDO6ZwIxR2ZwxpGenLRPRWW05qD2X0NEZ7WgwHs9s26akpom1e/sRgQR8SWs/AiDR62FAehwD0uPpnxa/99/hcsPVYKmXrmi726OkpNoOls+iK/la/GzcXceqndV8WVjBoq0VlNU1A5CbGsspA9M5ZWA6QzMTHB1g6oy2Vm2sSOfozL50MLBtm4Lyeha1HgMXFVZQ2dqHjnIb5KfHMygjgb49YslNjaNvaiy9UmIOm4CPhPajo9rSzgfPdKgI0eK3Ka5upLC8jsLyBgrL69haUc/m3XXsqGrcu192kpfRvZIZ1SuZ0b2SGJAej9sVXrNQrrnmOo3Oi7RRfHwC11wTeiPwbZWTHMP5I7M5f2Q2fttm8+46lrdeIr+sqIqPN5Xt3TfB62ZAWjy5qbH0SY0NPKfEkpXkJdHr0Yw9CRk+v83m3bWs3FHNqh3VLN1eSUF5PQC9U2K47JhenDkkk/yMeIcjPTy15xIKwrkdNQyDnoleeiZ6mTggbe/2irpmNu6uZWNpHZt217KxtJY5a0uobtyxd5+0+GgGpMWR1yOO3qmx9E6OoU9KLDnJMUSH4BWzEl78dmvfuayegvJ6Nu2uZU1xDRtKamhqCcwdSI+P5ri+qYzrk8y43BR6JYfXuutqY0U6LhzPAQzDIK9HoP2+cHQOfttmW0UDa4urWVtcw9pdNXy0cTcVK5v3vsZlBI6Zma3nDD0T9jxHk54QTZ/GFgxfCykxHjyaEX/UNKO9E8QnxrC1uIqqBh9VDT6qG3xUNjRT2eCjtKaJkppGSmqbKKlupKiqgeaWrz662CgXfVJiA5d49kzAzEzA7JkQ1LNLOnMWXKiItP/TEHllVnmDW22Tj42ldawvqWF9SS2bSmsprGhgd23Tfvt5PS4yEqLJiI8mI8FLekI0aXHRJMZ4yOoRj8vXQkKMh0SvhwSvm9goN9FuV1AOZGpGe/ioafS1DrLXU1BWF3gur2fdrhoafH4AkmI8jMhO4ri+KRzXN5UBaXFdOmgUiW15KIn070wwC/W6sW2b0tomNpYGEvAbS2vZUFpLYXk9tU0te/czCFyK3islhp4JXjISvGQmBtrWngmB5x5xUUHTEQ+WetGM9rZp9PmprG+map9+c0V9MyXVjeyqaWRXdRPFNY0UVTbQ2NpOQmCyReB+BIkMyUxgSGZiUK9NrLY2+ITC9yOSqD66XmV9M1sr6vf2P4qrG/cea4urG6lv9h/0dfHRbpJjo0iJjSI5xrPfv5NiokiMcZMQ3dqvjvGQEO0mMcZDXJQ7aI/JnSFiZrT7/Da+Fj/NLTbN/tbnln2eW3/ftM+2Rt/BHi00+uzW5wN+17LvPl9/7aF4XEYg6ZPgZUB6PBMHpO03CzM9XusliogcSXy0Z+/N4fZV2+RjW3kDhRX1lLR2zEprG/deQr9rY+PeRObhuF0GXrcLr8dFtKf12e0iym3gdhkYGLhdgZkDbmPPs4FhwNlDM5k6pGdXFV2CgM//1blBQ/NX5wMNzX6qG317EwV7Btwr65spr2/e+3+yrrllv/dLj48mNzWWc0dkMSw7keFZSUGdKBCR8GEYBhmtifPxeT32brdtm8p6H1sr6tlWWc+28ga2VtSzvbKBpdsrKalpwuf/+lhtfLSbpNZOd1KMh+QYD4kxHmKj3MREuYn1uIiNcrf+HGhf3S4DjyvQvgb+vc+2fY6DNja2DfZXGwLbgD1zxexA8MRXN1FV3YBt2/jtr17rb/0ZG/y0/s62SYj2MKpXko67R9Dit3l7dTGltU2Bz9IPLbaN37Zp8e/5fG1a/IHP1uf3720rG/ZpNxta28wGn5/aRt8hz80MAldZ9Ez00jc1lhPzepDbI5a+qYFHmvrOIiLtkhwbRXJsFMOzk772O9u2qW1qYVdNI6U1TfhcLrbvrqWyvpmK+q8GQSvqmykoq6OywbffoPzBuAxI8HoCj9bke6I3cF4Q7XHhdQf62/v92+3C6zH2Ht/3HOX3PdwbrVv99r7te6Dt2dO2+1vL5LdhTO9khmUldsZH2G5Bk2gvr2viZ7NWUVHf/NWH1Prh2QQ+OL/f3vtzi9/G5w8kzQ9yzndUXEZgNqTX4ybabRAT5W79OVDxyTEevJ5ovB4XMR733mRMWlIM0ditozqtJ5heD8kxUSTHht8yBs29TsCbEON0GCIixEd7AlcCZR78Ble2bVPf7Kem0YcR7WF7SQ3VjT6qG33UNPoCHUCfnyZfYDC2sfXfja0/N7X48e/pSBJoh1r8Ni22vbedqm3ydW+hg8y8dSW8s3oXRusAhMsInBwZhtH6DN5oDz5fy37bXUZgx8D+gUGLPdv3vNe+DncF3oG/Cpw32PhabHx2YLC9pTU54Gvxtz7bh3xuagn8v9iTTD9YculgXEZgHeTk2CiSY6IYkB7P+Lwe9EyIpmeCd+8gezDcyFRtuYjsyzAMUuKiSImLYkTO1zvjfttunXHcxK6aRkpqGimvb6ay3kdV64zkqgYf60tqqW70Ud/ccshZcsHile8dS25qeC0z0tlqGn08/OEmqhv3P9dxG+ByGbhaJx64XOA2AgMnMR4X3ig3MR4XMVGBJEuGJ5qY1m1x0W5SYvcMzAT6y0kxgVmS6fHRQXOVRGdQWysiwcwwjL1J8f5p8W26wqDJ59/blw48Wvb+XH2QbTWNPrZVNOwdfG3aZ8JyV15qffbQngw7c3AX/oVDc76n1yrK7WJQzwRqGn249nTUD3gObP9qW7TbwON2EeUyiHa78LgNovb87HHhcbX+7N7n2RV49nq+SqLveXhcRkTcYK+jmnOOx06Jgwgqs4iEJsMwiIt2Bzp1KXFkeDvnRpLylfK6ZoqqGvbOLAjMNPxqFqJt22AYtPjtvdv9rZlx/z77HLjdb9sc2CQb7L9h/1kO+3MZBh53IAHw9WfX3p+jPC5iW2dS7plhGd16dcOeAfcYz8F+DiQMEloH2JNjooj3ugMDCCFAbbmItIfLMOgRF02PuOhDDm4fyLZtGn3+vUn3+uaWwACoPzCA6dtn8NrX8tW/YZ9j+p5B269+hH0GZ/dsS0yIoa6uERdfDeLuHbjl633LRK9HSfY2SI6NYs4142mx90+uS9uorRWRcBPtcZHmiSYtPrpD72O3Xg3VuM9kt/2vWLP32fer1x2YLz7Yz4YBsVHO9fuDJtGe4PVwy5SBTochIiIi7XDh6BwuHJ1z2H0ibUBaREQCnd6Y1iVkUrv4b6md6Toetyt4kgYiIhIWjNZJTx63iw7m7INO+FyXJSIiIiIiIiIiIiLiACXaRUREREREREREREQ6QIl2EREREREREREREZEOUKJdRERERERERERERKQDlGgXEREREREREREREekAJdpFRERERERERERERDpAiXYRERERERERERERkQ5Qol1EREREREREREREpAOUaBcRERERERERERER6QAl2kVEREREREREREREOkCJdhERERERERERERGRjrBtu9Mfd9xxxx1d8b7B+oi08kZimSOtvJFYZpU3/B+RWOZgeeizD86H6iV4H6qb4H2oboLzoXrRZxGsD9VHcD1UH8H1UH0E10P10TmPrprRfnsXvW+wirTyQuSVOdLKC5FXZpU3/EVimYOFPvvgpHoJXqqb4KW6CU6ql6/oswguqo/govoILqqP4KL66ARaOkZEREREREREREREpAO6KtH+my5632AVaeWFyCtzpJUXIq/MKm/4i8QyBwt99sFJ9RK8VDfBS3UTnFQvX9FnEVxUH8FF9RFcVB/BRfXRCQzbtp2OQUREREREREREREQkZGnpGBERERERERERERGRDlCiXURERERERERERESkA5RoFxERERERERERERHpAE9nvIlpmrnA88AEy7KMI+x7MnAfMBQoAv5gWdZfOyOO7mCaZgrwKHAKgYGKucCPLMuqPMi+k4APgMYDfnWlZVn/6uJQO8Q0zT4EynkCUA+8DtxoWVbTQfa9EPgVMADYBPzGsqxXuzHcDmtreU3TvAL4B1+v08mWZX3aDaF2GtM0RwD/AhIsy8o7zH4hX7/QtvKGWf32BR4CJrZu+gD4qWVZRQfZN6SPy3u0tcyhfGwOde05X5Cu0542XrpXW9tm6V7taVOle5mmOZ7AOcwYoI5A3dxgWdZORwPrJpHSNw1mkdZvDnaR2K8PZpGWcwh2kZYTcUqHE+2tCZp/AR+2Yd8s4E3g58A/CZwQvWOa5hbLsmZ3NJZu8iSQBIwGbOAZ4HHgm4d6gWVZMd0TWqd6FVgJ5APJwGvAb4Fb9t3JNM2RwHMEyj8bOB140TTNYy3LWtmtEXdMm8rbqiDUO7+maV4MPAx8QeB7eKj9wqJ+21reViFfv63eBJYTOFmJIXCcfgKYtu9OYXJc3qNNZd4jRI/NIas95wvS5drT5kk3aWdbJd2rXe2LdA/TNFOBOcCvgSlAKvAf4K/AeQ6G1p0ipW8azCKt3xzsIqpfH8wiLecQ7CI0J+KIzlg6Jh04A3ihDfteDmyxLOsxy7LqW0dDngWu7oQ4upxpmpnABcAvLMsqtixrF4FRtwtN00x3NrrOY5rmOGAsMNOyrArLsgqA3wE/NE3zwP8zPwTmWJY1y7KsBsuy3gDmAd/v3qiPXjvLGy4SCIzyzzvCfiFfv63aWt6w0Dq7aRFws2VZVa3Hqif5aibevkL6uLxHO8sszmjP+YJ0kQht80JFRLVVoULtS1DzAtdblvVHy7KaW+vmVWCUw3F1i0jpmwazSOs3Bzud4wSdSMs5BDudZ3aTDs9otyzrFdh7OfiRHAMsPmDbYuD8jsbRTfbMFFi2z7ZlgEFgROi9g73INM3ngNNaX/tn4B7LsvxdG2qHHANstSyrdJ9tiwnMEhkArD9g33cPeP1i4NQujbBztae8AImmab4OTABqgLssy3qyWyLtJJZlPQVgmuaRdg2H+m1PeSE86rcC+N4Bm/sA2w+ye6gfl4F2lxkIyWNzSGvn+YJ0nfa2edJN2tlWSTc5mvZFukfr8jD/ADBN0wBM4Arg3w6G1Z0ipW8azCKt3xzsIq5fH8wiLecQ7CItJ+Kk7h7VSwPKD9hWRmCWWyhIA6oty2rZs8GyrGagmoOXoQr4lMDlpb2BbwEzgau6PtQOOVQ9wdfLGep1Cu0rbwmBE9j7gBzgRuBR0zTP7NIInRMO9dseYVm/ZqA1/RVw50F+HZZ1fIQyh+qxWaQztKfNE5EDHKF9EQe0LjvQBKwicEn8r5yNqNtESt80mEVavznYqV8fmvTdCC76bnTQEWe0m6Y5jcC6hAfzG8uy7mjn3wzqm58dobzraUf8lmUtBk7aZ9MHpmk+DnwHeOyog+we7amnoK7TNmpTGSzLegt4a59Nr5im+SqBOn2nKwILAuFQv20SjvXbegnlW8CDlmUdasmOsKrjI5U5xI/NQasLzhek64TVd16ku7SxTZVuZlnWctM0ownMaP8rgUTyxc5G1TnUNw0JkdZvDnbq14cmfTeChL4bHXfERLtlWf+l8/7TlxAYrdpXGrCrk96/ww5XXtM0TwNmm6YZ1TpbANM0o4BE2l6GLRzm5jRB4lD1BF8vZ9DXaRu0p7wHswUY35kBBZFwqN+O2kKI1q9pmlMJ3BTsFsuyDtWBCqs6bmOZD2YLwX9sDmqdfL4gXaejbZ5IROpA+yLdwLIsG1hrmuYvgE9N08xqXVompKlvGvQird8c7NSvD036bgS/Lei70WbdvXTMImDcAduOAz7v5jiO1hICa9mN3WfbOKCFr69xjGmaF5mmec0Bm4cAm7osws6xCOhlmmbWPtuOI3CgOzD2UK9TaEd5TdO8uvVuzfsKhTo9WuFQv20WTvVrmubxwIvAd46QEAibOm5rmUP42CzSGdrTxosI7WpTpRu1tudfHrB5z1rjzd0djwMipW8azCKt3xzs1K8PTfpuBBF9NzquwzdDPRLTNOcBT1mW9TzwHHC7aZo/Bv5OYETkMuCsro6jM1iWVWqa5n+Au0zTvIzAQMXvgGctyyqHr5W3CXjQNM2NwAfAJAI3U7rCgfDbzLKsJaZpfg7cb5rmdQRGE38F/MWyLNs0zbXA1ZZlfQg8Diw2TfN84G1gOvAN4MfORN9+7SyvF/iLaZqbCKxbdSGB/78nOBN95wu3+j2ScKxf0zQ9wFPA7ZZlvX6Q34fNcXmPdpY5JI/NIp3hSG2es9GJBJ8jtS/iqE+AfNM0fw08QGAm9x3AJ5Zl7XYysO4QKX3TYBZp/eZgp3596NB3I7jou9G5OpxoN01zDjCR1tnxpmk2tP7qdMuy/kfg7s6pAJZllZimeTbwJ+BBYDtwTet+oeJq4BECa+LZwKvAdfv8ft/yvm6a5k8J3M09F9gJXG9Z1svdGvHRuZDAAa8IqAP+SeDEDQLrHyYAWJa12jTNS4B7gX8T+FwusCxrQ3cH3EFtKi+B/7uJwEtANrAZOM+yrIXdGWxHmaZpAX0BN+DZ53trEob129byEib1S6ARHArcZ5rmfQf8ziT8jsvQvjKH8rE5ZLXhfEG6z+HaPHHI4doqy7IKnIss4h22fVHdOMeyrCLTNE8HHgJ+SeBmn+8D33c0sO4VKX3TYBZp/eZgF1H9+mAWaTmHYBeBORHHGLatyUsiIiIiIiIiIiIiIkeru9doFxEREREREREREREJK0q0i4iIiIiIiIiIiIh0gBLtIiIiIiIiIiIiIiIdoES7iIiIiIiIiIiIiEgHKNEuIiIiIiIiIiIiItIBSrSLiIiIiIiIiIiIiHSAEu0iIiIiIiIiIiIiIh2gRLuIiIiIiIiIiIiISAco0S4iIiIiIiIiIiIi0gH/D0KzGNi0K5bmAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -319,7 +320,7 @@ } ], "source": [ - "pm.plot_posterior(trace, varnames=['difference of means','difference of stds', 'effect size'],\n", + "pm.plot_posterior(trace, var_names=['difference of means','difference of stds', 'effect size'],\n", " ref_val=0,\n", " color='#87ceeb');" ] @@ -338,9 +339,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAEfCAYAAABxkKByAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAHjlJREFUeJzt3XtcVHX+x/H3DAMLE8TFFGSV8ppl\nWXnpZmp4y9XaRaUoYcq2i1Gim2biQ7us6HrJS4l4WXNL0XYpW32k+TAvWaartV6TUrML/lBMMS4i\nqKwwvz+MWVlEB4IvQ76ef43D+X7P53znzLzne86Zo8XpdDoFAIAh1rouAABwZSF4AABGETwAAKMI\nHgCAUQQPAMAoggcAYJStrgsAAJx3/fXXKyIiQl5eXpKkkpISderUSePGjZPdbq+wfGJioiIiIvTs\ns89WaT3vvvuuHnrooRqpuTqY8cAtpaWleumll/Twww/L4XDou+++kyQlJSVpwIABcjgccjgc+uST\nT1RcXKynnnpKDz74oHbu3OnqIz4+Xj/++ONF+8/IyNDTTz+t6OhoDRgwQElJSSouLq5WrXfccYck\naeLEicrMzFRycrKWLFlS6XKXc/jwYQ0YMOCSy6xZs6bqhbqhe/fuKiwsrJW+4ZlSU1O1Zs0arVmz\nRh9++KHy8/M1f/78Guu/pKREU6dOrbH+qoPggVs2bNiggoIC/eMf/9DEiRNdO25RUZEmTpyo1NRU\npaam6t5779Xnn3+u9u3b64033tDf//53SdKnn36qNm3aKCwsrELfJSUlSkhI0JNPPqlly5bp/fff\nlySlpKT8oprHjh2rpk2b/qI+3PXXv/7VyHpwZfHx8VGXLl20b9++SpfJz8/XU089pXvvvVdPPPGE\nTp06JUnatWuXBgwYoD59+qhv377617/+JUl6/PHHVVBQoD59+igzM9PIdvwvDrXBLRkZGWrXrp0k\nKSIiQllZWSopKbnot/G8vDxdc801atiwoXJyclRSUqJFixZp9uzZF+17y5Ytat68uW6//XZJksVi\n0ahRo2S1WnX48GGNGjVKdrtdcXFxCggI0IwZM2Sz2dS4cWMlJSXJarVq5MiR+umnn9S2bVtXvw6H\nQy+99JIkae/evYqPj1dmZqZefPFFde3a1bXct99+q/Hjx8tiseiqq67S5MmTdfXVV1+01sTERDVq\n1EhfffWVsrKyNG3aNG3dulUHDhzQ0KFDNXv2bM2cOVPbt29XSUmJ4uLidP/99ysxMVHe3t7Ky8tT\nZmam5syZo/DwcB05ckQJCQlavHixRo4cqaKiIp05c0YvvfSSa7wlafPmzXr99dfl6+urBg0aaNq0\nafL29q7iq4j6Jj8/X6tWrVLnzp0rXWbLli1asmSJ/P39FR0drfXr1ysqKkovv/yynnnmGfXr108r\nVqzQK6+8onXr1ukvf/mLevfuXWuzdHcw44FbWrdurc2bN6ukpETff/+9MjMzlZubq8LCQs2ePVsO\nh0MvvPCC8vLyFBYWpszMTGVkZCg8PFzLli1Tv379NH/+fI0ZM0Zff/11ub6///573XDDDeWe8/X1\nlY+PjyRp3759mjZtmiIjIzVhwgTNmTNHixcvVoMGDbRmzRpt2bJF586d05IlS9S3b1/l5eVVqP+n\nn37S3LlzNWPGDL3++uvl/paUlKTx48dr0aJF6ty5s5YuXXrJsSguLtbChQv16KOPasWKFXryySfl\n7++v2bNna/v27Tpy5IiWLl2qxYsXa+7cuTpz5owkKTAwUMnJyerZs6c2btwo6fxM8r777lN2drYe\nfPBBpaamasSIEVqwYEG5dS5ZskSJiYlasmSJ+vXrd9FtxK+Dw+FQnz591KNHD/Xo0UN33nmnnnrq\nqUqX79q1q4KCgmSz2dSqVSsdO3ZMkrRixQr97ne/kyR16NChzmY3F8OMB27p1q2bdu7cqdjYWF1/\n/fVq3ry5nE6nHn74YbVs2VLNmjXT3LlzlZycrLFjx+r9999XUlKSRo0apVmzZmnIkCE6fPiwXn75\nZT3//POaN29euf5LSkoqXXfTpk0VHBysEydO6NChQ0pISJB0/jBfcHCwsrOzddttt0mSbrnlFvn6\n+lboo2w21bp1ax09erTc37788kvXzKi4uFg333zzJceiY8eOkqSwsDB9+eWX5f62c+dO7dmzRw6H\nQ9L5c2PZ2dmS5JrB9O7dW1OmTFFsbKw2bNigP//5z2rQoIHmzJmjhQsXqri4uMKJ5D59+uiVV17R\nAw88oH79+qlhw4aXrBH1V2pqqsLCwpSTk+M6TGaznf+ofuyxx1zBUjZj8ff3d7X18vJyvZdWrlyp\nxYsXq7CwUKWlpfKk23ISPHDb888/73rcs2dPNWjQQL169XI916tXL7366quyWq2aPHmyJGnWrFl6\n4oknlJWVpfDwcPn5+VU4PNeiRYsKs4zi4mJlZGTIbre7Dil5e3urUaNGSk1NLbfsm2++Kav1v5P3\n0tLSCrVbLJZKt8vPz0+LFy++5DIXKrviSFKFN7OPj4+io6M1ZMiQCu3KtqN169Y6fvy4jh49qoKC\nAl133XWaPXu2QkND9dprr2nv3r0VTv5GRUWpS5cuWr9+veLj4/XGG2+oRYsWbtWL+ikkJEQOh0Ov\nvfaa5s6dK0latGiRW22PHTumcePG6b333tMNN9ygjIwM3XfffbVZbpVwqA1u2b9/v8aMGSNJ2rRp\nk2688UZZrVY988wzysrKkiR9/vnnatWqlavNsWPHdOjQId1555265pprdPToUZ0+fdp1CK1M586d\ndeTIEX388ceSzgfHa6+9ptWrV5dbLjAwUNL5czLS+W+G+/fvV7NmzZSeni7p/IzjYlfD7dixw7Ud\nv/3tb8v9rU2bNtq0aZMk6cMPP9TWrVurPD7nzp2TdH5Ws3HjRpWWlurs2bNKSkq66PLdunXTzJkz\n1aNHD0lSbm6uIiIiJEnr16/Xf/7zn3LLp6SkyGazKSYmRn379nVdVYhft8cff1y7du3SF198UaV2\nOTk5stvtatasmc6dO6e0tDRJ0qlTp+Tt7a3S0lLXRQh1geCBW1q3bi2n06mYmBgtXrxYr7zyiiQp\nLi5OCQkJcjgc+vTTTzV06FBXm5SUFNdhsdtvv13p6el69NFHFRsbW65vq9WqhQsX6t1339WAAQM0\naNAgBQQEaNiwYRXqmDhxosaMGaNBgwZpx44dat68ubp27aozZ84oLi5Oq1evVmhoaIV2DRo0UHx8\nvF544QWNHDmy3N/Gjh2r+fPnKy4uTv/85z8rnG9yx0033aTo6Gi1b99ed9xxh2JiYhQbG1vuYocL\n9e7dW6tWrVKfPn0kSX/4wx/01ltv6Y9//KPatWun7Oxs19V9khQeHq7HH39cgwcP1v79+9WlS5cq\n14j6x9/fX08//bSmTJlSpUNlbdq0UdeuXdW9e3fFxMSoe/fuuvXWWzVo0CA1bNhQHTp0UGRkZLmf\nO5hk4f/jAQCYxIwHAGAUwQMAMIrgAQAYRfAAAIwieAAARvED0irIzi5wPfb3/41OnTpbh9VUTX2r\nV6p/NVNv7bqw3oYNA+qkhgs/Ay5U38ayJlW27Zd6jZjxVJPN5nX5hTxIfatXqn81U2/t8uR6Pbm2\n2ladbSd4AABGETwAAKMIHgCAUQQPAMAoggcAYBTBAwAwiuABABhF8AAAjCJ4AABGETwAAKMIHgCA\nUQQPAMAoggcAYBTBAwAwiuABABhF8AAAjCJ4AABGETwAAKMIHgCAUQQPAMAoggcAYBTBAwAwiuAB\nABhF8AAAjCJ4AABGETwAAKMIHgCAUQQPAMAoggcAYBTBAwAwiuABABhF8AAAjCJ4AABGETwAAKMI\nHgCAUQQPAMAoggcAYBTBAwAwiuABABhF8AAAjCJ4AABGETwAAKMIHgCAUQQPAMAoW10XAPzaHM47\nrRErvtKhnCJdG2LXjKi2ahLkV9dlAR6D4MEV6U//TNeWH3JqfT0//FSk/gv/XeP9dm4WotcH3FTj\n/QImEDyoFTFvb9f3PxXVdRm/Wlt+yFGn6Zvquowa1byBXWmDO9Z1GTCA4EGtqIkPkKAgu/Ly6k94\nldX70NvblZFTJKdTslik60LsetcDP1Dr2/ji14OLC4AaNiOqra4Lscv6c+jMiGpb1yUBHoUZD1DD\nmgT5eeQMB/AUzHgAAEYRPAAAowgeAIBRBA8AwCiCBwBglMcFzzfffKOePXtqyZIldV0KAKAWeFTw\nFBUVKSkpSXfddVddlwIAqCVu/45n//79SkxMVEBAgDp16qSsrCwNHTpUo0aNkt1uV1xcnOx2u2bO\nnCmbzabQ0FBNmjRJq1at0sGDBzV69GgVFhbqgQce0Mcff6zu3bsrKipK27Ztk4+Pj2bNmiW73a4F\nCxZowYIFl63n8OHDevHFFxUREaFdu3bpkUce0YEDB7Rnzx7FxsYqNjZW27dv14wZM2Sz2dS4cWMl\nJSXJarVq9OjROnbsmIqKipSQkKDIyEg5HA7dfffd2rZtm3JzczVv3jyFh4f/osHFlYmbhF45yl7r\n/8s5rYgQP15rN7kdPCkpKXruuefUq1cvDR8+XH5+5wd337592rhxo4KDg9WnTx+99dZbaty4scaP\nH6+VK1fKYrFU2meLFi00bNgwTZ48WcuXL9djjz0mm83937Tu27dPKSkpys/P1/33368NGzbo7Nmz\nSkhIUGxsrCZMmKC3335bQUFBmjp1qtasWaPOnTvrnnvuUf/+/ZWZmanhw4crMjJSkuTv769FixZp\n2rRpWrt2rQYPHux2Lah/TNwotDZuEsoNQj3HiBVfuW6PlJFTpBErvuLHw25w+1P+u+++U4cOHSRJ\nkZGR2rZtmySpadOmCg4OVl5eniwWixo3bixJ6tixo3bu3Kkbb7yx0j7LDqndeuutrv6qIiIiQsHB\nwfLx8VFISIhCQ0NVWFiogoICnThxQocOHVJCQoKk84fxgoODdfXVV2vv3r1KS0uT1WpVXl6eq7+O\nHc/vMGFhYeWeL+Pv/xvZbF6SJC8vq4KC7FWuua6YqLdv8mYdPH6qVteB+n+D0FaN/LU64Z4qt/PE\n99yhn0NHkpzO8//G5bkdPM6y0ZVktf731JC3t7ckyWKxlFumtLRUFoul3Izn3LlzF+3T6XRecmZU\nGS8vL9fj/50peXt7q1GjRkpNTS33/PLly5Wfn6933nlHeXl5io6Ovmh/F25LmVOnzroe17cbLJqo\n9x1H+xrtr76OMTcJvbzqrPfCehs2DKjpkqrl2hB7udf62hDPCkZP5fbFBREREUpPT5ckbdpU8dtW\nYGCgLBaLsrKyJElffPGFbrrpJvn7++v48eOSpB07dpRrU/bv3bt3q2XLltXbgkoEBgZKkr799ltJ\nUmpqqvbv36/c3Fw1adJEVqtV69atU3FxcY2uF+AmoVeOstfay2Lhta4Ct2c88fHxGjdunBYtWqSW\nLVvq1KmKh1SSkpI0cuRI2Ww2NWnSRP369dOZM2c0d+5cORwOdevWrdzMJj09XUuXLpXFYlFCQoLS\n09M1ZcoUHTlyRDabTR999JGSk5MVFBRUrY2bOHGixowZ45r9xMTEyN/fX/Hx8dq9e7cGDhyosLAw\npaSkVKt/4GK4SeiVo+y1rm+z87pmcV7smNJF7N69W76+vmrTpo3mz58vSRoyZEi1V9y9e3etXLlS\nV111VbX7MC07u8D1uL7taPWtXqn+1Uy9tcsTDrVd+Blwofo2ljWpsm2/1Gvk9ozH29tbY8eOla+v\nr3x9fTV9+vTqVVlFaWlpWrVqVYXnR4wYodtuu81IDQCAmuP2jAfMeEyrbzVTb+1ixuOZqjPj8ag7\nFwAAfv0IHgCAUQQPAMAoggcAYBTBAwAwiuABABhF8AAAjCJ4AABGETwAAKMIHgCAUQQPAMAoggcA\nYBTBAwAwiuABABhF8AAAjCJ4AABGETwAAKMIHgCAUQQPAMAoggcAYBTBAwAwiuABABhF8AAAjCJ4\nAABGETwAAKMIHgCAUQQPAMAoggcAYBTBAwAwiuABABhF8AAAjCJ4AABGETwAAKMIHgCAUQQPAMAo\nggcAYBTBAwAwiuABABhF8AAAjCJ4AABGETwAAKMIHgCAUQQPAMAoggcAYBTBAwAwiuABABhF8AAA\njCJ4AABGETwAAKMIHgCAUQQPAMAoggcAYBTBAwAwiuABABhF8AAAjCJ4AABGETwAAKMIHgCAUQQP\nAMAoggcAYBTBAwAwiuABABhF8AAAjCJ4AABGETwAAKMIHgCAUQQPAMAoggcAYBTBAwAwiuABABhF\n8AAAjCJ4AABGETwAAKMIHgCAUQQPAMAoggcAYBTBAwAwiuABABhF8AAAjCJ4AABGETwAAKMIHgCA\nUQQPAMAoggcAYBTBAwAwiuABABhF8AAAjCJ4AABGETwAAKMIHgCAUQQPAMAoggcAYBTBAwAwiuAB\nABhF8AAAjCJ4AABGETwAAKMIHgCAUQQPAMAoggcAYBTBAwAwylbXBcCsw3mnNWLFVzqUU6RrQ+ya\nEdVWTYL86rosAFcQgqee+9M/07Xlh5xqtf3hpyL1X/jvKrXp3CxErw+4qVrrAwCJ4KkVMW9v1/c/\nFdV1GbViyw856jR9U62uo3kDu9IGd6zVdQCoOwRPLfDED82gILvy8or00NvblZFTJKdTslik60Ls\netcD6wXw68XFBVeYGVFtdV2IXdafQ2dGVNu6LgnAFYYZzxWmSZAfMxwAdYoZDwDAKIIHAGAUwQMA\nMIrgAQAYRfAAAIzyuKvapk6dqh07dujcuXMaMmSIevfuXdclAQBqkEcFz7Zt23Tw4EGlpaUpNzdX\n/fv3J3hqEPdpA2pW2Xvq/3JOKyLEj/eUm9wOnv379ysxMVEBAQHq1KmTsrKyNHToUI0aNUp2u11x\ncXGy2+2aOXOmbDabQkNDNWnSJK1atUoHDx7U6NGjVVhYqAceeEAff/yxunfvrqioKG3btk0+Pj6a\nNWuWOnXqpHbt2kmSAgMDdfr0aZWUlMjLy6tCPYcPH9aLL76oiIgI7dq1S4888ogOHDigPXv2KDY2\nVrGxsdq+fbtmzJghm82mxo0bKykpSVarVaNHj9axY8dUVFSkhIQERUZGyuFw6O6779a2bduUm5ur\nefPmKTw8vOZGuhaYvE8b92gDKhqx4ivXnUAycoo0YsVX/E7ODW4HT0pKip577jn16tVLw4cPl5/f\n+VTft2+fNm7cqODgYPXp00dvvfWWGjdurPHjx2vlypWyWCyV9tmiRQsNGzZMkydP1vLly/XYY4/J\nbrdLkt577z117dr1oqFTZt++fUpJSVF+fr7uv/9+bdiwQWfPnlVCQoJiY2M1YcIEvf322woKCtLU\nqVO1Zs0ade7cWffcc4/69++vzMxMDR8+XJGRkZIkf39/LVq0SNOmTdPatWs1ePDgcuvz9/+NbLbz\n9Xh5WRUUZHdr7Pomb9bB46fcWtZTmbhHW2VaNfLX6oR76mTdVVGVfcITUO8vd+jn0JEkp/P8v3F5\nbgfPd999pw4dOkiSIiMjtW3bNklS06ZNFRwcrLy8PFksFjVu3FiS1LFjR+3cuVM33nhjpX3edddd\nkqRbb73V1Z8krV+/XsuWLdPf/va3S9YUERGh4OBg+fj4KCQkRKGhoSosLFRBQYFOnDihQ4cOKSEh\nQZJUVFSk4OBgXX311dq7d6/S0tJktVqVl5fn6q9jx/PfVMLCwso9X+bUqbOux2X3PnPHO472bi1X\nm4KC7Or9+qZ6dZ+2C8fY3bGuS1XZJzxBfa63YcOAOq7mvGtD7OXeU9eGeFYweiq3g8dZFuuSrNb/\nXgzn7e0tSbJYLOWWKS0tlcViKTfjOXfu3EX7dDqdruU+++wzzZs3T2+++aYCAi69c104G7LZym+K\nt7e3GjVqpNTU1HLPL1++XPn5+XrnnXeUl5en6Ojoi/Z34bb8WsyIalvhHA+A6it7T114jgeX53bw\nREREKD09XV27dtWmTZsqfNAHBgbKYrEoKytL4eHh+uKLL9ShQwfZ7XYdP35ckrRjx45ybXbs2KHe\nvXtr9+7datmypQoKCjR16lTX4bFfIjAwUJL07bffqmXLlkpNTVWnTp2Um5urJk2ayGq1at26dSou\nLv5F66lPuE8bULPK3lP1bfZY19wOnvj4eI0bN06LFi1Sy5YtdepUxXMWSUlJGjlypGw2m5o0aaJ+\n/frpzJkzmjt3rhwOh7p161ZuBpSenq6lS5fKYrEoISFBH374oXJzc/WnP/3JtcyUKVOqfZJ/4sSJ\nGjNmjGv2ExMTI39/f8XHx2v37t0aOHCgwsLClJKSUq3+AQBVZ3G6eUxp9+7d8vX1VZs2bTR//nxJ\n0pAhQ6q94u7du2vlypW66qqrqt2HadnZBa7H9e0bTn2rV6p/NVNv7fKEczwXfgZcqL6NZU2qbNsv\n9Rq5PePx9vbW2LFj5evrK19fX02fPr16VVZRWlqaVq1aVeH5ESNG6LbbbjNSAwCg5rg94wEzHtPq\nW83UW7uY8Xim6sx4uFcbAMAoggcAYBTBAwAwiuABABhF8AAAjCJ4AABGETwAAKMIHgCAUQQPAMAo\nggcAYBTBAwAwiuABABhF8AAAjCJ4AABGETwAAKMIHgCAUQQPAMAoggcAYBTBAwAwiuABABhF8AAA\njCJ4AABGETwAAKMIHgCAUQQPAMAoggcAYBTBAwAwiuABABhF8AAAjCJ4AABGETwAAKMIHgCAUQQP\nAMAoggcAYBTBAwAwiuABABhF8AAAjCJ4AABGETwAAKMIHgCAUQQPAMAoggcAYBTBAwAwiuABABhF\n8AAAjCJ4AABGETwAAKMIHgCAUQQPAMAoggcAYBTBAwAwiuABABhF8AAAjLI4nU5nXRcBALhyMOMB\nABhF8AAAjCJ4AABGETwX+Oabb9SzZ08tWbJEknT06FE5HA4NGjRIw4cPV3FxsSTpgw8+0MCBA/Xg\ngw9q2bJlFfqprJ2n1puUlKQBAwbI4XDI4XDok08+qZV6q1Jzfn6+nnjiCQ0bNuyi/XjaGF+uXlNj\n7G69q1evVnR0tB566CHNnDmzQj+eNr6Xq9fkPny5bbiSTJ06VTExMRo4cKDWrl3rfkMnnE6n01lY\nWOiMi4tzjhs3zpmamup0Op3OxMRE5+rVq51Op9M5ZcoU59KlS52FhYXO3r17O0+ePOk8ffq08777\n7nPm5uaW6+ti7Ty93q+//rrGa6xuzU6n0zl8+HDnnDlznAkJCRfty5PG2N16a3uM3a23qKjIGRkZ\n6SwoKHCWlpY6o6OjnQcPHqxQr6eMr7v1mtiH3dmGK8XWrVudTz75pNPpdDpzcnKc3bp1c7stM56f\n+fj4aMGCBWrUqJHruc8//1w9evSQJPXo0UNbt27Vnj17dPPNNysgIEC+vr7q2LGjdu7cWa6vi7Xz\n5HoLCwtrvL5fUrMkTZgwQe3bt6+0L08aY3fqNTHG7tbr5+enDz74QP7+/rJYLAoKClJeXl65vjxp\nfN2p19Q+/L8utg1Xik6dOumNN96QJAUGBur06dMqKSlxq62tNgurT2w2m2y28sNx+vRp+fj4SJIa\nNmyo7OxsnThxQiEhIa5lrrnmGmVnZ1+2nSfXW1hYqNmzZ+vkyZMKDQ3VuHHjFBQUVGc1S5K/v/8l\n+/KkMXanXhNjXJ16v/nmGx05ckS33HKLW+08tV5T+7A723Cl8PLykt1ulyS999576tq1q7y8vNxq\ny4znEiwWi+ux8+efOzn/52dPTqez3HKVtTOhuvU+/PDDeuGFF5SamqoWLVooOTm59ov9WXXHypPG\n2B11NcaXqjcjI0MjR47U9OnT5e3t7Xa72lTdeutyH77SrV+/XsuWLdPLL7/sdhuC5xL8/Px05swZ\nSdKxY8fUqFEjhYaG6sSJE65ljh8/roYNG162nSfX26tXLzVr1sz1+MCBA0bqrazm2mz3S1V3vXU1\nxpXV++OPP+q5557T5MmTdcMNN7jdzlPrrct9+Er22Wefad68eVqwYIECAgLcbkfwXMLdd9+tjz76\nSJK0du1adenSRbfccov27t2rkydPqrCwUDt37lTHjh0v286T633mmWeUlZUl6fwx9latWhmpt7Ka\na7PdL1Xd9dbVGFdW79ixY/Xqq6+qbdu2VWrnqfXW5T58pSooKNDUqVM1f/78Kh/W5JY5P0tPT9eU\nKVN05MgR2Ww2hYaGatq0aUpMTNTZs2cVHh6uSZMmydvbW2vWrNHChQtlsVgUFxen3//+99q3b5/W\nrVunYcOG6fjx4xo9enSFdp5a7+bNmzVz5kzZ7Xb5+flp0qRJatCgQY3WW5WarVarBg8erJMnT+rY\nsWNq1aqVnn32WQUFBXnkGLtTr4kxdrfew4cPKyoqSu3atXO1HTx4sMLDwz1yfN2p19Q+7M42JCcn\nGzm/VNfS0tKUnJzsmmlK0pQpUxQeHn7ZtgQPAMAoDrUBAIwieAAARhE8AACjCB4AgFEEDwDAKIIH\nAGAUwQMAMIrgAQAY9f+uxJDtGKAk5gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbgAAAGpCAYAAAD/QCONAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzt3XuYXVV9//F3IGaCwzToBAfihTxB/YqiiAIWahUrrRaLSkWQivy8AV5afwpYRK03xGoFsd4Q+KGAKRrFKmqVWqtofwalFgytylcwRIRIJEGSMJCEQPrH2hOOx5nJXHPOrLxfz5Nnzuy9z9pr79k5n73WXvvsWVu2bEGSpNrs1OkKSJI0HQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpVmd7oC0nSJiNnAO4H/AwwAPwNOz8xvjLD8o4CfAj/KzEO3UfYBwNnAQcAg8AXglMy8u5n/OOAzwOOAbwEvHZrXzO8BfgKckZkXj3F7jgZeA+wP9AC3AF8FzsrMX4+ljPGKiCuBzZl5WEQsBG4CXpaZiyPiIuDpmfnosbx/EnV4OfBp4JGZectEy+mksewrTT1bcKrZh4BTgHcDjweuAC6PiP1HWP5jwJxtFRoRe1JCawUl4I4B/hS4oGWxjwD/BRwA7AH8TVsxfwvcBlwylg2JiI83y34XeAbwJEp4Px/4z4jYeyzlTNKvgD2By7bDuiYtIq6PiEM7XQ91ji04VSkidgFOAs7JzAubyW+JiKdTwuXYtuWPBA4BvgY8dBvF/w2wCTghMzc17z8F+HJE/B0lCJ4FvCYzl0fEhcBfAR9olt2rqcPTM3Ob37QQEUcBrwOOyswvtsy6MSK+DVwHvB14xbbKmozMvI8Syl0vIh4CPLbT9VBnGXCq1aMprbH/aJv+VeDU1gkRsSulxfVm4JlsO+CeDVw5FG6NbwFbgMMoITkbuLmZ90vg4S3Lfhi4KDOXjXFb3gD8sC3cAMjMVRFxECVUaVos36G0Kt8HrMzMZzRdomcALwQeRWl9/kNmfmqorIjYDzgf2A9Y2SxPy/yFtHRRtkx/PvBBYCFwPfDazFw63IZExMMpXbtPp+zna4FTM/OqMe6L1m08mHKicBilm/izlBb7Xk09Ab4TEb/MzIURsRPlb3w8sIgS1p9s9sOWpuwVwOeAAJ5L2ffnAY/IzJUtdTgaWELpgv458Bbg1ZR9uxr4JnByZq4Z63Zp6tlFqVrt3Pzc3Db9dmB+RPxBy7QzgOXARWMs+9GUgNgqMweB3wCPAWY1k4daZ/cPTYuI51Jain83lhVFxIOAp1G6V4eVmb/MzPvbJp8KvJISdFA+yE8A3gU8kdKdekHzQU1EzAG+QvlMOAQ4svn3+G1UsR/4v8BxwB8Cd1Nasg8eZlvmAP8OPAF4KXAgcCPwbxGxaBvrGc5HKd2lTwbOAd4EvIgS9s9rlnlRsx4o+/wM4OOUffAeSjfvm9vKPZoSvAFcTjmGXtC2zFHANZmZlP38XuCtlOB8EWVffHwC26QpZAtOtboRuA94KvCvLdP3a372Aeua63EnAU/NzC0RMZay+ygthnZ3AX9AOYO/j9Jquxl4BLCy+YD/CHAa0BcRX6B82P8EeHlm3jpMmf2UlujNw8wbzeWZ+T2AiFhAabWckpmXNvPPjoihFtDngUMprY9jMvOa5n0vA1ZtYz27Ubpib2jecwrwfUoX7b+0LXskJTT2z8wfN8ufQLl++TraWtZj8OWh7YmIs4B3AAdl5mURcUezzB2ZeXtzonAK8InM/EQz78aIeAJwakSc1XKScF9mvmdoJRHxrabu5za/7wIcTglHgC8C38/M65vffxURn6W0/tRBtuBUpcy8C1gMnBwRfxQRO0fECyhn5wD3Nl1W5wEfysyfTeG6NwJLgZc3oXY8peVyKqUFeTGlxXEdJVR+Qum2G85QK3C8/1evaXl9QPP+b7ctcyXwpIiYxQMttR+3bMdaysjT0awZCrfGfzY/hztTeBrw26Fwa9axibKvnryN9QxnaF004bQGeMgIy+5DOTEZbh/sDixomXZN2zJLgEMjYrfm9+cCu1C6MqG0Wo+MiGURcUdE3AWcPkpdtJ3YglPN3kBpUf1/Sjfh9yln+Z8AfktpNcyjdC+Nx9qm3HbzmnlQWgv/QjnLvwb4crP+ZzQtxUOBP83MzRFxMb/bymy1GtgAjHeU5PqW10N1vSoiWge1zAYeRGkl9gFbMnNDWzl3bWM961p/ycx7I+Je4Pe6KJt67NYEQKseILexnuHc3fb7Fh7oHh5u3QBLIuK+lulDJw57UG67gN/dd1D+ducDR1Bu/TgK+F5Li/tDlF6AtwD/1tTrJMbfItUUswWnamXmusz8S2A+MJCZz6B88F6fmfdSrpU8GrgrIjZHxGZKa+uZze/Hj1D0DbQFTjNqbz5Niycz/5PyoblnZh5ICbpLWlovD+GBD9L1jDCwpRm5+H3Kh+uwIuLQZqDJSIZC90hKS2no376Ua4Z3UrpcZ0XE3Lb37sboetvq0kMJzeGCcS2llfXktn/78MA1s+kytA9e17buJ1H2wU9GemPTkr2C0krrAf6CMqBlyLHApzPz7My8LjNvZAy3m2j62YJTtZqh/7dm5tUtk19CGTgAZXBAb9vb3ku5dvYKHjijb3cF8KaI2CUz72mmHU5pJW5tiTXdZr+JiD+l3LvWOmx9LfAwyrXCAUqLciQfBr4aEa/NzHPbtvFhlMEx1wB/OcL7f9TUbffM/GbLexcA9zStyKEW1IE0I0+bEY/7MPp1uIdFRDSDLaDchA7lhvl2VwNvBDZl5tZrihHxaKbv9oOhFt31lNbmgiaAhtbdDzyo5e84kiWU7uznULonW+8FnENpaQ+VOZdy8kREzBrLrSCaHgacavYy4ClNS+xWyofrQuAfATLzpvY3RMSdwG6Z+T8t0/4eeEpmPqeZ9HHKvXAXRsQ7KYH4AeC81qHkzXsfRBntd1pm3tky60rgDRFxO2X0X/u1oa0y82sRcTbwsYh4DKWbbC3l2tqZlA/u147y/l9HxD8BH4yIQcp1tsc023E1ZQTktylB9sGIGCrr/ZSRoaP5LfDRiHgLpYvwI5R9/d1hlr0c+AXwuYg4lXIrwrMo++eNwP/bxrrGY+iE4c+av+mPKX/30yLiV5QQX0C59rmZctvCaL7S1O89wBWZeUfLvB8CR0fE5ym9Yh+k3CbwCkpvwA+mZpM0XnZRqmavogxg+BJlQMdjgEMz8/ZxlrMnLV2Szb1Nz6Z8QF5HObtfQvmQbncy5cP2orbpb6R0YV5L6a48ebQKZOaplGs/+1HC6L8p1xMvodwwvq3RjicA/0T5tpYbKQNdvtJMp2nBvIDSvfhD4J+bbbp6uMJarKAE5eeAH1BOml/YDLRp34YNlP32K8r1yRsoozhPycypDDeaFuVnKScPV1A+695JuTfwXZR7175M2Y/ttwAMV95dwNcp+//Sttmvp5wcLKXsswsptx5cT9nOfSe7PZqYWVu22HqWJNXHFpwkqUoGnCSpSgacJKlKBpwkqUreJtAFbr99vSN9JGkCdt+9b6Rvr7EFJ0mqkwEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASepCqsHN3HdynWsHtzU6aqoS8zudAUkabK+8bNVnP3tX/Dw3Xbh1jvv4ZQ/2Zs/32eg09VSh83asmVLp+uww7v99vX+EWaQk5Ys63QVusrKtRu4bf3GjtahZ/ZOXHLc/izq72X5mkGOX3wtGzff39E6Ddmjr4cF8+Z2uhrT6rxj9uvYunffvW/WSPPsopQ04w309bCovxeARf29DPT1dLhG6gZ2UUrj1Mmz1W50/tIVXHDVzR2tw6r1G1m+ZnBrC25Vh1uUrY7Yd4ATD1nY6WrskOyi7AJ2UUqT4zW4HddoXZQGXBcw4KTJWz24iZVrN7Bg3lzm987pdHW0nYwWcHZRSqrC/N45Bpt+h4NMJElVMuAkSVUy4CRJVTLgJElVMuAkSVUy4CRJVTLgJElVMuAkSVUy4CRJVTLgJElVMuAkSVUy4CRJVTLgJElVMuAkzXirBzdx3cp1rB7c1OmqqIv4uBxJM5oPO9VIfOBpF/CBp/U6acmyTldhu1i5dgO3rd/YkXX3zN6JS47bn0X9vSxfM8jxi69l4+b7O1KX4ezR18OCeXM7XY2ucN4x+015maM98NQuSkkz2kBfD4v6ewFY1N/LQF9Ph2ukbmEXpTSNpuOMtRudv3QFF1x1c0fWvWr9RpavGdzaglvVoZbkSI7Yd4ATD1nY6WrskOyi7AJ2UUoT5zW4HdtoXZQGXBcw4KTJWT24iZVrN7Bg3lzm987pdHW0HY0WcHZRSprx5vfOMdj0exxkIkmqkgEnSarSjOyijIgnAp8Fds3MhR2ujiSpC824FlxEHA1cAdzQ6bpIkrrXmFpwEXEgsBh4JHAlcDlwJnAAcBPweuA9wKmZeVFEHNH8/ljgDuB84L2ZuSUiLqK0vI5qKX8LcERmfi0iVgAfAZ4D/DHwa+CVmfndZvFdgYOB5wP7j2djI+JdwIHAD4E3Avc2P2cB7wf6gHMy8z3N8g9p6vJs4A+A7wGvy8wVzfzDgPcBjwMGgc8DJ2fmfRFxKPAV4KimjEcA3wWOzcx146m3JGn8ttmCi4ge4GuUVlM/8I/Au9oWOwzYG7g4IvYFvkT54N8NOBp4E/CKcdTrTcC7gYcClwKXR8RcgMz8VGZO5o7SgymhuwewBPgocCgQwMnAOyLiYc2yn6YE2xOBPYHbKF2jRMQulO28CJgHPB34K+CVLevqBV4K/CHwBOBpwMsnUXdJ0hiNpYvyAOBhwBmZeU9m/isl7FpdnJlrM3ML8Crgysz8Qmbem5lXAZ8DjhlHvb6emUszcwOlZfVg4JnjeP9o7gU+npmbgK9TQvuczLwH+CqwM7CoCbkXAG/LzDWZuR54M/C0iIhm+UcA52Xmlsz8BXAVZX8N2Qn4UGbemZm/BK4G9pmi7ZAkjWIsAbcnMJiZq1umXd22zC9bXi8Cfto2/0Zg4TjqlVtfZA4Ca4AF43j/aG5tghhgw9C0tt/nUrYD4EcRsSEiNjTL3Qc8qpn3YuC6iBhs5j8PaP8ivJtaXt8N7DI1myFJGs1YrsHtRGn1tGr/qu7NLa9H+qbTYb+tIyJ2HmZy+7RZI71/Aob7mvHhpt3T/NwrM1e1z4yIZwOfBI4HLsvMTRHxpTGWLUmaZmNpwf0GmBcR81qmHTTK8r/g97vhHkdpxUFpJT24Zd7ew5SxdVpE7ErpRrxlDHWdSjdRWmtPaqnLThEx1Ho7CPhFZl7ahNvOwI7xzbqSNAOMpQX3I+Au4K0R8Q7gGZRBJSO5GFgaEUdSrmkdDBzLA4NMbgBe3ATFb4HTgfav/z48Ig4A/gc4DVhHGcG43WTmuoi4FHh/RPwcWAW8FTguIh4DLAf2jIiFlP1zBnAnU9eVKkmahG224DLzLsq1pmOB1cCrgbMYoestM6+mjBR8N+UD/5PAGzLzsmaRCynX8H4G/Bi4jBJgrT5NuQ3hDsooxBc2g0KIiGyud50D7DV0fSwi9hrjNo/HGyjXE5dRRlAeDPxFZt4HfJES4P8N/FezTacBB0XE4mmoiyRpHMb0NIGm+21WZm5ufj8dODozx3Uf2lg098GdlZkfm+qyu5VPE5CkiZnU0wQiYhZwPeVetNMpIwhfRbmHTJK6jo/PEYwh4JpvH3kJ8GFKl+F6yg3OZ05z3cYlIk4F3jvKIl/JzKO3V30kdYYPQNUQH3jaBeyinFlOWrKs01XoKivXbuC29e3jxDqnZ/ZOXHLc/izq72X5mkGOX3wtGzd35m6dPfp6WDBvbkfW3SnnHbN9B5OP1kU5475sWZJGM9DXw6L+XgAW9fcy0DfSrbmq3Yx8XI7USdv7DLXbnb90BRdcNZmvh51aq9ZvZPmawa0tuFUdbF0ese8AJx6ysGPr39HZRdkF7KKUpo7X4HYso3VRGnBdwICTppajKHcck7pNQJJmmvm9cww2OchEklQnA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA05SdVYPbuK6letYPbip01VRB/m4HElV8YGnGuIDT7uADzytz0lLlnW6CtvdyrUbuG39xk5Xg57ZO3HJcfuzqL+X5WsGOX7xtWzcfH+nqwXAHn09LJg3t9PV6DrnHbPfhN872gNP7aKUVJWBvh4W9fcCsKi/l4G+ng7XSJ1iF6U0DSZzRjpTnb90BRdcdXOnq8Gq9RtZvmZwawtuVRe0Koccse8AJx6ysNPV2GHYRdkF7KKUpo7X4HYso3VRGnBdwICTptbqwU2sXLuBBfPmMr93Tqero2k0WsDZRSmpOvN75xhscpCJJKlOBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacutrqwU1ct3Idqwc3dboqkmaY2Z2ugDSSb/xsFWd/+xc8fLdduPXOezjlT/bmz/cZ6HS1JM0Qs7Zs2dLpOuzwbr99/ZT/EU5asmyqixyXlWs3cNv6jZMqo2f2Tlxy3P4s6u9l+ZpBjl98LRs33z8l9dujr4cF8+ZOSVlT7bxj9ut0FaQZY/fd+2aNNM8uSnWtgb4eFvX3ArCov5eBvp4O10jSTGIXZaU63Qo4f+kKLrjq5kmVsWr9RpavGdzagls1yRZhqyP2HeDEQxZOWXmSuo9dlF1gOrooa+A1OEnbMloXpQHXBQy4ka0e3MTKtRtYMG8u83vndLo6krrMaAFnF6W62vzeOQabpAlxkIkkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnCSpSgacJKlKBpwkqUoGnLra6sFNXLdyHasHN3W6KpJmGB+Xo67lA08lTYYPPO0Ck33g6UlLlk1VVabMyrUbuG39xkmV0TN7Jy45bn8W9feyfM0gxy++lo2b75+S+u3R18OCeXOnpKzpcN4x+3W6CtKMMNoDT+2iVNca6OthUX8vAIv6exno6+lwjSTNJHZRVqAbz/bPX7qCC666eVJlrFq/keVrBre24FZNskXY6oh9BzjxkIVTVp6k7mMXZReYbBdlrbwGJ2lbRuuiNOC6gAE3stWDm1i5dgML5s1lfu+cTldHUpcZLeDsolRXm987x2CTNCEOMpEkVcmAkyRVacZ1UUbEXsCHgGc0k74DvDEzV3auVpKkbjMTW3BfBe4B9gaeAPQD53e0RpKkrjOmFlxEHAgsBh4JXAlcDpwJHADcBLweeA9wamZeFBFHNL8/FriDEkDvzcwtEXERsGtmHtVS/hbgiMz8WkSsAD4CPAf4Y+DXwCsz87sRsRvwI+DtmbkOWBcRFzDGgIuIlwNvBs4BzgB2aX4uAz4OLAA+m5knNsvPBf4BeAEwH7gW+OvM/HEz/ymU1uR+wGbgG8DrM3N9RCxs9s2fNWU8tnn/SzLzlrHUV5I0cdtswUVED/A14ApKa+kfgXe1LXYYpUV1cUTsC3wJeB+wG3A08CbgFeOo15uAdwMPBS4FLo+IuZl5Z2a+sq078pHAreMo+1HAwubfeylB/WrgQOD5wAkR8dRm2fc30/+Isu3fAb4SEQ9q5n8e+AEl/PalBP5b2tb3RuBwYK+mjJPHUVdJ0gSNpYvyAOBhwBmZeU9m/isl7FpdnJlrM3ML8Crgysz8Qmbem5lXAZ8DjhlHvb6emUszcwMlZB4MPLN9oYgI4O2UVthY9QLvz8yNlODuaeq/LjO/AwwCj4mInYBXAmdm5i1NXd4J9AF/0pT1ZOAdmXlfZq4CvkXZX63Oz8xfZ+ZqSkDuM466SpImaCwBtycw2HxAD7m6bZlftrxeBPy0bf6NlBbTWOXWF5mDwBpK9+FWEXEA8D3g7My8dBxl35mZdzWvNzQ/W1uAG4C5lFDvA74YERsiYgNwN7ArpdUIpeW6NCLWN/NfRwnMVje1vL6b0i0qSZpmY7kGtxNwb9u09q9039zyeqRvxB322zoiYudhJrdPm9X6/oh4DqV78C2Zee4I6xvJcF9HP9y0e5qfz8jMH7bPjIjHAV+gdEmem5l3R8Q5wP5jKFuSNM3G0oL7DTAvIua1TDtolOV/we93wz2O0oqD0kJ6cMu8vYcpY+u0iNiVcu3qlub3pwFLgOMnEG5jlplrgdXAk1qnN4NHoATZZuBDmXl3M+2pSJK6wlhacD8C7gLeGhHvoNx/dtgoy19M6bY7kjKk/2DgWB4YZHID8OKIeBTwW+B0oP1r4g9vuiD/BzgNWAd8LyJmA58C3pmZl4+h7pN1LvC2iLgKuJ5yTe6Dzb14yymt1adGxM8pg0l6gd4RWqWSpO1omy245nrViykhtZoy4vAsRuh6y8yrgZdTRkHeCXwSeENmXtYsciHlGt7PgB8Dl1ECrNWnKaMb7wBeCrwwMzdRwvLxwAeGrou1/NtrrBs9DmcCX6EMDrmz2a7Dm9GcP6TcbvAt4OeUbtxXAA8BvjsNdZEkjcOYnibQtEhmZebm5vfTgaMzs/1606Q198GdlZkfm+qyu5VPE5CkiZnU0wQiYhale+7yJtgeRbkVYMmU1VAahY/MkTQR2wy45ttHXgJ8mNJluJ5yI/eZ01y3cYmIFwOfGWWRZZn5tO1VH00NH3oqaaJ84GkXmGwX5UlLlk1VVSZt5doN3La+fczQxPXM3olLjtufRf29LF8zyPGLr2Xj5qm582KPvh4WzJs7JWVN1nnH7NfpKkgz0mhdlDPxy5a1Axno62FRfy8Ai/p7Gegb6TZLSfpdM+5xOfp93XT2f/7SFVxw1c1TVt6q9RtZvmZwawtu1RS2Do/Yd4ATD1k4ZeVJ6i52UXYBR1GOzGtwkkYzWhelAdcFDLjROYpS0kgmdZuA1Gnze+cYbJLGzUEmkqQqGXCSpCoZcJKkKhlwkqQqGXCSpCoZcJKkKhlwkqQqGXCSpCoZcJKkKhlwkqQqGXCSpCoZcJKkKhlwkqQqGXCaEVYPbuK6letYPbip01WRNEP4uBx1PR96KmkifOBpF5jsA09PWrJsqqoypVau3cBt6zdOupye2TtxyXH7s6i/l+VrBjl+8bVs3Hz/pMvdo6+HBfPmTrqcqXDeMft1ugrSjDTaA0/tolTXG+jrYVF/LwCL+nsZ6OvpcI0kzQR2UVagW8/+z1+6gguuunnS5axav5Hlawa3tuBWTUGrEOCIfQc48ZCFU1KWpO5jF2UXmGwXZe28BidpJKN1URpwXcCA27bVg5tYuXYDC+bNZX7vnE5XR1KXGC3g7KLUjDC/d47BJmlcHGQiSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mq0qwtW7Z0ug6SJE05W3CSpCoZcJKkKhlwkqQqGXCSpCoZcJKkKs3udAVqERFPBD4L7JqZC1umPxP4APB4YCXw4cz8ZMv81wF/Azwc+Cnw5sz8jxHWsRvwCeBZlJOTbwGvy8y107FNk7Gd9seKZrn7WiZ/OzMPn8ptmSqT2Cc7A+8A3ga8OjMvGmUdO8IxMp79sYId4xg5CXgj8EjgZuADmXnxCOuYA5wDHAH0At+nHCO3TMc2dZItuCkQEUcDVwA3tE3fA/gqcDEwALwS+EBEPLeZ/zzg74ETgYcBnwbvl9OjAAAD+ElEQVS+FhEDI6zqAqAfeDLwxOb1eVO9PZO1HfcHwAmZObflX7d+cE10n+wCfI/ywTY4hlXVfoyMd39A/cfIi4APAq8BdgP+DrgwIg4cYVVnAocAzwQWAauBy6Z6e7qBATc1dgUOBv69bfpxwIrMPDcz78nMpcBnKAciwGuBizPzPzJzQ2aeB/wKOLZ9Bc2H/F8Cp2fmqsz8DfB24KiImD89mzVh074/ZqCJ7pNe4HOZ+WLg3tFWsIMcI2PeHzPQRPfJLsBbM/O7mbk5M78I3Aj8cfsKImI2cAJwRmbe1LTsTwMOiognT89mdY5dlFMgMz8FEBHts54KXNM27RrgyJb57WdO1wDDnXk9GdgCLGuZtgyYBewP/Nt46z1dttP+GPKSiHgLpRvqSuA1mXnr+Gs9vSa6TzJzNfDRMa6m+mNknPtjSO3HyOLWGRHRQ+kBGW4b9wbmtZaXmbdHxC2U/2c/nvgWdB9bcNOrH/ht27Q7gPljnN9e1vrM3HotITPvBdaPsHw3msr9AXBt8+9pwGOBucAXp6Sm2894t3lbZdV+jIzXjniMfIRyne6fRyiLcZY3Y9mCm36zJjl/ost2qynbH5l5ZMuvayPiDcBPIyIyMydUu86Yyr/rjnCMjNmOdIw0g2/OBQ4DntWc3Ey4vBrYgptet/PAGdOQfuA3Y5zfXlZfRDxoaELzum+E5bvRVO6P4axofi6YSOU6ZLLb3F5W7cfIZK1oflZ1jDTdkpcDTwH+KDN/OUpZQ+8fsbxaGHDT60fAAW3TDgJ+MMb5ra6lXF95Ssu0AyjDn9v757vVlO2PiNgrIs5t/mMP2af5uXwK6rq9jOcY2JYd4RgZsx3sGLkUeDBwaGb+epSyllO6J7eWFxELgEcwsWOuq9lFOb0WA++MiNcDFwJ/CLwUGBqm/HHgixHxT5SD+DXAQykHKxHx15QD9qjMXB0RnwfeGxEvpZycvA/4TGa296d3qynbH5SzzecD90XEaZQL5+cA/zLK2Ws32tY+GdUOeIyMakc8RiLiWEpg7ZuZd7W/OSKOBP42Mw/OzPsi4pPA2yLih8CdwFmUewN/sn02Z/sx4KZARCSwF7AzMDsiNgzNAp5Hueh7NmVU02sz83sAmfnNiDiZcgDvQRnxdnjLh9F8YGHLql5DCYEbKGfq/0y5KbqrbI/9kZn3NPcBfagpZxZlf7xp2jdwAia6TyLiZZR72wB6gAuaD6jPZOYJ7GDHyHj2x45yjACvpowQvb1tBObQPpkHPKZl+jspt1v8F2UffhN4yXRsU6f5PDhJUpW8BidJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mq0v8C7QS/Qvx8KPMAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -348,8 +349,8 @@ } ], "source": [ - "pm.forestplot(trace, varnames=['group1_mean',\n", - " 'group2_mean']);" + "pm.forestplot(trace, var_names=['group1_mean',\n", + " 'group2_mean']);" ] }, { @@ -359,9 +360,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEfCAYAAAB1ZXBPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XlAVOX+BvBnYIBhYARBRQjNBc3t\nuoRKZUKgIEopuYQJmOYWKm5Ioui1RHNHc8mFTBQs1y430Z+W6cUyl8Q2TFNLvAimCJIsEtv8/jC5\nEdsLM8yZY8/nL5lz5swz7xz4zvt+54wKrVarBRERUQMzkToAERH9PbDgEBGRQbDgEBGRQbDgEBGR\nQbDgEBGRQbDgEBGRQSilDkBE9Hf31FNPoWXLljA1NQUAlJaWolevXpg/fz7UanWl/SMiItCyZUtM\nnjy5To+zd+9evPLKK3rJXB+c4VCNysrKsGDBAowcORLBwcH4+eefAQBRUVEYOnQogoODERwcjP/8\n5z8oKirChAkTMGLECFy4cKH8GCEhIfj111+rPH5qaiomTpyI4cOHY+jQoYiKikJRUVG9srq5uQEA\nlixZgrS0NKxfvx7x8fHV7lebmzdvYujQoTXuc+TIkboHFeDl5YX8/PwGOTYZp7i4OBw5cgRHjhzB\noUOH8Ntvv2HLli16O35paSlWrFiht+PVBwsO1ejzzz9Hbm4udu/ejSVLlpSfsAUFBViyZAni4uIQ\nFxeHF154AWfPnsXTTz+Nd999Fx999BEAICkpCR06dEDz5s0rHbu0tBShoaEYP3489u/fjwMHDgAA\nNm7cqFPmyMhItGjRQqdjiNq6datBHof+XszNzdG3b19cunSp2n1+++03TJgwAS+88ALGjRuHvLw8\nAMA333yDoUOHwtfXF4MGDcJXX30FABg7dixyc3Ph6+uLtLQ0gzyPv+KSGtUoNTUVXbt2BQC0bNkS\nGRkZKC0trfLdd05ODpo0aYKmTZsiOzsbpaWl2LFjBzZs2FDlsU+dOoU2bdqgd+/eAACFQoHw8HCY\nmJjg5s2bCA8Ph1qtRlBQEDQaDaKjo6FUKuHo6IioqCiYmJggLCwMWVlZ6Ny5c/lxg4ODsWDBAgDA\nDz/8gJCQEKSlpeHNN9+Eu7t7+X7Xrl3DokWLoFAoYGVlhWXLlqFRo0ZVZo2IiECzZs1w8eJFZGRk\nYNWqVTh9+jR++uknTJ06FRs2bMCaNWtw/vx5lJaWIigoCC+++CIiIiJgZmaGnJwcpKWl4b333oOT\nkxPS09MRGhqKnTt3IiwsDAUFBSgsLMSCBQvKxxsAvvzyS6xduxYqlQr29vZYtWoVzMzM6vgqktz8\n9ttvSExMRJ8+fard59SpU4iPj4e1tTWGDx+OY8eOwd/fH//85z/xxhtvwM/PDwkJCVi4cCE+++wz\nvPPOO/Dx8WmwWbkIznCoRu3bt8eXX36J0tJS/PLLL0hLS8O9e/eQn5+PDRs2IDg4GLNnz0ZOTg6a\nN2+OtLQ0pKamwsnJCfv374efnx+2bNmCuXPn4scff6xw7F9++QUdO3ascJtKpYK5uTkA4NKlS1i1\nahU8PT2xePFivPfee9i5cyfs7e1x5MgRnDp1CiUlJYiPj8egQYOQk5NTKX9WVhY2bdqE6OhorF27\ntsK2qKgoLFq0CDt27ECfPn2wa9euGseiqKgI27Ztw+jRo5GQkIDx48fD2toaGzZswPnz55Geno5d\nu3Zh586d2LRpEwoLCwEANjY2WL9+Pfr3748TJ04AeDhzHDBgADIzMzFixAjExcVh1qxZiImJqfCY\n8fHxiIiIQHx8PPz8/Kp8jvR4CA4Ohq+vL/r164d+/frhmWeewYQJE6rd393dHba2tlAqlWjXrh1u\n374NAEhISMDAgQMBAK6urpLNZqrCGQ7VyMPDAxcuXEBgYCCeeuoptGnTBlqtFiNHjoSLiwtat26N\nTZs2Yf369YiMjMSBAwcQFRWF8PBwrFu3DpMmTcLNmzfxz3/+EzNnzsTmzZsrHL+0tLTax27RogUa\nN26Mu3fv4saNGwgNDQXwcDmvcePGyMzMRI8ePQAA3bp1g0qlqnSMR7On9u3b49atWxW2ff/99+Uz\noaKiIvzjH/+ocSx69uwJAGjevDm+//77CtsuXLiA7777DsHBwQAe9r4yMzMBoHzG4uPjg+XLlyMw\nMBCff/453n77bdjb2+O9997Dtm3bUFRUVKlB7Ovri4ULF+Kll16Cn58fmjZtWmNGkq+4uDg0b94c\n2dnZ5cthSuXDP9GvvfZaeUF5NEOxtrYuv6+pqWn579LBgwexc+dO5Ofno6ysDMb0dZksOFSrmTNn\nlv+7f//+sLe3h7e3d/lt3t7eeOutt2BiYoJly5YBANatW4dx48YhIyMDTk5OsLS0rLQM17Zt20qz\niqKiIqSmpkKtVpcvHZmZmaFZs2aIi4ursO/7778PE5P/TdLLysoqZVcoFNU+L0tLS+zcubPGff7s\n0SeIAFT6JTY3N8fw4cMxadKkSvd79Dzat2+PO3fu4NatW8jNzUWrVq2wYcMGODg4YOXKlfjhhx8q\nNXX9/f3Rt29fHDt2DCEhIXj33XfRtm1bobwkT3Z2dggODsbKlSuxadMmAMCOHTuE7nv79m3Mnz8f\n+/btQ8eOHZGamooBAwY0ZNw64ZIa1ejy5cuYO3cuAODkyZPo1KkTTExM8MYbbyAjIwMAcPbsWbRr\n1678Prdv38aNGzfwzDPPoEmTJrh16xYePHhQvlT2SJ8+fZCeno7jx48DeFgwVq5cicOHD1fYz8bG\nBsDDngvw8J3g5cuX0bp1a6SkpAB4OMOo6tNtycnJ5c/jiSeeqLCtQ4cOOHnyJADg0KFDOH36dJ3H\np6SkBMDDWcyJEydQVlaG33//HVFRUVXu7+HhgTVr1qBfv34AgHv37qFly5YAgGPHjqG4uLjC/hs3\nboRSqURAQAAGDRpU/ilBeryNHTsW33zzDc6dO1en+2VnZ0OtVqN169YoKSnBnj17AAB5eXkwMzND\nWVlZ+YcLpMCCQzVq3749tFotAgICsHPnTixcuBAAEBQUhNDQUAQHByMpKQlTp04tv8/GjRvLl796\n9+6NlJQUjB49GoGBgRWObWJigm3btmHv3r0YOnQoRo0aBY1Gg2nTplXKsWTJEsydOxejRo1CcnIy\n2rRpA3d3dxQWFiIoKAiHDx+Gg4NDpfvZ29sjJCQEs2fPRlhYWIVtkZGR2LJlC4KCgvDxxx9X6ieJ\n6NKlC4YPH46nn34abm5uCAgIQGBgYIUPMfyZj48PEhMT4evrCwAYMmQItm/fjtdffx1du3ZFZmZm\n+af1AMDJyQljx47FmDFjcPnyZfTt27fOGUl+rK2tMXHiRCxfvrxOS2IdOnSAu7s7vLy8EBAQAC8v\nL3Tv3h2jRo1C06ZN4erqCk9PzwqXLRiSgv8fDhERGQJnOEREZBAsOEREZBAsOEREZBAsOEREZBAs\nOEREZBC88FNAZmYuhg0bDKVSgT17/i11nHLW1hbIy/td6hgAmKUmxpRH7lmaNtU0UJqaZWbmVnm7\nMY2noVX33Gt6jVhwBPn7D4VabV77jgakVJrWvpOBMEv1jCkPs+jX4/Ac6qs+z50FR1Bw8BjY2qqR\nk1MgdRQiIlliD4eIiAyCBUeQv/8g9O/vJXUMIiLZ4pKaoJEjA42uh0NEJCcsOIJGjgxkD4eISAdc\nUhNUXFxc6avjiYhIHAuOoBEjhmDgQOP5j4yIiOSGS2qCAgNHQ622kDoGEZFsseAIGjFiJHs4REQ6\nYMERVFBQAHN+SI2IqN7YwxE0atRwDB78otQxiIhkizMcQWPGjGMPh4hIByw4gvz9h7GHQ0SkAxYc\nQffv/waFohiAmdRRiIhkiT0cQaNHv4phw16WOgYRkWxxhiNo/Pg3YGXFHg4RUX2x4Ah68cXB7OEQ\nEemABUdQVlYWSkoKoFSqpY5CRCRLLDiCxo0LhlJpgv37E6WOQkQkSyw4gkJCQmFlxa8aICKqLxYc\nQQMGDGQPh4hIByw4gm7fvo3CQkuoVI2kjkJEJEssOIImTRrLHg4RkQ5YcARNmzaT1+EQEemABUeQ\nl5c3ezhERDpgwRGUnn4TubmW0GjspY5CRCRLLDiCpkyZyB4OEZEOWHAEzZwZDmtr9nCIiOqLBUeQ\nh4cnezikFzdzHmBWwkXcyC7Ak3ZqRPt3hrOtpdSxiBocC46g1NTraNTIEnZ2zaWOQhKZ8XEKTl3P\n1usxr2cV4OVtX+v1mH1a22Ht0C56PSaRPrDgCJoxYwp7OBIKiD2PX7I4uxRx6no2eq0+KXWMWrVr\nZo0Pg5+WOgYZEAuOoDffnMcejoT2jOkpvK+xLX3+Nc8rseeRml0ArRZQKIBWdmrsrcPz02cWKRlT\nFjIM/o+fgp577nm4u3tIHYMeA9H+ndHKTg2TP4pNtH9nqSMRGQRnOIKuXbsKjUYFB4cWUkchmXO2\ntTTYjIbImLDgCJo9ezp7OEREOpDtktqVK1fQv39/xMfH1+v+R44cqfJ2Nze3Km+fN28hoqIW1+ux\niIhIpjOcgoICREVF4dlnn633MbZu3QpfX1/h/Xv3dmOTk3TGa3AeD49ex/9mP0BLO0u+joL0XnAu\nX76MiIgIaDQa9OrVCxkZGZg6dSrCw8OhVqsRFBQEtVqNNWvWQKlUwsHBAUuXLkViYiKuXr2KOXPm\nID8/Hy+99BKOHz8OLy8v+Pv748yZMzA3N8e6deugVqsRExODmJiYWvMUFxcjPDwcmZmZKCoqQmho\nKK5cuYKffvoJU6dOxdq1axEWFoasrCx07lx98/bSpR+h0ajg7NxGn8NFMqLv63Aa4hqcR3gtTsOa\nlXCx/JOGqdkFmJVwkX05AXovOBs3bsSUKVPg7e2N6dOnw9LyYdW/dOkSTpw4gcaNG8PX1xfbt2+H\no6MjFi1ahIMHD0KhUFR7zLZt22LatGlYtmwZ/vWvf+G1116DUikW/cqVK7h37x527dqF+/fvIykp\nCePHj0dMTAw2bNiApKQklJSUID4+Ht999x1iY2MrHcPa2gILFrwJhUKBzz77vF7j0hBMTU1ga6uW\nOgYAw2UZtP5LXL2T1+CPI3dyuRYHeHg9zuHQ56WOUSc3/ig2AKDVPvyZaqf3gvPzzz/D1dUVAODp\n6YkzZ84AAFq0aIHGjRsjJycHCoUCjo6OAICePXviwoUL6NSpU7XHfLR01r179/LjiWrTpg3y8/MR\nHh4Ob29v+Pn5Vdh+7do19OjRAwDQrVs3qFSqSsfIy/sdkZFvQ6NRGdWSmjEt8Rkqi8iFgsY0LkDF\nPFJeg/PXLFL7cxbRTE2bahoykrAn7dQVXscn7YzjjZ+x0/uHBrSPyj4AE5P/Hd7MzAwAoFAoKuxT\nVlYGhUJRYYZTUlJS5TG1Wm2NM6GqWFpaYu/evQgICEBSUhIiIyMrHfvPOcvKyqo8To8erujZs1ed\nHpvor3gNzuPh0etoqlDwdawDvc9wWrZsiZSUFLi7u+PkyZOVlr5sbGygUCiQkZEBJycnnDt3Dq6u\nrlCr1bhz5w4AIDk5ucJ9kpOT4ePjg2+//RYuLi51ynPx4kVcu3YNQ4YMQbdu3RAYGAjgf0WtdevW\nOHToEADgwoULKCoqqvI4P/zwPTQaFVq1al+nxyf6M16D83h49Doa04xRDvRecEJCQjB//nzs2LED\nLi4uyMurvN4eFRWFsLAwKJVKODs7w8/PD4WFhdi0aROCg4Ph4eFRYSaTkpKCXbt2QaFQIDQ0FCkp\nKVi+fDnS09OhVCpx9OhRrF+/Hra2tpUey9nZGdHR0dizZw9MTU0xbtw4AECXLl0wfPhwfPTRRzhw\n4ACCgoLQoUMHODg4VPm8FiyI4HU4REQ6UGj/vL6lB99++y1UKhU6dOiALVu2AAAmTZpU7+N5eXnh\n4MGDsLKy0lfEOsvMzDXKGY4xvbtiluoZUx65Z5Gqh5OZmVvl7cY0noZW3XOv6TXS+wzHzMwMkZGR\nUKlUUKlUWL16tb4fokp79uxBYmLl2cesWbPKPxSgi3/8o+vf+uQiItKV3mc4j6PMzFx8800yNBoV\nXFyMpzloTAWQWapnTHnknoUzHONhFDOcx9Xbby9gD4eISAcsOIKWLl0FjabyNTpERCSGBUdQx46d\n/tbTZyIiXbHgCDp37iw0Ggt07Nhd6ihERLLEgiPonXfeZg+HiEgHLDiCVq16lz0cIiIdsOAIcnFp\nxx4OEZEOWHAEffXVl7C2tkDXrvwCTyKi+mDBEbRixTvs4RAR6YAFR9DatRvRqBH/C1kiovpiwRHU\nqlVr9nCIiHTAgiMoKekErK0t4Or6nNRRiIhkiQVH0Jo1K9nDISLSAQuOoI0bt7KHQ0SkAxYcQU88\n4cweDhGRDlhwBB0//hmsrCzg5uYudRQiIlliwRG0bt2aP3o4LDhERPXBgiNoy5btsLFhD4eIqL5M\npA4gFw4ODmjevLnUMYiIZIszHEFHj/4frKzM8fzz/aSOQkQkSyw4gjZtWg+l0oQFh4ionlhwBG3b\nFsceDhGRDtjDEWRvb48mTZpIHYOISLY4wxGUmPgJrKws4Ok5QOooRESyxIIj6P33N0OpNGHBISKq\nJxYcQTt3fgQbGzW0WqmTEBHJE3s4gho1soGNjY3UMYiIZIszHEEJCQegVlvAx+dFqaMQEckSC46g\n2NhtUCpNWHCIiOqJBUfQhx/uh62tGkVFUichIpIn9nAEqdVqqNVqqWMQEckWZziC9u3bDbXaAn5+\nL0sdhYhIllhwBO3atRNKpQkLDhFRPbHgCNq379+wtVUjP79Y6ihERLLEHo4gMzMzmJmZSR2DiEi2\nOMMRtHv3LqjV5hg8eITUUYiIZIkFR9Du3bugVJqw4BAR1RMLjqCEhMOwtVUjJ6dA6ihERLLEHg4R\nERkEZziC4uJioVabY9iwUVJHISKSJc5wBCUkfIx9+/ZKHYOISLY4wxF04MAn7OEQEemAMxwiIjII\nznAEffBBDNRqc4wc+ZrUUYiIZIkzHEGffvp/OHQoUeoYRESyxRmOoN27P2YPh4hIB5zhEBGRQXCG\nI2jr1vdgaWmO4ODxUkchIpIlznAEffFFEo4fPy51DCIi2eIMR1Bc3B72cIiIdMAZDhERGQRnOII2\nblwHS0szvP56iNRRiIhkiTMcQefPn8OZM2ekjkFEJFuc4Qjavj2ePRwiIh1whkNERAbBGY6gdeui\noVKZYeLEUKmjEBHJEguOoJSU72FmxuEiIqov/gUVtHVrLHs4REQ6YA+HiIgMgjMcQatXL4dKZYYp\nU2ZJHYWISJZYcARdu3YV5uYcLiKi+uJfUEGbNr3PHg4RkQ7YwyEiIoPgDEfQsmWLoVKZYcaMOVJH\nISKSJRYcQRkZ6ezh6OhmzgPMSriIG9kFeNJOjWj/znC2tZQ6FhEZCP+CClq3bhN7OHUw4+MUnLqe\nXe3261kFeHnb11Vu69PaDmuHdmmoaEQkERYc0otB67/E1Tt5ejnWqevZ6LX6ZL3v366ZNT4Mflov\nWYhIf1hwBC1e/BYsLJQID58vdRSjdDj0+Vpnf6/EnkdqdgG0WkChAFrZqbF3TE+9Z+FMlMg48VNq\ngu7dy0Z2dvVLRFS7aP/OaGWnhskfxSbav7PUkYjIgDjDEbR69Tq+c9aRs61lg8xoiEgeOMMhIiKD\nkG3BWbFiBQICAjBs2DB8+umndb7/kSNHqrzdzc2tytsXLozEnDnhdX4cIiJ6SJZLamfOnMHVq1ex\nZ88e3Lt3Dy+//DJ8fHzqdIytW7fC19dXeP/CwgfQas3qGpX+hNfh0OPi0bn83+wHaGlnyXNZkN4L\nzuXLlxEREQGNRoNevXohIyMDU6dORXh4ONRqNYKCgqBWq7FmzRoolUo4ODhg6dKlSExMxNWrVzFn\nzhzk5+fjpZdewvHjx+Hl5QV/f3+cOXMG5ubmWLduHXr16oWuXbsCAGxsbPDgwQOUlpbC1NS0Up7i\n4mKEh4cjMzMTRUVFCA0NxZUrV/DTTz9h6tSpWLt2LcLCwpCVlYXOnatvYi9fHs0eTh3wOhx6nM1K\nuFj+icvU7ALMSrjI/qQAvRecjRs3YsqUKfD29sb06dNhafmw6l+6dAknTpxA48aN4evri+3bt8PR\n0RGLFi3CwYMHoVAoqj1m27ZtMW3aNCxbtgz/+te/8Nprr0GtVgMA9u3bB3d39yqLDQBcuXIF9+7d\nw65du3D//n0kJSVh/PjxiImJwYYNG5CUlISSkhLEx8fju+++Q2xsbKVjWFtbQKk0hampCWxt1boP\nkp4YUx6/9V/iihFch9OumTWOznA3mnEBjOt1Yhb9uPFHsQEArfbhz1Q7vRecn3/+Ga6urgAAT09P\nnDlzBgDQokULNG7cGDk5OVAoFHB0dAQA9OzZExcuXECnTp2qPeazzz4LAOjevXv58QDg2LFj2L9/\nPz744INq79umTRvk5+cjPDwc3t7e8PPzq7D92rVr6NGjBwCgW7duUKlUlY6Rl/c75s+fAwsLMyxY\nsFhkGAzCmGZch4zoOpzS0jKjGRfAuF4nuWdp2lTTQGnq5kk7dYVz+Uk7eRZOQ9P7hwa0j8o+ABOT\n/x3ezOxh/0OhUFTYp6ysDAqFosIMp6SkpMpjarXa8v2++OILbN68GTExMdBoqj8JLS0tsXfvXgQE\nBCApKQmRkZGVjv3nnGVlZcLPleqG1+HQ4+LRuWyqUPBcrgO9z3BatmyJlJQUuLu74+TJk1AqKz6E\njY0NFAoFMjIy4OTkhHPnzsHV1RVqtRp37twBACQnJ1e4T3JyMnx8fPDtt9/CxcUFubm5WLFiBWJj\nY2Fra1tjnosXL+LatWsYMmQIunXrhsDAQAD/K2qtW7fGoUOHAAAXLlxAUVFRlcdZvHi5Ub07lCNe\nh0OPi0fnMv8m1I3eC05ISAjmz5+PHTt2wMXFBXl5ldf1o6KiEBYWBqVSCWdnZ/j5+aGwsBCbNm1C\ncHAwPDw8Ksx4UlJSsGvXLigUCoSGhuLQoUO4d+8eZsyYUb7P8uXL4eTkVOmxnJ2dER0djT179sDU\n1BTjxo0DAHTp0gXDhw/HRx99hAMHDiAoKAgdOnSAg4ODvoeEiIgAKLR/Xt/Sg2+//RYqlQodOnTA\nli1bAACTJk2q9/G8vLxw8OBBWFlZ6StinWVm5mLOnFmwsDDDokXLJcvxV8b07opZqmdMeeSeRaoe\nTmZmbpW3G9N4Glp1z72m10jvMxwzMzNERkZCpVJBpVJh9erV+n6IKu3ZsweJiYmVbp81a1b5hwJ0\noVJZQqWS5WVLRERGQe8znMfRo3c3xvZuxpjyMEv1jCmP3LNwhmM86jPDke1X2xARkbyw4AgKC5uG\nkJA3pI5BRCRbbEoIatzYDhYWHC4iovriX1BB8+e/9bderyUi0hWX1IiIyCBYcARNmxaC8ePHSR2D\niEi2uKQmyMnpCahU/P9wiIjqiwVHUETEfPZwiIh0wCU1IiIyCBYcQSEh4/Haa6OljkFEJFtcUhPk\n4tKOPRwiIh2w4AgKC5vDHg4RkQ64pEZERAbBgiNo4sQxCAwcJXUMIiLZ4pKaoC5durKHQ0SkAxYc\nQdOmzWIPh4hIB1xSIyIig2DBETR2bBBeeWWE1DGIiGSLS2qCevbsDUtL9nCIiOqLBUfQlCnT2MMh\nItIBl9SIiMggWHAEBQcH4OWX/aWOQUQkW1xSE9S3rwcsLc2ljkFEJFssOIImTpzMHg4RkQ64pEZE\nRAbBgiNo5MiheOklP6ljEBHJFpfUBPn4DIRazR4OEVF9seAIev31CezhEBHpgEtqRERkECw4goYN\nGwxfXx+pYxARyRaX1AT5+w9lD4eISAcsOIKCg8ewh0NEpAMuqRERkUGw4Ajy9x+E/v29pI5BRCRb\nXFITNHJkIHs4REQ6YMERNHJkIHs4REQ64JKaoOLiYhQXF0sdg4hItlhwBI0YMQQDBw6QOgYRkWxx\nSU1QYOBoqNUWUscgIpItFhxBI0aMZA+HiEgHLDiCCgoKYM4PqRER1Rt7OIJGjRqOwYNflDoGEZFs\ncYYjaMyYcezhEBHpgAVHkL//MPZwiIh0wIIj6P7936BQFAMwkzoKEZEssYcjaPToVzFs2MtSxyAi\nki3OcASNH/8GrKzYwyEiqi8WHEEvvjiYPRwiIh2w4AjKyspCSUkBlEq11FGIiGSJBUfQuHHBUCpN\nsH9/otRRiIhkiQVHUEhIKKys+FUDRET1xYIjaMCAgezhEBHpgAVH0O3bt1FYaAmVqpHUUYiIZIkF\nR9CkSWPZwyEi0gELjqBp02byOhwiIh2w4Ajy8vJmD4eISAcsOILS028iN9cSGo291FGIiGSJBUfQ\nlCkT2cMhItIBC46gmTPDYW3NHg4RUX2x4Ajy8PBkD4eISAcsOIJSU6+jUSNL2Nk1lzoKEZEsseAI\nmjFjCns4REQ6YMER9Oab89jDISLSAQuOoOeee/5v3cO5mfMAsxIu4kZ2AZ60UyPavzOcbS2ljkVE\nMsKCI+jatavQaFRwcGghdRQhMz5Owanr2Q1y7OtZBXh529cNcuxH+rS2w9qhXRr0MYjIsFhwBM2e\nPb3WHk5A7Hn8kvX3nAHp26nr2ei1+qTUMfSujb0ae8b0lDoGkSRYcATNm7cQGk3NPRxD/yEx5BLf\nK7HnkZpdAK0WUCiAVnZq7P3T8zWm5UZjygIYXx4iqZhIHUAuevd2w7PPPid1DMlE+3dGKzs1TP4o\nNtH+naWOREQywxmOoEuXfoRGo4Kzcxupo0jC2daywoyGiKiuWHAEzZ07m9fhEBHpgAVH0MKFUdBo\nVFLHICKSLUl6OEuWLEFaWpoUD11vPXq4omfPXlLHICKSLUlmOJGRkVI8rE5++OF7aDQqtGrVXuoo\nBseLPokqevQ78d/sB2hpZ8nfCUFCBScrKwtjxozBwYMHAQDz5s2Dt7c3PD09q9y/f//+8PLywunT\np9G3b19otVqcOnUK7u7umD17NoKDg7FgwQIcPXoUubm5uH79Ov773/9i3rx58PDwgJubG86ePQsA\nmDZtGgIDA6HRaPD222/D3Nwc5ubmWLNmDRo1alTl4589exZr1qyBUqmEg4MDli5disTERCQnJyM7\nOxvXr1/HuHHjMGLECJw/fx7VGi8CAAAKbElEQVTR0dFQKpVwdHREVFQUzM3NKx1zwYII2fRw5HrR\nJy/2JLmYlXCx/DKB1OwCzEq4yA/VCBAqOPb29mjUqBFu3rwJZ2dnNGnSBFlZWdXuf/PmTQQEBGDm\nzJno3bs34uPjMX36dHh6emL27NkV9v31118RExODkydPYvfu3fDw8KjymB9//DFeffVV+Pv74/Tp\n08jMzKy24CxcuBDbt2+Ho6MjFi1ahIMHD0KhUODKlSvYvXs3UlNTMWvWLIwYMQKLFy9GbGwsbG1t\nsWLFChw5cgSDBw+ucDxrawusXbsWpqYmsLVV1zhWg9Z/iat38mrch6om14s92zWzxuHQ56vdLnLe\nGAqz6MeNP4oNAGi1D3+m2gkvqXl7e+M///kPgoKCkJ6ejhdeeKHafa2trdG2bVsAgFqtRufOnaFU\nKlFWVlZp36effhoA0Lx5c+Tm5lZ7zH79+uGtt95CamoqBg0aVH78v8rJyYFCoYCjoyMAoGfPnrhw\n4QI6deqE7t27w9TUtPyx7t69ixs3biA0NBQAUFBQgMaNG1c6Zl7e72jVqr3QBXwfBj9d43Z9MtQF\nhbVd9GnILCKkyFLT4/3dx6Y69cnStKmmgdLUzZN26gq/E0/aybNwGprwhwb69++PpKQkFBUV4eef\nf0b37t2r3dfU1LTCz0pl9XWtpm0AUFxcDAB49tlnsX//frRp0wYRERE4c+ZMlfsrFApoH731AFBW\nVgaFQlHlY5mZmaFZs2aIi4tDXFwcDhw4gAkTJlR53G++Scb58w37/WHGihd9ElX06HfCVKHg70Qd\nCM9wnJ2dkZubi9jYWIwYMQImJg33ATeFQoEHDx4AAC5dugQAiI+Ph4eHBwYPHgytVotLly7hmWee\nqXRfGxsbKBQKZGRkwMnJCefOnYOrqytKS0ur3BcArl27BhcXF8TFxaFXr17o0KFDpX3ffnuBbHo4\n+saLPokqevQ7YUwzRjmo06fU+vbtiyNHjmDv3r0NlQcA8Oqrr+KVV15B27Zt0bnzw3cOLVu2xPTp\n06HRaGBubo6lS5dWe/+oqCiEhYVBqVTC2dkZfn5++OSTT6rcd8mSJZg7d275bCcgIKDK/ZYuXcXr\ncIiIdKDQ/nn9iaqUmfmwt2Rs72aMKQ+zVM+Y8sg9i1Q9nEd/A/7KmMbT0Kp77jW9RvW+Dufzzz9H\nbGxspdtHjx4Nb2/v+h5W2Pfff4+VK1dWun3gwIEYNWqU3h/v3Lmz0Ggs0LFj9b0rIiKqHmc4AjIz\nc+HvP8joejjG9O6KWapnTHnknoUzHONh0BnO382qVe+yh0NEpAMWHEEuLu3+1u9miIh0xYIj6Kuv\nvoS1tQW6duUXeBIR1QcLjqAVK94xuh4OEZGcsOAIWrt2Ixo14rfBEhHVFwuOoFatWrOHQ0SkAxYc\nQUlJJ2BtbQFX1+ekjkJEJEssOILWrFnJHg4RkQ5YcARt3LiVPRwiIh2w4Ah64gln9nCIiHTAgiPo\n+PHPYGVlATc3d6mjEBHJEguOoHXr1vzRw2HBISKqDxYcQVu2bIeNDXs4RET11XD/bedjxsHBAc2b\nN5c6BhGRbHGGI+jo0f+DlZU5nn++n9RRiIhkiQVH0KZN66FUmrDgEBHVEwuOoG3b4tjDISLSAXs4\nguzt7dGkSROpYxARyRZnOIISEz+BlZUFPD0HSB2FiEiWWHAEvf/+ZiiVJiw4RET1xIIjaOfOj2Bj\no4ZWK3USIiJ5Yg9HUKNGNrCxsZE6BhGRbHGGIygh4QDUagv4+LwodRQiIlliwREUG7sNSqUJCw4R\nUT2x4Aj68MP9sLVVo6hI6iRERPLEHo4gtVoNtVotdQwiItniDEfQvn27oVZbwM/vZamjEBHJEguO\noF27dkKpNGHBISKqJxYcQfv2/Ru2tmrk5xdLHYWISJbYwxFkZmYGMzMzqWMQEckWZziCdu/eBbXa\nHIMHj5A6ChGRLLHgCNq9exeUShMWHCKielJotfx2MCIianjs4RARkUGw4BARkUGw4BARkUHwQwPV\neOedd/Ddd99BoVBg3rx56Nq1a/m2r776CtHR0TA1NYW7uzumTJkiWRZ/f39oNJryn1etWgUHB4cG\nzXPlyhVMnjwZY8aMQVBQUIVthh6bmrIYemxWrFiB5ORklJSUYNKkSfDx8SnfZuhxqSmLocflwYMH\niIiIQFZWFn7//XdMnjwZnp6e5dsNPTb6UtO597ir6fyqkZYqOXv2rHbixIlarVarvXr1qnb48OEV\ntg8cOFCbkZGhLS0t1QYEBGivXr0qWZYhQ4Y02GNXJT8/XxsUFKSdP3++Ni4urtJ2Q45NbVkMOTan\nT5/Wjh8/XqvVarXZ2dlaDw+PCtsNOS61ZTH0OXPo0CHt1q1btVqtVnvz5k2tj49Phe2GHBt9qe3c\ne5zVdn7VhEtqVTh9+jT69+8PAHBxccH9+/eRl5cHAEhLS4ONjQ0cHR1hYmICDw8PnD59WpIsAJCf\nn99gj10Vc3NzxMTEoFmzZpW2GXpsasoCGHZsevXqhXfffRcAYGNjgwcPHqC0tBSA4celpiyA4c+Z\nQYMGYcKECQCAW7duVZhNGXps9KW2c+9xVtv5VRMuqVXh7t276Ny5c/nP9vb2yMzMhLW1NTIzM2Fn\nZ1e+rUmTJkhLS5MkCwDk5OQgLCwM6enpcHNzw4wZM6BQKBosj1KphFJZ9Wlj6LGpKQtg2LExNTUt\n/zbxffv2wd3dHaampgAMPy41ZQEMf848MnLkSPz666/YvHlz+W2GHht9qe3ce5zVdn7V5O85YrXQ\n/uXSJK1WW/4L+ddtABr0l7WmLAAwc+ZMDB48GBYWFpg8eTI+/fRTDBgwoMHy1MTQY1MbKcbm2LFj\n2L9/Pz744IPy26Qal6qyANKdM7t378alS5cQHh6OTz75BAqFwujOGRJX3flVEy6pVcHBwQF3794t\n//nOnTto0qRJldtu376Npk2bSpIFAEaNGgVra2uYmZnhhRdewE8//dRgWWpj6LGpjaHH5osvvsDm\nzZsRExNToSkvxbhUlwUw/LikpKTg1q1bAICOHTuitLQU2dnZAIzvnCExNZ1fNWHBqUKfPn1w9OhR\nAMCPP/6IZs2alS9hOTs7Iy8vDzdv3kRJSQlOnDiBPn36SJIlOzsbEyZMQHHxw2+w/vrrr9GuXbsG\ny1IbQ49NTQw9Nrm5uVixYgW2bNkCW1vbCtsMPS41ZZHinDl//nz5u+C7d++ioKAAjRs3BmBc5wyJ\nqen8qg2/2qYaq1atwvnz56FQKLBw4UL8+OOP0Gg08Pb2xtdff41Vq1YBAHx8fDBu3DjJsrz//vs4\nfPgwzM3N0alTJ8yfPx8mJg33PiIlJQXLly9Heno6lEolHBwc4OXlBWdnZ4OPTW1ZDDk2e/bswfr1\n69G6devy29zc3PDUU08ZfFxqy2Loc6awsBCRkZG4desWCgsLMXXqVOTk5Ej2+6QPVZ1769evr/Mf\nYDmq6vxavnw5nJycar0vCw4RERkEl9SIiMggWHCIiMggWHCIiMggWHCIiMggWHCIiMggWHCIiMgg\nWHCIiMggWHCIiMgg/h/T2AZ5sHPGJwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbgAAAIOCAYAAADKsRhGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzt3XmcXFWd9/FPMBIwRKIBo4CQB9CfKMqggMo4iPsyg4Ii6KiIjoL7gOAIPriBOqLgvgEjmwwacVQUAZ0R0BFQRBQeFH7DDhKNJGwhZiHQzx/nNtSUvVQnXVVdpz/v1ysvuu89de+5den61jn33HtmDA0NIUlSbdbrdwUkSeoGA06SVCUDTpJUJQNOklQlA06SVCUDTpJUpZn9roA02SJiJvAh4A3AfOAq4PDMPGeU8lsCvwcuzczdx9n2TsCxwC7AcuAM4JDM/Euz/gnA14EnAP8FvHZ4XbN+FvA74KjMPKXD49kHeCuwIzAL+APwA+CYzPxjJ9uYqIi4AFiTmc+PiAXADcDrM/O0iDgZeFZmbtvJ69ehDvsDJwGPzcw/rO12+qmT90rdYwtONfo0cAjwEeCJwLnAmRGx4yjlvwisP95GI+IxlNC6kRJw+wIvAE5oKfZ54NfATsCjgXe1beZfgD8Bp3ZyIBHxpabsT4HdgKdQwvtlwK8iYptOtrOObgEeA3y7B/taZxFxdUTs3u96qP9swakqEbEhcCDwmcz8WrP4sIh4FiVcXtNWfi9gV+As4JHjbP5dwGrgLZm5unn9IcD3IuIDlCB4DvDWzLw+Ir4G/CNwdFN2q6YOz8rMcZ+wEBF7A28H9s7M/2hZdW1EnAdcARwBvHG8ba2LzLyPEspTXkQ8Anh8v+uhqcGAU222pbTG/rtt+Q+AQ1sXRMRGlBbXe4FnM37APQ+4YDjcGv8FDAHPp4TkTODmZt1NwOYtZT8LnJyZl3d4LO8GftkWbgBk5uKI2IUSqjQtlvMprcqPA4syc7emS/QoYE9gS0rr85OZeeLwtiJiB+B4YAdgUVOelvULaOmibFn+MuBTwALgauBtmXnRSAcSEZtTunafRXmffwMcmpkXd/hetB7jMylfFJ5P6Sb+BqXFvlVTT4DzI+KmzFwQEetRzvF+wNaUsP5q8z4MNdu+EfgmEMCLKe/9ccAWmbmopQ77AAspXdD/AxwGvJny3i4Bfgy8JzOXdnpc6h67KFWbhzT/XdO2/DZgk4h4eMuyo4DrgZM73Pa2lIB4QGYuB/4MPA6Y0Swebp3dP7wsIl5MaSl+oJMdRcRDgadTuldHlJk3Zeb9bYsPBd5ECTooH+RvAT4MPJnSnXpC80FNRKwPfJ/yWbArsFfz74njVHEe8M/A64BnAH+htGQfNsKxrA/8BHgS8FpgZ+Ba4D8jYutx9jOSL1C6S/8G+AxwMPBKStj/fVPmlc1+oLznRwFforwHR1K6ed/btt19KMEbwJmU/4de3lZmb+CyzEzK+/xR4P2U4Hwl5b340lock7rAFpxqcy1wH/A04Ecty3do/jsHuLu5Hncg8LTMHIqITrY9h9JiaHcP8HDKN/j7KK22m4EtgEXNB/zngfcBcyLiDMqH/e+A/TPz1hG2OY/SEr15hHVjOTMzfwYQEZtRWi2HZObpzfpjI2K4BfQtYHdK62PfzLysed3rgcXj7GcupSv2muY1hwAXUrpof9hWdi9KaOyYmb9tyr+Fcv3y7bS1rDvwveHjiYhjgA8Cu2TmtyPi9qbM7Zl5W/NF4RDgy5n55WbdtRHxJODQiDim5UvCfZl55PBOIuK/mrp/pfl9Q+CllHAE+A/gwsy8uvn9loj4BqX1pynAFpyqkpn3AKcB74mIv42Ih0TEyynfzgHubbqsjgM+nZlXTeK+VwEXAfs3obYfpeVyKKUFeQqlxXEFJVR+R+m2G8lwK3Cif6OXtfy8U/P689rKXAA8JSJm8GBL7bctx3EXZeTpWJYOh1vjV81/R/qm8HTgjuFwa/axmvJe/c04+xnJ8L5owmkp8IhRym5H+WIy0nuwKbBZy7LL2sosBHaPiLnN7y8GNqR0ZUJpte4VEZdHxO0RcQ9w+Bh1UY/ZglON3k1pUf2c0k14IeVb/peBOyitho0p3UsTcVez3XYbN+ugtBZ+SPmWfxnwvWb/uzUtxd2BF2Tmmog4hf/dymy1BFgJTHSU5LKWn4frenFEtA5qmQk8lNJKnAMMZebKtu3cM85+7m79JTPvjYh7gb/qomzqMbcJgFazgBxnPyP5S9vvQzzYPTzSvgEWRsR9LcuHvzg8mnLbBfzv9w7KuTse2INy68fewM9aWtyfpvQCHAb8Z1OvA5l4i1RdYgtO1cnMuzPzFcAmwPzM3I3ywXt1Zt5LuVayLXBPRKyJiDWU1tazm9/3G2XT19AWOM2ovU1oWjyZ+SvKh+ZjMnNnStCd2tJ6eQQPfpAuY5SBLc3IxQspH64jiojdm4EmoxkO3b0oLaXhf9tTrhneSelynRERG7S9di5jm91Wl1mU0BwpGO+itLL+pu3fdjx4zaxbht+Dt7ft+ymU9+B3o72wacmeS2mlzQL+gTKgZdhrgJMy89jMvCIzr6WD203UO7bgVJ1m6P+tmXlJy+JXUwYOQBkcMLvtZR+lXDt7Iw9+o293LnBwRGyYmSuaZS+ltBIfaIk13WZ/jogXUO5dax22fhfwKMq1wvmUFuVoPgv8ICLelplfaTvGR1EGx1wGvGKU11/a1G3TzPxxy2s3A1Y0rcjhFtTONCNPmxGP2zH2dbhHRUQ0gy2g3IQO5Yb5dpcABwGrM/OBa4oRsS3du/1guEV3NaW1uVkTQMP7ngc8tOU8jmYhpTv7RZTuydZ7AdentLSHt7kB5csTETGjk1tB1F0GnGr0euCpTUvsVsqH6wLgcwCZeUP7CyLiTmBuZl7Zsuxfgadm5ouaRV+i3Av3tYj4ECUQjwaOax1K3rz2oZTRfu/LzDtbVl0AvDsibqOM/mu/NvSAzDwrIo4FvhgRj6N0k91Fubb2McoH99vGeP0fI+LfgU9FxHLKdbbHNcdxCWUE5HmUIPtURAxv6xOUkaFjuQP4QkQcRuki/Dzlvf7pCGXPBK4DvhkRh1JuRXgO5f05CPi3cfY1EcNfGF7YnNPfUs77+yLiFkqIb0a59rmGctvCWL7f1O9I4NzMvL1l3S+BfSLiW5TesE9RbhN4I6U34BeTc0haW3ZRqkb/RBnA8F3KgI7HAbtn5m0T3M5jaOmSbO5teh7lA/IKyrf7hZQP6XbvoXzYnty2/CBKF+ZvKN2V7xmrApl5KOXazw6UMPp/lOuJp1JuGB9vtONbgH+nPK3lWspAl+83y2laMC+ndC/+EvhOc0yXjLSxFjdSgvKbwC8oX5b3bAbatB/DSsr7dgvl+uQ1lFGch2TmZIYbTYvyG5QvD+dSPuM+RLk38MOUe9e+R3kf228BGGl79wBnU97/09tWv4Py5eAiynv2NcqtB1dTjnP7dT0erZsZQ0O2oiVJ9bEFJ0mqkgEnSaqSASdJqpIBJ0mqkrcJ9Mltty1zdI8kraNNN50z2lNsbMFJkupkwEmSqmTASZKqZMBJkqpkwEmSqmTASZKqZMBJkqpkwEmSqmTASZKqZMBJkqpkwEmSqmTASZKqZMBJkqpkwEmSqmTASZKqZMBJkqpkwEmSqmTASZKqZMBJkqpkwEmSqmTASZKqZMBJkqpkwEmSqmTASZKqZMBJkqpkwEmSqmTASZKqZMBJkqpkwEmSqmTASZKqZMBJkqpkwEmSqmTASZKqZMBJkqpkwEmSqmTASZKqZMBJkqpkwEmSqmTASZKqZMBJkqpkwEmSqmTASZKqZMBJkqpkwEmSqmTASZKqZMBJkqpkwEmSqmTASZKqZMBJkqpkwEma9pYsX80Vi+5myfLV/a6KJtHMfldAkvrpnKsWc+x517H53A259c4VHPLcbXjJdvP7XS1NghlDQ0P9rsO0dNtty3zj1RMHLry831WYkEV3reRPy1b1bH+zZq7Hqa/bka3nzeb6pcvZ77TfsGrN/T3Z96PnzGKzjTfoyb6msuP23WGtX7vppnNmjLbOLkpJ09r8ObPYet5sALaeN5v5c2b1uUaaLHZRSpVbl2/H/XD8RTdywsU392x/i5et4vqlyx9owS3uYetxj+3nc8CuC3q2v+nGLso+sYtSmhq8BjfYxuqiNOD6xICTpo4ly1ez6K6VbLbxBmwye/1+V0cTMFbA2UUpadrbZPb6BluFHGQiSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdp2nIm77r5LEpJ05KzCNTP2QT6xNkE1C2DNoN3u17N6N3PmbxbTZdZvbs1L6EzektSG2fyrp9dlFJlBm0G73a9mtG7nzN5t3JW7+6xi7JP7KKU+strcHVwRu8pyICT+s+ZvAef1+D6KCJujIh39rsekv7aJrPX5ymbPdxwq9S0CbiIeHJEXBkRN07iNteLiEMna3uSpMkzLQIuIvYBzgWumeRN7wgcNsnblCRNgq6NooyInYHTgMcCFwBnAh8DdgJuAN4BHAkcmpknR8Qeze+PB24Hjgc+mplDEXEysFFm7t2y/SFgj8w8q2mVfR54EfB3wB+BN2XmT5viGwHPBF5GCaWJHMfjgS8BOzeLfgEcAGwB/BSYGRErgT2A84FPA/8IrAaOmsi+JEmTpystuIiYBZxFaTXNAz4HfLit2POBbYBTImJ74LvAx4G5wD7AwcAbJ7Dbg4GPAI8ETgfOjIgNADLzxMxc23HHXwRuBh4NbA78ATgmMy8C3gIszcwNMvM/gTcBrwaeDWwLPAlwWJYk9UG3uih3Ah4FHJWZKzLzR5Swa3VKZt6VmUPAPwEXZOYZmXlvZl4MfBPYdwL7PDszL8rMlcAngIdRgmZdzaW0xlZl5nLggMzcZ5SyewHfyMzfZeZfgCOAh05CHSRJE9StgHsMsDwzl7Qsu6StzE0tP28N/L5t/bXAggnsMx/4oQTRUmCzCbx+NB+htMpuiIivAruPUXYLSvfrcD3uBBZPQh0kSRPUrYBbD7i3bVn7Q97WtPw82jNyRrxXLCIeMsLi9mUzRnv9RGTmDynXEd8HzAF+GBHHjFJ8Fn99XXNaDOSRpKmmWx++fwY2joiNW5btMkb564Dt2pY9gdKKA1hJ6XIcts0I23hgWURsRLn294dOKzyaiNgkM+/JzIWZ+VrgrcCBoxRfRAnD4dfOo3TVSpJ6rFujKC8F7gHeHxEfBHajDCoZzSnARRGxF/ADyojH1/DgIJNrgFdFxJbAHcDhQPuD414aETsBV1JaW3cDP1uXg4iIDYFrIuII4ATKF4Kn8mDwrgDmRMTmTb3OAQ5uujJvoQya6c8D7iRpmutKCy4z7wFeRQmpJcCbgWP4627K4fKXAPtTrnfdCXwVeHdmfrsp8jXKNbyrgN8C36YEWKuTKLch3A68FtgzM1cDREQ2Q/k/A2wVESubf1uNcxwrgFc0dbuD0kILym0AAD+hhN11wJ7N9s8Efk4J5SuadZKkHuvasyib62QzMnNN8/vhwD6ZOaH70Drc142UoftfnOxtd4vPopSmBp9HOdjGehZlV7ooI2IGcDXlXrTDgS0ptwIs7Mb+JGltOKNA3boScM3TR14NfJbSZbiMciP3x7qxv7XVPEfyo2MU+f4Y97xJU8agz+LdqlczesPIs3p/8Owc/4WTrMZZvafCvIRde1RXZv6a8tisrsvMBWv5umMo1wYlTUMjzep98x0r+lwrTRZn9JYqMBW+LU+WXs3oDc7qXTsnPO0TB5lI/ec1uMHnjN5TkAEnTQ2OohxsPR9FKUmDYpPZ6xtslfI5iZKkKhlwkqQqGXCSpCoZcJKkKhlwkqQqGXCSpCoZcJKkKhlwkqQqGXCSpCoZcJJEeWTXFYvuZsny1f2uiiaJj+qSNO350OU6+bDlPvFhy+qmGiZA7ffEp6vW3N+TfQ+rcdLTTq3LdE9jPWzZLkpJ095IE59q8NlFKVWohglQp9vEp056OvnsouwTuyilqcNrcIPLCU+nIANOmlqc+HQwOeGpJI3DiU/r4yATSVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOElSlQw4SVKVDDhJUpUMOKnHlixfzRWL7mbJ8tX9ropUtZn9roA0nZxz1WKOPe86Np+7IbfeuYJDnrsNL9lufr+rJVVpxtDQUL/rMC3ddtsy3/gBduDCy0ddt+iulfxp2aoR182auR6nvm5Htp43m+uXLme/037DqjX3j7u/R8+ZxWYbb7DW9W133L47TNq2pH7adNM5M0ZbZxel1EPz58xi63mzAdh63mzmz5nV5xpJ9bKLUloLY7WAjr/oRk64+OYR1y1etorrly5/oAW3eJSWXrs9tp/PAbsuWJuqStOWXZR9Yhfl9OQ1OGlyjdVFacD1iQE3fS1ZvppFd61ks403YJPZ6/e7OtJAGyvg7KKUemyT2esbbFIPOMhEklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA07qMWf0lnrDZ1FKPeRsAlLvOJtAnzibwGDr9Yze4Kze0kic0VuaIpzRW+oduyiltdDrGb3BWb2libKLsk/sopyevAYnTS5n9J6CDLjpyxm9pcnjjN59FBEXAJdm5qH9roumBmf0lnpjWgRcRGwFfBrYrVl0PnBQZi6ahG0fBHw5M72pSZKmkOkyivIHwApgG+BJwDzg+HXdaERsQglOv45L0hTTtRZcROwMnAY8FrgAOBP4GLATcAPwDuBI4NDMPDki9mh+fzxwOyWAPpqZQxFxMrBRZu7dsv0hYI/MPCsibgQ+D7wI+Dvgj8CbMvOnETEXuBQ4IjPvBu6OiBPoMOAiYj7wFUrrbxbwW+CdwJLmOGYASyLinZn5bxFxBPB2Suh9aaLvmyRpcnSlBRcRs4CzgHMpraXPAR9uK/Z8SovqlIjYHvgu8HFgLrAPcDDwxgns9mDgI8AjgdOBMyNig8y8MzPf1NYd+Vjg1g63exTwMOD/NMdyHnBCZt4KvLAps0kTbi8E/i+wL7AFsArYeQLHIEmaJN3qotwJeBRwVGauyMwfUcKu1SmZeVdmDgH/BFyQmWdk5r2ZeTHwTUpQdOrszLwoM1cCn6CE0rPbC0VEAEdQgqsTc4F7gRXNdbYPZ+Yuo5TdC/hxZv53U4+jgXsmcAySpEnSrYB7DLA8M5e0LLukrcxNLT9vDfy+bf21wIIJ7DMf+CFzObAU2Ky1QETsBPwMODYzT+9wu58Engb8oekqfXlEjDYsdQtKt+VwPe6jHIckqce6FXDrUVo9rdofuLem5efRnlc04r1iEfGQERa3L5vR+vqIeBHwE0oL7MhR9vdXMvNSSvfkAcBq4BTgjFGKz+Kvr2tOl4E8kjSldOvD98/AxhGxccuy0br1AK4Dtmtb9gQebP2spHQ5DttmhG08sCwiNqJcL/tD8/vTgYXAfpn5lU4OoGVbc4H7MvP7mXkA8DLglRExb4TiiyjX94ZfOxN43ET2J0maHN0aRXkp5drT+yPig5QRiM8fo/wpwEURsRdlSP8zgdfw4CCTa4BXRcSWwB3A4ZQBHK1e2nRBXgm8D7gb+FkTMicCH8rMM9fiWH4BfDcijqK04HamdH/eQbn1AMqlvauBc4CTImJX4LKmHj5NV5L6oCstuMy8B3gVJaSWAG8GjuGvuymHy18C7E8ZBXkn8FXg3Zn57abI1yjX8K6iDNP/NiXAWp1EuQ3hduC1wJ7NoJBnAk8Ejo6IlW3/turgcPYBdgUWU4Lt5cDLMvN+4DfAhcBFwLuAb1Hui/sOZZTm+pRbJCRJPda1Z1E218lmZOaa5vfDgX0yc8cu7OtG4JjM/OJkb7tbfBbl9OWzKKXJ0/NnUTajDK+m3It2OLAl5VaAhd3YnzQonE1A6p2uBFzz9JFXA5+ldBkuo9zI/bFu7G9tRcSrgK+PUeTyzHx6r+qjwTGZM3p/8OwcsWyryZ7Nu52ze6tGXXtUV2b+mvLYrK7LzAVr+bozGH3IvzTpRprR++Y7VozzKklrY1rMJiBNtl7P6O1s3tLEOeFpnzjIZHryGpw0uZzRewoy4KYvR1FKk8cZvaUpxBm9pd7wOYmSpCoZcJKkKhlwkqQqGXCSpCoZcJKkKhlwkqQqGXCSpCoZcJKkKhlwkqQqGXBSjy1ZvporFt3NkuWr+10VqWo+qkvqIR+2LPWOD1vuEx+2PNjGmvAURp/0dKQJT1etub/j/XZj4lMnO9UgG+thy3ZRSj000oSnkrrDLkppLYzX6hlt0tO1nfB0mBOfSp2zi7JP7KKcnrwGJ00uJzydggy46csJT6XJ44Sn0hTihKdSbzjIRJJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA04ClixfzRWL7mbJ8tX9roqkSTKz3xWQ+u2cqxZz7HnXsfncDbn1zhUc8txteMl28/tdLUnraMbQ0FC/6zAt3Xbbsq688QcuvLwbm+25RXet5E/LVvVkX7Nmrsepr9uRrefN5vqly9nvtN+was39Pdn3WB49ZxabbbxBv6vRV8ftu0O/q6ApbtNN58wYbZ1dlJr25s+ZxdbzZgOw9bzZzJ8zq881kjQZ7KKsTC3feI+/6EZOuPjmnuxr8bJVXL90+QMtuMU9ajmOZ4/t53PArgv6XQ1pYNlF2Sfd6qLUxHkNThpcY3VRGnB9YsBNLUuWr2bRXSvZbOMN2GT2+v2ujqQOjRVwdlFKwCaz1zfYpMo4yESSVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTpJUJQNOklQlA06SVCUDTsIZvaUa+SxKTXvOJiDVydkE+mRdZhOoZdbusUz3Gb2dzftBtcxxqO5wRm9pDM7oLdXJLsoBNB2+0U73Gb2dzVtad3ZR9okTnk4dXoOTBpczek9BBtzU4oze0mByRm9pHM7oLdVnSgwyiYgTIuL0ftdDklQPuyj7xC5KSVp33iYgSZp2xrwGFxGXA6dn5tHN7+sBS4C3ZebCMV63ALgBeBlwNLAAOBN4P/B1YEfgV8ArM3NpRJwMbJSZe0fE/sB7gE8BHwUeAXwfeENm3hcRFwCXZuahbft6cmZeGRFvaPazBXAncCLwwcwct8UUEdsBnwee1iw6C3hXZt4VEbs39di7KbMF8FPgNZl5d/P6twHvao73lma/o75PkqTuGa8Fdwbw8uFfMvN+4BrgSR1uf39gV+A5wKuBhcAbgW2AJzTrR7IVsAvwRGA3YF/g78fbWURsQQm0dwAbNft9XYevnQX8GLiCEl47NPv/Qkux2cBrgWdQ3oOnDx9DROxJCeT9gTnAIcCpTWhKknpsvID7FvD0iGi9KWgWcHuH2z8xM+/MzF8Ci4HzM/OazPwTcCnwuFFe93DgA5m5PDN/SwnVToLi4ZRjuiczhzLzf4BtMvOsDl77YmAucERm/iUzbwE+CewdEQ9pyqwHfLo5ppuAS1rq9RbgpMy8JDPva/b5I2C/DvYtSZpkY3ZRZub/RMSVlK7GEyJifeDxwK873P4tLT+vBG5t+320h+3dkZl3tvz+F2DDDvZ3FXAC8POIuJjSIju5rR6j2Rq4ITNXtCy7ttnvo1qW3TBKvbYBXhgR72xZvx5wVwf7liRNsk7ug/sWpZvyBOAFwJ+Bn3e4/fYn1nb6BNuJPOl2uHVFc53tgIj4JLAn5XrZYRHxnMy8ZJztjPUAwtbrd6PVbQWl9Xd0B3WWJHVZJ6MozwCeFxGzKdeVPtHJgI0uWgk8rOX3bYZ/iIj1IuKRmXltZh6Tmc+gdCO+voPtXgcsiIjWVuUTgGWUUB+IYrvNAAAIFUlEQVTPtcBTWhdExJbNwBxJUo+N++HbXMdK4N+A+c1/++ka4LkRMS8iNgXe3rJuX+DyiHgylIChDBi5toPtnk1phR0VEbOa0ZmHAac2g2vG8xXK9bqXR8TMiNgV+C1loIskqcc6bV2cQenue0NmrulifTrxKWAp5bra+cDnWtZ9EzgJODsiVgAXUm5P+NJ4G83M5ZTRlrtQBsT8FDiX0modV2aeBxwEfIbS6jsReG9m/qSjo1LfOJu3VCefZNInPslkanAmAWmwOZvAFDTZAVfbLN+9mtF7Ks7m3c7ZvUc2HeZF1PgmdTaB5p64m8YpNj8zp8zw+EGss3pjpNm8b75jxTivkjQIbMH1iV2UY+vVjN6D0IJ7yzO3dHZvaRR2UU5BBtzU4DU4abAZcFOQATd1OJu3NLic0Vsag7N5S3XyKRuSpCoZcJKkKhlwkqQqGXCSpCoZcJKkKhlwkqQqGXCSpCoZcJKkKhlwkqQqGXBSCyc/lerho7qkhg9eluriw5b7pNcPWx60CVF7NeFpq6k+dY4Tn06ck6LWb6yHLdtFKTVGmvxU0uCyi3KaGLRvsr2a8LTV4mWruH7p8gdacIt73IIczx7bz3fiU2kC7KLsE+eDm3q8BicNHic8nYIMuKnJyU+lweKEp1KHnPxUqoeDTCRJVTLgJElVMuAkSVUy4CRJVTLgJElVMuAkSVUy4CRJVTLgJElVMuAkSVUy4CRJVTLgJElVMuAkSVUy4CRJVTLgJElVMuAkSVUy4CRJVTLgJElVMuAkSVUy4CRJVTLgJElVMuAkSVUy4CRJVTLgJElVMuAkSVUy4CRJVTLgJElVMuAkSVUy4CRJVTLgJElVMuAkSVUy4CRJVTLgJElVMuAkSVUy4CRJVTLgJElVMuAkSVUy4CRJVTLgJElVMuAkSVUy4CRJVTLgJElVMuAkSVUy4CRJVTLgJElVMuAkSVUy4CRJVTLgJElVMuAkSVWaMTQ01O86SJI06WzBSZKqZMBJkqpkwEmSqmTASZKqZMBJkqo0s98VmG4i4rHAl4FnAiuAM4H3ZObqEcruDRwBbANcD3wkM7/Tw+p2pNNjioj9gZOAVW2beG5mXtSDqk5IRDwZ+AawUWYuGKPcoJyncY9nAM/RVsCngd2aRecDB2XmohHKPhs4GngisAj4bGZ+tVd17VSnxxQRuzfr2s/VGzPzG92u50RExDMo7/2OwF8o9T44M/80QtlJ+3sy4HrvO8CVwLbAxsB3gSOBw1oLRcRTgNOAVwPnAi8EFkbEzpl5ZU9rPL6Ojqlx01hhMVVExD7AZ4BLKH+Uo5UbiPPU6fE0BuIcNX4AXEH5MNyAEuDHA//QWigiHt2UfR9wMuU9OCcibszMc3tZ4Q50dEzDMnOD3lVt4iLiEcCPgQ8AzwceAXwL+CqwZ1vZSf17souyhyJiJ+CpwHsz887MvAn4OHBARLSfiwOAH2fm9zJzZWZ+H/gJ8Obe1npsEzymQbIRpUX6k3HKDcR5ovPjGRgRMRe4FPiXzLw7M/8MnMCDLZ9WrwNuzMyvZOaKpjX6deCtvavx+CZ4TINiFvDPmfm5zLy3OabvADuMUHZS/55swfXW04BbMnNJy7LLKN9otgGuaSv7o7bXXwY8r6s1nLiJHBPAnIg4E3gWcA/w0cw8oSc1nYDMPBEgIsYrOhDnaQLHA4Nzju4E3tS2+LHArSMUfxrlvLS6DNirC1VbaxM8JgAi4jTgBcAQ8AXgXzPz/q5VcoKabsiTACJiBhDA/sA3Ryg+qX9Pg/wNexDNA+5oW3Z7899NOizbXq7fJnJMtwGXU/riNwPeA3w5Il7S1Rp216Ccp04N7DmKkt5HAEeNsHogz9M4x3Q3cBGlC3ML4DXAe4EDe1bBCWi6H1cDv6N0lR8xQrFJPU+24HpvRpfK9lNH9czMHwI/bFn0HxHxHWA/4JxuVKxHBuU8jWtQz1HTVf5D4NjMPH2UYgN1nsY7psy8DPjblkXnR8RxlHP1ld7UsnOZeUVErE9pwX2VEsz7jFB00s6TLbjeuo3yDaXV8O9/7rBse7l+m8gxjeRGSkthUA3KeVoXNzKFz1FEvIhynebDmXnkKMUG6jx1eEwjuZEpfK4ycygzrwYOB17VDP5pNannyYDrrUuBzdtO6i6Uk3f9CGV3alu2C/CL7lVvrXR8TBHx1mY0X6vt2ssNmEE5Tx0ZtHMUEU8HFgL7ZeZYrZaBOU+dHlNEvCoi3ta2eMqdq6aev25bPHyN8N625ZN6nuyi7KHM/E1E/AL4ZES8i/LN5Ajgi5k5FBFXA2/NzAuA44DLImIv4GzgZcDfAe/oT+1HNsFjmgV8MSKup1zn2Rt4KWV038AYxPM0lkE9RxExEzgR+FBmnjnC+p8AJ2bmv1OGnn8oIt4BfA14BvBayrFNGRM8ptXAsRFxHeW+st0pA1T271mFO3MhsG1EfAA4BpgDfBi4MDOXdvPvyYDrvb0pJ3ER5YbHkynD6qH0TW8EkJm/j4h9gU9QRhtdA7wiM6/tdYU70NExAZ+n/M99BvAY4AZgz8z8VS8r24mISGAr4CHAzIhYObyKATxPnR4PA3SOKKH7RODoiDi6bV1QRvE+AiAzb4uIv6cc37GUUYlvy8yf9bC+nZjIMZ0ZEQdRRk5uCfyJMhz/2z2s77gyc1FEvJBy8/r7KYNjzuPBof9d+3tyPjhJUpW8BidJqpIBJ0mqkgEnSaqSASdJqpIBJ0mqkgEnSaqSASdJqpIBJ0mq0v8HZxCw9Y/8scsAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -369,7 +370,7 @@ } ], "source": [ - "pm.forestplot(trace, varnames=['group1_std',\n", + "pm.forestplot(trace, var_names=['group1_std',\n", " 'group2_std',\n", " 'ν_minus_one']);" ] @@ -412,33 +413,33 @@ " \n", " \n", " difference of means\n", - " 1.003488\n", - " 0.464556\n", - " 0.008673\n", - " 0.110008\n", - " 1.929636\n", - " 2618.006985\n", - " 0.999933\n", + " 1.013422\n", + " 0.447558\n", + " 0.006065\n", + " 0.086625\n", + " 1.850443\n", + " 6873.034799\n", + " 0.999837\n", " \n", " \n", " difference of stds\n", - " 0.944355\n", - " 0.450525\n", - " 0.006941\n", - " 0.152468\n", - " 1.885434\n", - " 3567.953258\n", - " 0.999944\n", + " 0.945937\n", + " 0.441513\n", + " 0.005225\n", + " 0.133137\n", + " 1.843480\n", + " 6840.669245\n", + " 0.999897\n", " \n", " \n", " effect size\n", - " 0.595406\n", - " 0.289738\n", - " 0.005166\n", - " 0.040975\n", - " 1.175411\n", - " 2756.596339\n", - " 0.999857\n", + " 0.600971\n", + " 0.279514\n", + " 0.003620\n", + " 0.037204\n", + " 1.128682\n", + " 7217.271311\n", + " 0.999775\n", " \n", " \n", "\n", @@ -446,14 +447,14 @@ ], "text/plain": [ " mean sd mc_error hpd_2.5 hpd_97.5 \\\n", - "difference of means 1.003488 0.464556 0.008673 0.110008 1.929636 \n", - "difference of stds 0.944355 0.450525 0.006941 0.152468 1.885434 \n", - "effect size 0.595406 0.289738 0.005166 0.040975 1.175411 \n", + "difference of means 1.013422 0.447558 0.006065 0.086625 1.850443 \n", + "difference of stds 0.945937 0.441513 0.005225 0.133137 1.843480 \n", + "effect size 0.600971 0.279514 0.003620 0.037204 1.128682 \n", "\n", " n_eff Rhat \n", - "difference of means 2618.006985 0.999933 \n", - "difference of stds 3567.953258 0.999944 \n", - "effect size 2756.596339 0.999857 " + "difference of means 6873.034799 0.999837 \n", + "difference of stds 6840.669245 0.999897 \n", + "effect size 7217.271311 0.999775 " ] }, "execution_count": 13, @@ -462,7 +463,7 @@ } ], "source": [ - "pm.summary(trace,varnames=['difference of means', 'difference of stds', 'effect size'])" + "pm.summary(trace, varnames=['difference of means', 'difference of stds', 'effect size'])" ] }, { @@ -489,9 +490,9 @@ "metadata": { "anaconda-cloud": {}, "kernelspec": { - "display_name": "Python 3", + "display_name": "pymc33.6", "language": "python", - "name": "python3" + "name": "pymc33_6" }, "language_info": { "codemirror_mode": { @@ -503,7 +504,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.5" }, "latex_envs": { "bibliofile": "biblio.bib", @@ -514,5 +515,5 @@ } }, "nbformat": 4, - "nbformat_minor": 1 + "nbformat_minor": 2 } diff --git a/pymc3/plots/__init__.py b/pymc3/plots/__init__.py index e726853597..c959721c41 100644 --- a/pymc3/plots/__init__.py +++ b/pymc3/plots/__init__.py @@ -1,9 +1,74 @@ -from .autocorrplot import autocorrplot -from .compareplot import compareplot -from .forestplot import forestplot -from .kdeplot import kdeplot -from .posteriorplot import plot_posterior, plot_posterior_predictive_glm -from .traceplot import traceplot -from .energyplot import energyplot -from .densityplot import densityplot -from .pairplot import pairplot +"""PyMC3 Plotting. + +Plots are delegated to the ArviZ library, a general purpose library for +"exploratory analysis of Bayesian models." See https://arviz-devs.github.io/arviz/ +for details on plots. +""" +import functools +import sys +import warnings +try: + import arviz as az +except ImportError: # arviz is optional, throw exception when used + + class _ImportWarner: + __all__ = [] + + def __init__(self, attr): + self.attr = attr + + def __call__(self, *args, **kwargs): + raise ImportError( + "ArviZ is not installed. In order to use `{0.attr}`:\npip install arviz".format(self) + ) + + class _ArviZ: + def __getattr__(self, attr): + return _ImportWarner(attr) + + + az = _ArviZ() + +def map_args(func): + swaps = [ + ('varnames', 'var_names') + ] + @functools.wraps(func) + def wrapped(*args, **kwargs): + for (old, new) in swaps: + if old in kwargs and new not in kwargs: + warnings.warn('Keyword argument `{old}` renamed to `{new}`, and will be removed in pymc3 3.8'.format(old=old, new=new)) + kwargs[new] = kwargs.pop(old) + return func(*args, **kwargs) + return wrapped + +# pymc3 custom plots: override these names for custom behavior +autocorrplot = map_args(az.plot_autocorr) +compareplot = map_args(az.plot_compare) +forestplot = map_args(az.plot_forest) +kdeplot = map_args(az.plot_kde) +plot_posterior = map_args(az.plot_posterior) +traceplot = map_args(az.plot_trace) +energyplot = map_args(az.plot_energy) +densityplot = map_args(az.plot_density) +pairplot = map_args(az.plot_pair) + +from .posteriorplot import plot_posterior_predictive_glm + + +# Access to arviz plots: base plots provided by arviz +for plot in az.plots.__all__: + setattr(sys.modules[__name__], plot, map_args(getattr(az.plots, plot))) + +__all__ = tuple(az.plots.__all__) + ( + 'autocorrplot', + 'compareplot', + 'forestplot', + 'kdeplot', + 'plot_posterior', + 'traceplot', + 'energyplot', + 'densityplot', + 'pairplot', + 'plot_posterior_predictive_glm', +) diff --git a/pymc3/plots/artists.py b/pymc3/plots/artists.py deleted file mode 100644 index 81c9dbae51..0000000000 --- a/pymc3/plots/artists.py +++ /dev/null @@ -1,172 +0,0 @@ -import numpy as np -from scipy.stats import mode -from collections import OrderedDict - -from pymc3.stats import hpd -from .kdeplot import fast_kde, kdeplot - - -def _histplot_bins(column, bins=100): - """Helper to get bins for histplot.""" - col_min = np.min(column) - col_max = np.max(column) - return range(col_min, col_max + 2, max((col_max - col_min) // bins, 1)) - - -def histplot_op(ax, data, alpha=.35): - """Add a histogram for each column of the data to the provided axes.""" - hs = [] - for column in data.T: - hs.append(ax.hist(column, bins=_histplot_bins( - column), alpha=alpha, align='left')) - ax.set_xlim(np.min(data) - 0.5, np.max(data) + 0.5) - return hs - - -def kdeplot_op(ax, data, bw, prior=None, prior_alpha=1, prior_style='--'): - """Get a list of density and likelihood plots, if a prior is provided.""" - ls = [] - pls = [] - errored = [] - for i, d in enumerate(data.T): - try: - density, l, u = fast_kde(d, bw) - x = np.linspace(l, u, len(density)) - if prior is not None: - p = prior.logp(x).eval() - pls.append(ax.plot(x, np.exp(p), - alpha=prior_alpha, ls=prior_style)) - - ls.append(ax.plot(x, density)) - except ValueError: - errored.append(str(i)) - - if errored: - ax.text(.27, .47, 'WARNING: KDE plot failed for: ' + ','.join(errored), - bbox={'facecolor': 'red', 'alpha': 0.5, 'pad': 10}, - style='italic') - - return ls, pls - - -def plot_posterior_op(trace_values, ax, bw, kde_plot, point_estimate, round_to, - alpha_level, ref_val, rope, text_size=16, **kwargs): - """Artist to draw posterior.""" - def format_as_percent(x, round_to=0): - return '{0:.{1:d}f}%'.format(100 * x, round_to) - - def display_ref_val(ref_val): - less_than_ref_probability = (trace_values < ref_val).mean() - greater_than_ref_probability = (trace_values >= ref_val).mean() - ref_in_posterior = "{} <{:g}< {}".format( - format_as_percent(less_than_ref_probability, 1), - ref_val, - format_as_percent(greater_than_ref_probability, 1)) - ax.axvline(ref_val, ymin=0.02, ymax=.75, color='g', - linewidth=4, alpha=0.65) - ax.text(trace_values.mean(), plot_height * 0.6, ref_in_posterior, - size=text_size, horizontalalignment='center') - - def display_rope(rope): - ax.plot(rope, (plot_height * 0.02, plot_height * 0.02), - linewidth=20, color='r', alpha=0.75) - text_props = dict(size=text_size, horizontalalignment='center', color='r') - ax.text(rope[0], plot_height * 0.14, rope[0], **text_props) - ax.text(rope[1], plot_height * 0.14, rope[1], **text_props) - - def display_point_estimate(): - if not point_estimate: - return - if point_estimate not in ('mode', 'mean', 'median'): - raise ValueError( - "Point Estimate should be in ('mode','mean','median')") - if point_estimate == 'mean': - point_value = trace_values.mean() - elif point_estimate == 'mode': - if isinstance(trace_values[0], float): - density, l, u = fast_kde(trace_values, bw) - x = np.linspace(l, u, len(density)) - point_value = x[np.argmax(density)] - else: - point_value = mode(trace_values.round(round_to))[0][0] - elif point_estimate == 'median': - point_value = np.median(trace_values) - point_text = '{point_estimate}={point_value:.{round_to}f}'.format(point_estimate=point_estimate, - point_value=point_value, round_to=round_to) - - ax.text(point_value, plot_height * 0.8, point_text, - size=text_size, horizontalalignment='center') - - def display_hpd(): - hpd_intervals = hpd(trace_values, alpha=alpha_level) - ax.plot(hpd_intervals, (plot_height * 0.02, - plot_height * 0.02), linewidth=4, color='k') - ax.text(hpd_intervals[0], plot_height * 0.07, - hpd_intervals[0].round(round_to), - size=text_size, horizontalalignment='right') - ax.text(hpd_intervals[1], plot_height * 0.07, - hpd_intervals[1].round(round_to), - size=text_size, horizontalalignment='left') - ax.text((hpd_intervals[0] + hpd_intervals[1]) / 2, plot_height * 0.2, - format_as_percent(1 - alpha_level) + ' HPD', - size=text_size, horizontalalignment='center') - - def format_axes(): - ax.yaxis.set_ticklabels([]) - ax.spines['top'].set_visible(False) - ax.spines['right'].set_visible(False) - ax.spines['left'].set_visible(False) - ax.spines['bottom'].set_visible(True) - ax.yaxis.set_ticks_position('none') - ax.xaxis.set_ticks_position('bottom') - ax.tick_params(axis='x', direction='out', width=1, length=3, - color='0.5', labelsize=text_size) - ax.spines['bottom'].set_color('0.5') - - def set_key_if_doesnt_exist(d, key, value): - if key not in d: - d[key] = value - - if kde_plot and isinstance(trace_values[0], float): - kdeplot(trace_values, alpha=kwargs.pop('alpha', 0.35), bw=bw, ax=ax, **kwargs) - - else: - set_key_if_doesnt_exist(kwargs, 'bins', 30) - set_key_if_doesnt_exist(kwargs, 'edgecolor', 'w') - set_key_if_doesnt_exist(kwargs, 'align', 'right') - set_key_if_doesnt_exist(kwargs, 'color', '#87ceeb') - ax.hist(trace_values, **kwargs) - - plot_height = ax.get_ylim()[1] - - format_axes() - display_hpd() - display_point_estimate() - if ref_val is not None: - display_ref_val(ref_val) - if rope is not None: - display_rope(rope) - -def scale_text(figsize, text_size): - """Scale text to figsize.""" - - if text_size is None and figsize is not None: - if figsize[0] <= 11: - return 12 - else: - return figsize[0] - else: - return text_size - -def get_trace_dict(tr, varnames): - traces = OrderedDict() - for v in varnames: - vals = tr.get_values(v, combine=True, squeeze=True) - if vals.ndim > 1: - vals_flat = vals.reshape(vals.shape[0], -1).T - for i, vi in enumerate(vals_flat): - traces['_'.join([v, str(i)])] = vi - else: - traces[v] = vals - return traces - \ No newline at end of file diff --git a/pymc3/plots/autocorrplot.py b/pymc3/plots/autocorrplot.py deleted file mode 100644 index 0c9d053a52..0000000000 --- a/pymc3/plots/autocorrplot.py +++ /dev/null @@ -1,92 +0,0 @@ -import itertools -import numpy as np - -try: - import matplotlib.pyplot as plt -except ImportError: # mpl is optional - pass - -from .utils import get_default_varnames, get_axis - - -def autocorrplot(trace, varnames=None, max_lag=100, burn=0, plot_transformed=False, - symmetric_plot=False, ax=None, figsize=None): - """Bar plot of the autocorrelation function for a trace. - - Parameters - ---------- - trace : result of MCMC run - varnames : list of variable names - Variables to be plotted, if None all variable are plotted. - Vector-value stochastics are handled automatically. - max_lag : int - Maximum lag to calculate autocorrelation. Defaults to 100. - burn : int - Number of samples to discard from the beginning of the trace. - Defaults to 0. - plot_transformed : bool - Flag for plotting automatically transformed variables in addition to - original variables (defaults to False). - symmetric_plot : boolean - Plot from either [0, +lag] or [-lag, lag]. Defaults to False, [-, +lag]. - ax : axes - Matplotlib axes. Defaults to None. - figsize : figure size tuple - If None, size is (12, num of variables * 2) inches. - Note this is not used if ax is supplied. - - Returns - ------- - ax : matplotlib axes - """ - def _handle_array_varnames(varname): - if trace[0][varname].__class__ is np.ndarray: - k = trace[varname].shape[1] - for i in range(k): - yield varname + '_{0}'.format(i) - else: - yield varname - - if varnames is None: - varnames = get_default_varnames(trace.varnames, plot_transformed) - - varnames = list(itertools.chain.from_iterable(map(_handle_array_varnames, varnames))) - - nchains = trace.nchains - - if figsize is None: - figsize = (12, len(varnames) * 2) - - ax = get_axis(ax, len(varnames), nchains, - squeeze=False, sharex=True, sharey=True, figsize=figsize) - - max_lag = min(len(trace) - 1, max_lag) - - for i, v in enumerate(varnames): - for j, chain in enumerate(trace.chains): - try: - d = np.squeeze(trace.get_values(v, chains=[chain], burn=burn, - combine=False)) - except KeyError: - k = int(v.split('_')[-1]) - v_use = '_'.join(v.split('_')[:-1]) - d = np.squeeze(trace.get_values(v_use, chains=[chain], - burn=burn, combine=False)[:, k]) - - ax[i, j].acorr(d, detrend=plt.mlab.detrend_mean, maxlags=max_lag) - - if j == 0: - ax[i, j].set_ylabel("correlation") - - if i == len(varnames) - 1: - ax[i, j].set_xlabel("lag") - - if not symmetric_plot: - ax[i, j].set_xlim(0, max_lag) - - if nchains > 1: - ax[i, j].set_title("{0} (chain {1})".format(v, chain)) - else: - ax[i, j].set_title(v) - - return ax diff --git a/pymc3/plots/compareplot.py b/pymc3/plots/compareplot.py deleted file mode 100644 index d6f31fdcfd..0000000000 --- a/pymc3/plots/compareplot.py +++ /dev/null @@ -1,103 +0,0 @@ -import numpy as np -try: - import matplotlib.pyplot as plt -except ImportError: # mpl is optional - pass - - -def compareplot(comp_df, insample_dev=True, se=True, dse=True, ax=None, - plot_kwargs=None): - """ - Model comparison summary plot in the style of the one used in the book - Statistical Rethinking by Richard McElreath. - - Parameters - ---------- - - comp_df: DataFrame - the result of the `pm.compare()` function - insample_dev : bool - plot the in-sample deviance, that is the value of the IC without the - penalization given by the effective number of parameters (pIC). - Defaults to True - se : bool - plot the standard error of the IC estimate. Defaults to True - dse : bool - plot standard error of the difference in IC between each model and the - top-ranked model. Defaults to True - plot_kwargs : dict - Optional arguments for plot elements. Currently accepts 'color_ic', - 'marker_ic', 'color_insample_dev', 'marker_insample_dev', 'color_dse', - 'marker_dse', 'ls_min_ic' 'color_ls_min_ic', 'fontsize' - ax : axes - Matplotlib axes. Defaults to None - - Returns - ------- - - ax : matplotlib axes - - """ - if ax is None: - _, ax = plt.subplots() - - if plot_kwargs is None: - plot_kwargs = {} - - yticks_pos, step = np.linspace(0, -1, (comp_df.shape[0] * 2) - 1, - retstep=True) - yticks_pos[1::2] = yticks_pos[1::2] + step / 2 - - yticks_labels = [''] * len(yticks_pos) - - ic = 'WAIC' - if ic not in comp_df.columns: - ic = 'LOO' - - if dse: - yticks_labels[0] = comp_df.index[0] - yticks_labels[2::2] = comp_df.index[1:] - ax.set_yticks(yticks_pos) - ax.errorbar(x=comp_df[ic].iloc[1:], - y=yticks_pos[1::2], - xerr=comp_df.dSE[1:], - color=plot_kwargs.get('color_dse', 'grey'), - fmt=plot_kwargs.get('marker_dse', '^')) - - else: - yticks_labels = comp_df.index - ax.set_yticks(yticks_pos[::2]) - - if se: - ax.errorbar(x=comp_df[ic], - y=yticks_pos[::2], - xerr=comp_df.SE, - color=plot_kwargs.get('color_ic', 'k'), - fmt=plot_kwargs.get('marker_ic', 'o'), - mfc='None', - mew=1) - else: - ax.plot(comp_df[ic], - yticks_pos[::2], - color=plot_kwargs.get('color_ic', 'k'), - marker=plot_kwargs.get('marker_ic', 'o'), - mfc='None', - mew=1, - lw=0) - - if insample_dev: - ax.plot(comp_df[ic] - (2 * comp_df['p'+ic]), - yticks_pos[::2], - color=plot_kwargs.get('color_insample_dev', 'k'), - marker=plot_kwargs.get('marker_insample_dev', 'o'), - lw=0) - - ax.axvline(comp_df[ic].iloc[0], - ls=plot_kwargs.get('ls_min_ic', '--'), - color=plot_kwargs.get('color_ls_min_ic', 'grey')) - - ax.set_xlabel('Deviance', fontsize=plot_kwargs.get('fontsize', 14)) - ax.set_yticklabels(yticks_labels) - ax.set_ylim(-1 + step, 0 - step) - - return ax diff --git a/pymc3/plots/densityplot.py b/pymc3/plots/densityplot.py deleted file mode 100644 index 74d91cdee3..0000000000 --- a/pymc3/plots/densityplot.py +++ /dev/null @@ -1,191 +0,0 @@ -import numpy as np -try: - import matplotlib.pyplot as plt -except ImportError: # mpl is optional - pass -from .kdeplot import fast_kde -from .utils import get_default_varnames -from ..stats import hpd - - -def densityplot(trace, models=None, varnames=None, alpha=0.05, point_estimate='mean', - colors='cycle', outline=True, hpd_markers='', shade=0., bw=4.5, figsize=None, - textsize=12, plot_transformed=False, ax=None): - """ - Generates KDE plots for continuous variables and histograms for discretes ones. - Plots are truncated at their 100*(1-alpha)% credible intervals. Plots are grouped - per variable and colors assigned to models. - - Parameters - ---------- - trace : trace or list of traces - Trace(s) from an MCMC sample. - models : list - List with names for the models in the list of traces. Useful when - plotting more that one trace. - varnames: list - List of variables to plot (defaults to None, which results in all - variables plotted). - alpha : float - Alpha value for (1-alpha)*100% credible intervals (defaults to 0.05). - point_estimate : str or None - Plot point estimate per variable. Values should be 'mean', 'median' or None. - Defaults to 'mean'. - colors : list or string, optional - List with valid matplotlib colors, one color per model. Alternative a string can be passed. - If the string is `cycle`, it will automatically choose a color per model from matplolib's - cycle. If a single color is passed, e.g. 'k', 'C2' or 'red' this color will be used for all - models. Defaults to `cycle`. - outline : boolean - Use a line to draw KDEs and histograms. Default to True - hpd_markers : str - A valid `matplotlib.markers` like 'v', used to indicate the limits of the hpd interval. - Defaults to empty string (no marker). - shade : float - Alpha blending value for the shaded area under the curve, between 0 (no shade) and 1 - (opaque). Defaults to 0. - bw : float - Bandwidth scaling factor for the KDE. Should be larger than 0. The higher this number the - smoother the KDE will be. Defaults to 4.5 which is essentially the same as the Scott's rule - of thumb (the default rule used by SciPy). - figsize : tuple - Figure size. If None, size is (6, number of variables * 2) - textsize : int - Text size of the legend. Default 12. - plot_transformed : bool - Flag for plotting automatically transformed variables in addition to original variables - Defaults to False. - ax : axes - Matplotlib axes. - - Returns - ------- - - ax : Matplotlib axes - - """ - if point_estimate not in ('mean', 'median', None): - raise ValueError("Point estimate should be 'mean', 'median' or None") - - if not isinstance(trace, (list, tuple)): - trace = [trace] - - length_trace = len(trace) - - if models is None: - if length_trace > 1: - models = ['m_{}'.format(i) for i in range(length_trace)] - else: - models = [''] - elif len(models) != length_trace: - raise ValueError( - "The number of names for the models does not match the number of models") - - length_models = len(models) - - if colors == 'cycle': - colors = ['C{}'.format(i % 10) for i in range(length_models)] - elif isinstance(colors, str): - colors = [colors for i in range(length_models)] - - if varnames is None: - varnames = [] - for tr in trace: - varnames_tmp = get_default_varnames(tr.varnames, plot_transformed) - for v in varnames_tmp: - if v not in varnames: - varnames.append(v) - - if figsize is None: - figsize = (6, len(varnames) * 2) - - fig, dplot = plt.subplots(len(varnames), 1, squeeze=False, figsize=figsize) - dplot = dplot.flatten() - - for v_idx, vname in enumerate(varnames): - for t_idx, tr in enumerate(trace): - if vname in tr.varnames: - vec = tr.get_values(vname) - k = np.size(vec[0]) - if k > 1: - vec = np.split(vec.T.ravel(), k) - for i in range(k): - _d_helper(vec[i], vname, colors[t_idx], bw, alpha, point_estimate, - hpd_markers, outline, shade, dplot[v_idx]) - - else: - _d_helper(vec, vname, colors[t_idx], bw, alpha, point_estimate, - hpd_markers, outline, shade, dplot[v_idx]) - - if length_trace > 1: - for m_idx, m in enumerate(models): - dplot[0].plot([], label=m, c=colors[m_idx]) - dplot[0].legend(fontsize=textsize) - - fig.tight_layout() - - return dplot - - -def _d_helper(vec, vname, c, bw, alpha, point_estimate, hpd_markers, outline, shade, ax): - """ - vec : array - 1D array from trace - vname : str - variable name - c : str - matplotlib color - bw : float - Bandwidth scaling factor. Should be larger than 0. The higher this number the smoother the - KDE will be. Defaults to 4.5 which is essentially the same as the Scott's rule of thumb - (the default used rule by SciPy). - alpha : float - Alpha value for (1-alpha)*100% credible intervals (defaults to 0.05). - point_estimate : str or None - 'mean' or 'median' - shade : float - Alpha blending value for the shaded area under the curve, between 0 (no shade) and 1 - (opaque). Defaults to 0. - ax : matplotlib axes - """ - if vec.dtype.kind == 'f': - density, l, u = fast_kde(vec) - x = np.linspace(l, u, len(density)) - hpd_ = hpd(vec, alpha) - cut = (x >= hpd_[0]) & (x <= hpd_[1]) - - xmin = x[cut][0] - xmax = x[cut][-1] - ymin = density[cut][0] - ymax = density[cut][-1] - - if outline: - ax.plot(x[cut], density[cut], color=c) - ax.plot([xmin, xmin], [-ymin/100, ymin], color=c, ls='-') - ax.plot([xmax, xmax], [-ymax/100, ymax], color=c, ls='-') - - if shade: - ax.fill_between(x, density, where=cut, color=c, alpha=shade) - - else: - xmin, xmax = hpd(vec, alpha) - bins = range(xmin, xmax+1) - if outline: - ax.hist(vec, bins=bins, color=c, histtype='step') - ax.hist(vec, bins=bins, color=c, alpha=shade) - - if hpd_markers: - ax.plot(xmin, 0, hpd_markers, color=c, markeredgecolor='k') - ax.plot(xmax, 0, hpd_markers, color=c, markeredgecolor='k') - - if point_estimate is not None: - if point_estimate == 'mean': - ps = np.mean(vec) - elif point_estimate == 'median': - ps = np.median(vec) - ax.plot(ps, -0.001, 'o', color=c, markeredgecolor='k') - - ax.set_yticks([]) - ax.set_title(vname) - for pos in ['left', 'right', 'top']: - ax.spines[pos].set_visible(0) diff --git a/pymc3/plots/energyplot.py b/pymc3/plots/energyplot.py deleted file mode 100644 index 5fbba176ce..0000000000 --- a/pymc3/plots/energyplot.py +++ /dev/null @@ -1,85 +0,0 @@ -import warnings - -import numpy as np -try: - import matplotlib.pyplot as plt -except ImportError: # mpl is optional - pass -from .kdeplot import kdeplot - - -def energyplot(trace, kind='kde', figsize=None, ax=None, legend=True, shade=0.35, bw=4.5, - frame=True, kwargs_shade=None, **kwargs): - """Plot energy transition distribution and marginal energy distribution in - order to diagnose poor exploration by HMC algorithms. - - Parameters - ---------- - - trace : result of MCMC run - kind : str - Type of plot to display (kde or histogram) - figsize : figure size tuple - If None, size is (8 x 6) - ax : axes - Matplotlib axes. - legend : bool - Flag for plotting legend (defaults to True) - shade : float - Alpha blending value for the shaded area under the curve, between 0 - (no shade) and 1 (opaque). Defaults to 0.35 - bw : float - Bandwidth scaling factor for the KDE. Should be larger than 0. The higher this number the - smoother the KDE will be. Defaults to 4.5 which is essentially the same as the Scott's rule - of thumb (the default rule used by SciPy). Only works if `kind='kde'`. - frame : bool - Flag for plotting frame around figure. - kwargs_shade : dicts, optional - Additional keywords passed to `fill_between` (to control the shade) - Returns - ------- - - ax : matplotlib axes - """ - - if ax is None: - _, ax = plt.subplots(figsize=figsize) - - try: - energy = trace['energy'] - except KeyError: - warnings.warn('There is no energy information in the passed trace.') - return ax - - series = [('Marginal energy distribution', energy - energy.mean()), - ('Energy transition distribution', np.diff(energy))] - - if figsize is None: - figsize = (8, 6) - - if kwargs_shade is None: - kwargs_shade = {} - - if kind == 'kde': - for label, value in series: - kdeplot(value, label=label, shade=shade, bw=bw, ax=ax, kwargs_shade=kwargs_shade, - **kwargs) - - elif kind == 'hist': - for label, value in series: - ax.hist(value, alpha=shade, label=label, **kwargs) - - else: - raise ValueError('Plot type {} not recognized.'.format(kind)) - - ax.set_xticks([]) - ax.set_yticks([]) - - if not frame: - for spine in ax.spines.values(): - spine.set_visible(False) - - if legend: - ax.legend() - - return ax diff --git a/pymc3/plots/forestplot.py b/pymc3/plots/forestplot.py deleted file mode 100644 index bf103903ff..0000000000 --- a/pymc3/plots/forestplot.py +++ /dev/null @@ -1,328 +0,0 @@ -try: - import matplotlib.pyplot as plt - from matplotlib import gridspec -except ImportError: # mpl is optional - pass -import numpy as np -from pymc3.diagnostics import gelman_rubin -from pymc3.stats import quantiles, hpd, dict2pd -from .utils import identity_transform, get_default_varnames - -def _var_str(name, shape): - """Return a sequence of strings naming the element of the tallyable object. - - :Example: - >>> _var_str('theta', (4,)) - ['theta[0]', 'theta[1]', 'theta[2]', 'theta[3]'] - """ - size = np.prod(shape) - ind = (np.indices(shape)).reshape(-1, size) - names = ['[' + ','.join(map(str, i)) + ']' for i in zip(*ind)] - names[0] = '%s %s' % (name, names[0]) - return names - - -def _plot_tree(ax, y, ntiles, show_quartiles, c, plot_kwargs): - """Helper to plot errorbars for the forestplot. - - Parameters - ---------- - ax: Matplotlib.Axes - y: float - y value to add error bar to - ntiles: iterable - A list or array of length 5 or 3 - show_quartiles: boolean - Whether to plot the interquartile range - c : string - color - Returns - ------- - - Matplotlib.Axes with a single error bar added - - """ - if show_quartiles: - # Plot median - ax.plot(ntiles[2], y, color=c, - marker=plot_kwargs.get('marker', 'o'), - markersize=plot_kwargs.get('markersize', 4)) - # Plot quartile interval - ax.errorbar(x=(ntiles[1], ntiles[3]), y=(y, y), - linewidth=plot_kwargs.get('linewidth', 2), - color=c) - - else: - # Plot median - ax.plot(ntiles[1], y, marker=plot_kwargs.get('marker', 'o'), - color=c, markersize=plot_kwargs.get('markersize', 4)) - - # Plot outer interval - ax.errorbar(x=(ntiles[0], ntiles[-1]), y=(y, y), - linewidth=int(plot_kwargs.get('linewidth', 2)/2), - color=c) - - return ax - - -def forestplot(trace, models=None, varnames=None, transform=identity_transform, - alpha=0.05, quartiles=True, rhat=True, main=None, xtitle=None, - xlim=None, ylabels=None, colors='C0', chain_spacing=0.1, vline=0, - gs=None, plot_transformed=False, plot_kwargs=None): - """ - Forest plot (model summary plot). - - Generates a "forest plot" of 100*(1-alpha)% credible intervals from a trace - or list of traces. - - Parameters - ---------- - - trace : trace or list of traces - Trace(s) from an MCMC sample. - models : list (optional) - List with names for the models in the list of traces. Useful when - plotting more that one trace. - varnames: list - List of variables to plot (defaults to None, which results in all - variables plotted). - transform : callable - Function to transform data (defaults to identity) - alpha : float, optional - Alpha value for (1-alpha)*100% credible intervals (defaults to 0.05). - quartiles : bool, optional - Flag for plotting the interquartile range, in addition to the - (1-alpha)*100% intervals (defaults to True). - rhat : bool, optional - Flag for plotting Gelman-Rubin statistics. Requires 2 or more chains - (defaults to True). - main : string, optional - Title for main plot. Passing False results in titles being suppressed; - passing None (default) results in default titles. - xtitle : string, optional - Label for x-axis. Defaults to no label - xlim : list or tuple, optional - Range for x-axis. Defaults to matplotlib's best guess. - ylabels : list or array, optional - User-defined labels for each variable. If not provided, the node - __name__ attributes are used. - colors : list or string, optional - list with valid matplotlib colors, one color per model. Alternative a - string can be passed. If the string is `cycle `, it will automatically - chose a color per model from the matyplolib's cycle. If a single color - is passed, eg 'k', 'C2', 'red' this color will be used for all models. - Defauls to 'C0' (blueish in most matplotlib styles) - chain_spacing : float, optional - Plot spacing between chains (defaults to 0.1). - vline : numeric, optional - Location of vertical reference line (defaults to 0). - gs : GridSpec - Matplotlib GridSpec object. Defaults to None. - plot_transformed : bool - Flag for plotting automatically transformed variables in addition to - original variables (defaults to False). - plot_kwargs : dict - Optional arguments for plot elements. Currently accepts 'fontsize', - 'linewidth', 'marker', and 'markersize'. - - Returns - ------- - - gs : matplotlib GridSpec - - """ - if plot_kwargs is None: - plot_kwargs = {} - - if not isinstance(trace, (list, tuple)): - trace = [trace] - - if models is None: - if len(trace) > 1: - models = ['m_{}'.format(i) for i in range(len(trace))] - else: - models = [''] - elif len(models) != len(trace): - raise ValueError("The number of names for the models does not match " - "the number of models") - - if colors == 'cycle': - colors = ['C{}'.format(i % 10) for i in range(len(models))] - elif isinstance(colors, str): - colors = [colors for i in range(len(models))] - - # Quantiles to be calculated - if quartiles: - qlist = [100 * alpha / 2, 25, 50, 75, 100 * (1 - alpha / 2)] - else: - qlist = [100 * alpha / 2, 50, 100 * (1 - alpha / 2)] - - nchains = [tr.nchains for tr in trace] - - if varnames is None: - varnames = [] - for idx, tr in enumerate(trace): - varnames_tmp = get_default_varnames(tr.varnames, plot_transformed) - for v in varnames_tmp: - if v not in varnames: - varnames.append(v) - - plot_rhat = [rhat and nch > 1 for nch in nchains] - # Empty list for y-axis labels - if gs is None: - # Initialize plot - if np.any(plot_rhat): - gs = gridspec.GridSpec(1, 2, width_ratios=[3, 1]) - gr_plot = plt.subplot(gs[1]) - gr_plot.set_xticks((1.0, 1.5, 2.0), ("1", "1.5", "2+")) - gr_plot.set_xlim(0.9, 2.1) - gr_plot.set_yticks([]) - gr_plot.set_title('R-hat') - else: - gs = gridspec.GridSpec(1, 1) - - # Subplot for confidence intervals - interval_plot = plt.subplot(gs[0]) - - trace_quantiles = [] - hpd_intervals = [] - for tr in trace: - trace_quantiles.append(quantiles(tr, qlist, transform=transform, - squeeze=False)) - hpd_intervals.append(hpd(tr, alpha, transform=transform, - squeeze=False)) - - labels = [] - var = 0 - all_quants = [] - bands = [0.05, 0] * len(varnames) - var_old = 0.5 - for v_idx, v in enumerate(varnames): - for h, tr in enumerate(trace): - if v not in tr.varnames: - labels.append(models[h] + ' ' + v) - var += 1 - else: - for j, chain in enumerate(tr.chains): - var_quantiles = trace_quantiles[h][chain][v] - - quants = [var_quantiles[vq] for vq in qlist] - var_hpd = hpd_intervals[h][chain][v].T - - # Substitute HPD interval for quantile - quants[0] = var_hpd[0].T - quants[-1] = var_hpd[1].T - - # Ensure x-axis contains range of current interval - all_quants.extend(np.ravel(quants)) - - # Number of elements in current variable - value = tr.get_values(v, chains=[chain])[0] - k = np.size(value) - - # Append variable name(s) to list - if j == 0: - if k > 1: - names = _var_str(v, np.shape(value)) - names[0] = models[h] + ' ' + names[0] - labels += names - else: - labels.append(models[h] + ' ' + v) - - # Add spacing for each chain, if more than one - offset = [0] + [(chain_spacing * ((i + 2) / 2)) * - (-1) ** i for i in range(nchains[h] - 1)] - - # Y coordinate with offset - y = - var + offset[j] - - # Deal with multivariate nodes - - if k > 1: - qs = np.moveaxis(np.array(quants), 0, -1).squeeze() - for q in qs.reshape(-1, len(quants)): - # Multiple y values - interval_plot = _plot_tree(interval_plot, y, q, - quartiles, colors[h], - plot_kwargs) - y -= 1 - else: - interval_plot = _plot_tree(interval_plot, y, quants, - quartiles, colors[h], - plot_kwargs) - - # Genenerate Gelman-Rubin plot - if plot_rhat[h] and v in tr.varnames: - R = gelman_rubin(tr, [v]) - if k > 1: - Rval = dict2pd(R, 'rhat').values - gr_plot.plot([min(r, 2) for r in Rval], - [-(j + var) for j in range(k)], 'o', - color=colors[h], markersize=4) - else: - gr_plot.plot(min(R[v], 2), -var, 'o', color=colors[h], - markersize=4) - var += k - - if len(trace) > 1: - interval_plot.axhspan(var_old, y - chain_spacing - 0.5, - facecolor='k', alpha=bands[v_idx]) - if np.any(plot_rhat): - gr_plot.axhspan(var_old, y - chain_spacing - 0.5, - facecolor='k', alpha=bands[v_idx]) - var_old = y - chain_spacing - 0.5 - - if ylabels is not None: - labels = ylabels - - # Update margins - left_margin = np.max([len(x) for x in labels]) * 0.015 - gs.update(left=left_margin, right=0.95, top=0.9, bottom=0.05) - - # Define range of y-axis for forestplot and R-hat - interval_plot.set_ylim(- var + 0.5, 0.5) - if np.any(plot_rhat): - gr_plot.set_ylim(- var + 0.5, 0.5) - - plotrange = [np.min(all_quants), np.max(all_quants)] - datarange = plotrange[1] - plotrange[0] - interval_plot.set_xlim(plotrange[0] - 0.05 * datarange, - plotrange[1] + 0.05 * datarange) - - # Add variable labels - interval_plot.set_yticks([- l for l in range(len(labels))]) - interval_plot.set_yticklabels(labels, - fontsize=plot_kwargs.get('fontsize', None)) - - # Add title - if main is None: - plot_title = "{:.0f}% Credible Intervals".format((1 - alpha) * 100) - elif main: - plot_title = main - else: - plot_title = "" - - interval_plot.set_title(plot_title, - fontsize=plot_kwargs.get('fontsize', None)) - - # Add x-axis label - if xtitle is not None: - interval_plot.set_xlabel(xtitle) - - # Constrain to specified range - if xlim is not None: - interval_plot.set_xlim(*xlim) - - # Remove ticklines on y-axes - for ticks in interval_plot.yaxis.get_major_ticks(): - ticks.tick1On = False - ticks.tick2On = False - - for loc, spine in interval_plot.spines.items(): - if loc in ['left', 'right']: - spine.set_color('none') # don't draw spine - - # Reference line - interval_plot.axvline(vline, color='k', linestyle=':') - - return gs diff --git a/pymc3/plots/kdeplot.py b/pymc3/plots/kdeplot.py deleted file mode 100644 index be8fa48c1e..0000000000 --- a/pymc3/plots/kdeplot.py +++ /dev/null @@ -1,96 +0,0 @@ -import numpy as np -from scipy.signal import gaussian, convolve -from scipy.stats import entropy - -try: - import matplotlib.pyplot as plt -except ImportError: # mpl is optional - pass - - -def kdeplot(values, label=None, shade=0, bw=4.5, ax=None, kwargs_shade=None, **kwargs): - """ - 1D KDE plot taking into account boundary conditions - - Parameters - ---------- - values : array-like - Values to plot - label : string - Text to include as part of the legend - shade : float - Alpha blending value for the shaded area under the curve, between 0 - (no shade) and 1 (opaque). Defaults to 0 - bw : float - Bandwidth scaling factor. Should be larger than 0. The higher this number the smoother the - KDE will be. Defaults to 4.5 which is essentially the same as the Scott's rule of thumb - (the default rule used by SciPy). - ax : matplotlib axes - kwargs_shade : dicts, optional - Additional keywords passed to `matplotlib.axes.Axes.fill_between` - (to control the shade) - Returns - ---------- - ax : matplotlib axes - - """ - if ax is None: - _, ax = plt.subplots() - - if kwargs_shade is None: - kwargs_shade = {} - - density, l, u = fast_kde(values, bw) - x = np.linspace(l, u, len(density)) - ax.plot(x, density, label=label, **kwargs) - ax.set_ylim(0, auto=True) - if shade: - ax.fill_between(x, density, alpha=shade, **kwargs_shade) - return ax - - -def fast_kde(x, bw=4.5): - """ - A fft-based Gaussian kernel density estimate (KDE) - The code was adapted from https://github.com/mfouesneau/faststats - - Parameters - ---------- - x : Numpy array or list - bw : float - Bandwidth scaling factor for the KDE. Should be larger than 0. The higher this number the - smoother the KDE will be. Defaults to 4.5 which is essentially the same as the Scott's rule - of thumb (the default rule used by SciPy). - - Returns - ------- - density: A gridded 1D KDE of the input points (x) - xmin: minimum value of x - xmax: maximum value of x - """ - x = np.asarray(x, dtype=float) - x = x[np.isfinite(x)] - n = len(x) - nx = 200 - - xmin, xmax = np.min(x), np.max(x) - - dx = (xmax - xmin) / (nx - 1) - std_x = entropy((x - xmin) / dx) * bw - if ~np.isfinite(std_x): - std_x = 0. - grid, _ = np.histogram(x, bins=nx) - - scotts_factor = n ** (-0.2) - kern_nx = int(scotts_factor * 2 * np.pi * std_x) - kernel = gaussian(kern_nx, scotts_factor * std_x) - - npad = min(nx, 2 * kern_nx) - grid = np.concatenate([grid[npad: 0: -1], grid, grid[nx: nx - npad: -1]]) - density = convolve(grid, kernel, mode='same')[npad: npad + nx] - - norm_factor = n * dx * (2 * np.pi * std_x ** 2 * scotts_factor ** 2) ** 0.5 - - density = density / norm_factor - - return density, xmin, xmax diff --git a/pymc3/plots/pairplot.py b/pymc3/plots/pairplot.py deleted file mode 100644 index 516e1117f2..0000000000 --- a/pymc3/plots/pairplot.py +++ /dev/null @@ -1,170 +0,0 @@ -import warnings - -try: - import matplotlib.pyplot as plt - from matplotlib import gridspec -except ImportError: # mpl is optional - pass -from ..util import get_default_varnames, is_transformed_name, get_untransformed_name -from .artists import get_trace_dict, scale_text - - -def pairplot(trace, varnames=None, figsize=None, text_size=None, - gs=None, ax=None, hexbin=False, plot_transformed=False, - divergences=False, kwargs_divergence=None, - sub_varnames=None, **kwargs): - """ - Plot a scatter or hexbin matrix of the sampled parameters. - - Parameters - ---------- - - trace : result of MCMC run - varnames : list of variable names - Variables to be plotted, if None all variable are plotted - figsize : figure size tuple - If None, size is (8 + numvars, 8 + numvars) - text_size: int - Text size for labels - gs : Grid spec - Matplotlib Grid spec. - ax: axes - Matplotlib axes - hexbin : Boolean - If True draws an hexbin plot - plot_transformed : bool - Flag for plotting automatically transformed variables in addition to - original variables (defaults to False). Applies when varnames = None. - When a list of varnames is passed, transformed variables can be passed - using their names. - divergences : Boolean - If True divergences will be plotted in a diferent color - kwargs_divergence : dicts, optional - Aditional keywords passed to ax.scatter for divergences - sub_varnames : list - Aditional varnames passed for plotting subsets of multidimensional - variables - Returns - ------- - - ax : matplotlib axes - gs : matplotlib gridspec - - """ - if varnames is None: - if plot_transformed: - - varnames_copy = list(trace.varnames) - remove = [get_untransformed_name(var) for var in trace.varnames - if is_transformed_name(var)] - - try: - [varnames_copy.remove(i) for i in remove] - varnames = varnames_copy - except ValueError: - varnames = varnames_copy - - trace_dict = get_trace_dict( - trace, get_default_varnames( - varnames, plot_transformed)) - - else: - trace_dict = get_trace_dict( - trace, get_default_varnames( - trace.varnames, plot_transformed)) - - if sub_varnames is None: - varnames = list(trace_dict.keys()) - - else: - trace_dict = get_trace_dict( - trace, get_default_varnames( - trace.varnames, True)) - varnames = sub_varnames - - else: - trace_dict = get_trace_dict(trace, varnames) - varnames = list(trace_dict.keys()) - - if text_size is None: - text_size = scale_text(figsize, text_size=text_size) - - if kwargs_divergence is None: - kwargs_divergence = {} - - numvars = len(varnames) - - if figsize is None: - figsize = (8 + numvars, 8 + numvars) - - if numvars < 2: - raise Exception( - 'Number of variables to be plotted must be 2 or greater.') - - if numvars == 2 and ax is not None: - if hexbin: - ax.hexbin(trace_dict[varnames[0]], - trace_dict[varnames[1]], mincnt=1, **kwargs) - else: - ax.scatter(trace_dict[varnames[0]], - trace_dict[varnames[1]], **kwargs) - - if divergences: - try: - divergent = trace['diverging'] - except KeyError: - warnings.warn('No divergences were found.') - - diverge = (divergent == 1) - ax.scatter(trace_dict[varnames[0]][diverge], - trace_dict[varnames[1]][diverge], **kwargs_divergence) - ax.set_xlabel('{}'.format(varnames[0]), - fontsize=text_size) - ax.set_ylabel('{}'.format( - varnames[1]), fontsize=text_size) - ax.tick_params(labelsize=text_size) - - if gs is None and ax is None: - plt.figure(figsize=figsize) - gs = gridspec.GridSpec(numvars - 1, numvars - 1) - - for i in range(0, numvars - 1): - var1 = trace_dict[varnames[i]] - - for j in range(i, numvars - 1): - var2 = trace_dict[varnames[j + 1]] - - ax = plt.subplot(gs[j, i]) - - if hexbin: - ax.hexbin(var1, var2, mincnt=1, **kwargs) - else: - ax.scatter(var1, var2, **kwargs) - - if divergences: - try: - divergent = trace['diverging'] - except KeyError: - warnings.warn('No divergences were found.') - return ax - - diverge = (divergent == 1) - ax.scatter(var1[diverge], - var2[diverge], - **kwargs_divergence) - - if j + 1 != numvars - 1: - ax.set_xticks([]) - else: - ax.set_xlabel('{}'.format(varnames[i]), - fontsize=text_size) - if i != 0: - ax.set_yticks([]) - else: - ax.set_ylabel('{}'.format( - varnames[j + 1]), fontsize=text_size) - - ax.tick_params(labelsize=text_size) - - plt.tight_layout() - return ax, gs diff --git a/pymc3/plots/posteriorplot.py b/pymc3/plots/posteriorplot.py index d2ae8e5151..102865dc51 100644 --- a/pymc3/plots/posteriorplot.py +++ b/pymc3/plots/posteriorplot.py @@ -4,122 +4,6 @@ pass import numpy as np -from .artists import plot_posterior_op, get_trace_dict, scale_text - -from .utils import identity_transform, get_default_varnames - - -def plot_posterior(trace, varnames=None, transform=identity_transform, figsize=None, text_size=None, - alpha_level=0.05, round_to=3, point_estimate='mean', rope=None, - ref_val=None, kde_plot=False, plot_transformed=False, bw=4.5, ax=None, **kwargs): - """Plot Posterior densities in style of John K. Kruschke book. - - Parameters - ---------- - - trace : result of MCMC run - varnames : list of variable names - Variables to be plotted, if None all variable are plotted - transform : callable - Function to transform data (defaults to identity) - figsize : figure size tuple - If None, size is (12, num of variables * 2) inch - text_size : int - Text size of the point_estimates, axis ticks, and HPD (Default:16) - alpha_level : float - Defines range for High Posterior Density - round_to : int - Controls formatting for floating point numbers - point_estimate: str - Must be in ('mode', 'mean', 'median') - rope: list or numpy array - Lower and upper values of the Region Of Practical Equivalence - ref_val: float or list-like - display the percentage below and above the values in ref_val. - If a list is provided, its length should match the number of variables. - kde_plot: bool - if True plot a KDE instead of a histogram. For discrete variables this - argument is ignored. - plot_transformed : bool - Flag for plotting automatically transformed variables in addition to - original variables (defaults to False). - bw : float - Bandwidth scaling factor for the KDE. Should be larger than 0. The higher this number the - smoother the KDE will be. Defaults to 4.5 which is essentially the same as the Scott's rule - of thumb (the default rule used by SciPy). Only works if `kde_plot` is True. - ax : axes - Matplotlib axes. Defaults to None. - **kwargs - Passed as-is to plt.hist() or plt.plot() function, depending on the - value of the argument kde_plot - Some defaults are added, if not specified - color='#87ceeb' will match the style in the book - - Returns - ------- - - ax : matplotlib axes - - """ - - def create_axes_grid(figsize, traces): - l_trace = len(traces) - if l_trace == 1: - fig, ax = plt.subplots(figsize=figsize) - else: - n = np.ceil(l_trace / 2.0).astype(int) - if figsize is None: - figsize = (12, n * 2.5) - fig, ax = plt.subplots(n, 2, figsize=figsize) - ax = ax.reshape(2 * n) - if l_trace % 2 == 1: - ax[-1].set_axis_off() - ax = ax[:-1] - return fig, ax - - if isinstance(trace, np.ndarray): - if figsize is None: - figsize = (6, 2) - if ax is None: - fig, ax = plt.subplots(figsize=figsize) - - - plot_posterior_op(transform(trace), ax=ax, bw=bw, kde_plot=kde_plot, - point_estimate=point_estimate, round_to=round_to, alpha_level=alpha_level, - ref_val=ref_val, rope=rope, text_size=scale_text(figsize, text_size), **kwargs) - - else: - if varnames is None: - varnames = get_default_varnames(trace.varnames, plot_transformed) - - trace_dict = get_trace_dict(trace, varnames) - - if ax is None: - fig, ax = create_axes_grid(figsize, trace_dict) - - var_num = len(trace_dict) - if ref_val is None: - ref_val = [None] * var_num - elif np.isscalar(ref_val): - ref_val = [ref_val for _ in range(var_num)] - - if rope is None: - rope = [None] * var_num - elif np.ndim(rope) == 1: - rope = [rope] * var_num - - for idx, (a, v) in enumerate(zip(np.atleast_1d(ax), trace_dict)): - tr_values = transform(trace_dict[v]) - plot_posterior_op(tr_values, ax=a, bw=bw, kde_plot=kde_plot, - point_estimate=point_estimate, round_to=round_to, - alpha_level=alpha_level, ref_val=ref_val[idx], - rope=rope[idx], text_size=scale_text(figsize, text_size), **kwargs) - a.set_title(v, fontsize=scale_text(figsize, text_size)) - - plt.tight_layout() - return ax - - def plot_posterior_predictive_glm(trace, eval=None, lm=None, samples=30, **kwargs): """Plot posterior predictive of a linear model. :Arguments: diff --git a/pymc3/plots/traceplot.py b/pymc3/plots/traceplot.py deleted file mode 100644 index 54e99327ce..0000000000 --- a/pymc3/plots/traceplot.py +++ /dev/null @@ -1,149 +0,0 @@ -try: - import matplotlib.pyplot as plt -except ImportError: # mpl is optional - pass -import numpy as np - -from .artists import histplot_op, kdeplot_op -from .utils import identity_transform, get_default_varnames, get_axis, make_2d - - -def traceplot(trace, varnames=None, transform=identity_transform, figsize=None, lines=None, - combined=False, plot_transformed=False, grid=False, alpha=0.35, priors=None, - prior_alpha=1, prior_style='--', bw=4.5, ax=None, live_plot=False, - skip_first=0, refresh_every=100, roll_over=1000): - """Plot samples histograms and values. - - Parameters - ---------- - - trace : result of MCMC run - varnames : list of variable names - Variables to be plotted, if None all variable are plotted - transform : callable - Function to transform data (defaults to identity) - figsize : figure size tuple - If None, size is (12, num of variables * 2) inch - lines : dict - Dictionary of variable name / value to be overplotted as vertical - lines to the posteriors and horizontal lines on sample values - e.g. mean of posteriors, true values of a simulation. - If an array of values, line colors are matched to posterior colors. - Otherwise, a default red line - combined : bool - Flag for combining multiple chains into a single chain. If False - (default), chains will be plotted separately. - plot_transformed : bool - Flag for plotting automatically transformed variables in addition to - original variables (defaults to False). - grid : bool - Flag for adding gridlines to histogram. Defaults to True. - alpha : float - Alpha value for plot line. Defaults to 0.35. - priors : iterable of PyMC distributions - PyMC prior distribution(s) to be plotted alongside posterior. Defaults - to None (no prior plots). - prior_alpha : float - Alpha value for prior plot. Defaults to 1. - prior_style : str - Line style for prior plot. Defaults to '--' (dashed line). - bw : float - Bandwidth scaling factor for the KDE. Should be larger than 0. The higher this number the - smoother the KDE will be. Defaults to 4.5 which is essentially the same as the Scott's rule - of thumb (the default rule used by SciPy). - ax : axes - Matplotlib axes. Accepts an array of axes, e.g.: - live_plot: bool - Flag for updating the current figure while sampling - skip_first : int - Number of first samples not shown in plots (burn-in). This affects - frequency and stream plots. - refresh_every : int - Period of plot updates (in sample number) - roll_over : int - Width of the sliding window for the sample stream plots: last roll_over - samples are shown (no effect on frequency plots). - - >>> fig, axs = plt.subplots(3, 2) # 3 RVs - >>> pymc3.traceplot(trace, ax=axs) - - Creates own axes by default. - - Returns - ------- - - ax : matplotlib axes - - """ - trace = trace[skip_first:] - - if varnames is None: - varnames = get_default_varnames(trace.varnames, plot_transformed) - - if figsize is None: - figsize = (12, len(varnames) * 2) - - ax = get_axis(ax, len(varnames), 2, squeeze=False, figsize=figsize) - - for i, v in enumerate(varnames): - if priors is not None: - prior = priors[i] - else: - prior = None - first_time = True - for d in trace.get_values(v, combine=combined, squeeze=False): - d = np.squeeze(transform(d)) - d = make_2d(d) - d_stream = d - x0 = 0 - if live_plot: - x0 = skip_first - if first_time: - ax[i, 0].cla() - ax[i, 1].cla() - first_time = False - if roll_over is not None: - if len(d) >= roll_over: - x0 = len(d) - roll_over + skip_first - d_stream = d[-roll_over:] - width = len(d_stream) - if d.dtype.kind == 'i': - hist_objs = histplot_op(ax[i, 0], d, alpha=alpha) - colors = [h[-1][0].get_facecolor() for h in hist_objs] - else: - artists = kdeplot_op(ax[i, 0], d, bw, prior, prior_alpha, prior_style)[0] - colors = [a[0].get_color() for a in artists] - ax[i, 0].set_title(str(v)) - ax[i, 0].grid(grid) - ax[i, 1].set_title(str(v)) - ax[i, 1].plot(range(x0, x0 + width), d_stream, alpha=alpha) - - ax[i, 0].set_ylabel("Frequency") - ax[i, 1].set_ylabel("Sample value") - - if lines: - try: - if isinstance(lines[v], (float, int)): - line_values, colors = [lines[v]], ['r'] - else: - line_values = np.atleast_1d(lines[v]).ravel() - if len(colors) != len(line_values): - raise AssertionError("An incorrect number of lines was specified for " - "'{}'. Expected an iterable of length {} or to " - " a scalar".format(v, len(colors))) - for c, l in zip(colors, line_values): - ax[i, 0].axvline(x=l, color=c, lw=1.5, alpha=0.75) - ax[i, 1].axhline(y=l, color=c, - lw=1.5, alpha=alpha) - except KeyError: - pass - if live_plot: - for j in [0, 1]: - ax[i, j].relim() - ax[i, j].autoscale_view(True, True, True) - ax[i, 1].set_xlim(x0, x0 + width) - ax[i, 0].set_ylim(bottom=0) - if live_plot: - ax[0, 0].figure.canvas.draw() - plt.tight_layout() - return ax diff --git a/pymc3/plots/utils.py b/pymc3/plots/utils.py deleted file mode 100644 index 9b96931936..0000000000 --- a/pymc3/plots/utils.py +++ /dev/null @@ -1,43 +0,0 @@ -try: - import matplotlib.pyplot as plt -except ImportError: # mpl is optional - pass -import numpy as np -# plotting utilities can all be in this namespace -from ..util import get_default_varnames # pylint: disable=unused-import - - -def identity_transform(x): - """f(x) = x""" - return x - - -def get_axis(ax, default_rows, default_columns, **default_kwargs): - """Verifies the provided axis is of the correct shape, and creates one if needed. - - Args: - ax: matplotlib axis or None - default_rows: int, expected rows in axis - default_columns: int, expected columns in axis - **default_kwargs: keyword arguments to pass to plt.subplot - - Returns: - axis, or raises an error - """ - - default_shape = (default_rows, default_columns) - if ax is None: - _, ax = plt.subplots(*default_shape, **default_kwargs) - elif ax.shape != default_shape: - raise ValueError('Subplots with shape %r required' % (default_shape,)) - return ax - - -def make_2d(a): - """Ravel the dimensions after the first.""" - a = np.atleast_2d(a.T).T - # flatten out dimensions beyond the first - n = a.shape[0] - newshape = np.product(a.shape[1:]).astype(int) - a = a.reshape((n, newshape), order='F') - return a diff --git a/pymc3/tests/test_distributions_timeseries.py b/pymc3/tests/test_distributions_timeseries.py index f8679d7f1b..11660384db 100644 --- a/pymc3/tests/test_distributions_timeseries.py +++ b/pymc3/tests/test_distributions_timeseries.py @@ -27,7 +27,7 @@ def test_AR(): # AR1 + constant with Model() as t: - y = AR('y', [0.3, phi], sigma=1, shape=len(data), constant=True) + y = AR('y', np.hstack((0.3, phi)), sigma=1, shape=len(data), constant=True) z = Normal('z', mu=0.3 + phi*data[:-1], sigma=1, shape=len(data)-1) ar_like = t['y'].logp({'z':data[1:], 'y': data}) reg_like = t['z'].logp({'z':data[1:], 'y': data}) diff --git a/pymc3/tests/test_plots.py b/pymc3/tests/test_plots.py deleted file mode 100644 index fa5e9100c3..0000000000 --- a/pymc3/tests/test_plots.py +++ /dev/null @@ -1,134 +0,0 @@ -import matplotlib -matplotlib.use('Agg', warn=False) # noqa - -import numpy as np -import pymc3 as pm -from .checks import close_to - -from .models import multidimensional_model, simple_categorical -from ..plots import traceplot, forestplot, autocorrplot, plot_posterior, energyplot, densityplot, pairplot -from ..plots.utils import make_2d -from ..step_methods import Slice, Metropolis -from ..sampling import sample -from ..tuning.scaling import find_hessian -from .test_examples import build_disaster_model -from pymc3.examples import arbitrary_stochastic as asmod -import theano -import pytest - - -def test_plots(): - # Test single trace - with asmod.build_model() as model: - start = model.test_point - h = find_hessian(start) - step = Metropolis(model.vars, h) - trace = sample(3000, tune=0, step=step, start=start, chains=1) - - traceplot(trace) - forestplot(trace) - plot_posterior(trace) - autocorrplot(trace) - energyplot(trace) - densityplot(trace) - -def test_energyplot(): - with asmod.build_model(): - trace = sample(cores=1) - - energyplot(trace) - energyplot(trace, shade=0.5, alpha=0) - energyplot(trace, kind='hist') - - -def test_plots_categorical(): - # Test single trace - start, model, _ = simple_categorical() - with asmod.build_model() as model: - start = model.test_point - h = find_hessian(start) - step = Metropolis(model.vars, h) - trace = sample(3000, tune=0, step=step, start=start, chains=1) - - traceplot(trace) - - -def test_plots_multidimensional(): - # Test multiple trace - start, model, _ = multidimensional_model() - with model: - h = np.diag(find_hessian(start)) - step = Metropolis(model.vars, h) - trace = sample(3000, tune=0, step=step, start=start) - - traceplot(trace) - plot_posterior(trace) - forestplot(trace) - densityplot(trace) - - -@pytest.mark.xfail(condition=(theano.config.floatX == "float32"), reason="Fails on GPU due to cores=2") -def test_multichain_plots(): - model = build_disaster_model() - with model: - # Run sampler - step1 = Slice([model.early_mean_log__, model.late_mean_log__]) - step2 = Metropolis([model.switchpoint]) - start = {'early_mean': 2., 'late_mean': 3., 'switchpoint': 50} - ptrace = sample(1000, tune=0, step=[step1, step2], start=start, cores=2) - - forestplot(ptrace, varnames=['early_mean', 'late_mean']) - autocorrplot(ptrace, varnames=['switchpoint']) - plot_posterior(ptrace) - - -def test_make_2d(): - a = np.arange(4) - close_to(make_2d(a), a[:, None], 0) - - n = 7 - a = np.arange(n * 4 * 5).reshape((n, 4, 5)) - res = make_2d(a) - - assert res.shape == (n, 20) - close_to(a[:, 0, 0], res[:, 0], 0) - close_to(a[:, 3, 2], res[:, 2 * 4 + 3], 0) - - -def test_plots_transformed(): - with pm.Model(): - pm.Uniform('x', 0, 1) - step = pm.Metropolis() - trace = pm.sample(100, tune=0, step=step, chains=1) - - assert traceplot(trace).shape == (1, 2) - assert traceplot(trace, plot_transformed=True).shape == (2, 2) - assert autocorrplot(trace).shape == (1, 1) - assert autocorrplot(trace, plot_transformed=True).shape == (2, 1) - assert plot_posterior(trace).numCols == 1 - assert plot_posterior(trace, plot_transformed=True).shape == (2, ) - - with pm.Model(): - pm.Uniform('x', 0, 1) - step = pm.Metropolis() - trace = pm.sample(100, tune=0, step=step, chains=2) - - assert traceplot(trace).shape == (1, 2) - assert traceplot(trace, plot_transformed=True).shape == (2, 2) - assert autocorrplot(trace).shape == (1, 2) - assert autocorrplot(trace, plot_transformed=True).shape == (2, 2) - assert plot_posterior(trace).numCols == 1 - assert plot_posterior(trace, plot_transformed=True).shape == (2, ) - -def test_pairplot(): - with pm.Model() as model: - a = pm.Normal('a', shape=2) - c = pm.HalfNormal('c', shape=2) - b = pm.Normal('b', a, c, shape=2) - d = pm.Normal('d', 100, 1) - trace = pm.sample(1000) - - pairplot(trace) - pairplot(trace, hexbin=True, plot_transformed=True) - pairplot(trace, sub_varnames=['a_0', 'c_0', 'b_1']) - \ No newline at end of file diff --git a/requirements-dev.txt b/requirements-dev.txt index 73fc74ebac..be12a5a133 100644 --- a/requirements-dev.txt +++ b/requirements-dev.txt @@ -1,10 +1,10 @@ +arviz bokeh>=0.12.13 CommonMark==0.5.4 graphviz>=0.8.3 h5py>=2.7.0 ipython Keras>=2.0.8 -matplotlib>=1.5.0 nbsphinx>=0.2.13 nose>=1.3.7 nose-parameterized==0.6.0 diff --git a/setup.py b/setup.py index 1e4ad13d2d..f6bb2b2e38 100755 --- a/setup.py +++ b/setup.py @@ -60,5 +60,8 @@ def get_version(): include_package_data=True, classifiers=classifiers, install_requires=install_reqs, + extras_require={ + "plots": ["arviz"], + }, tests_require=test_reqs, test_suite='nose.collector')