|
6 | 6 | from pymc import Bernoulli, Flat, HalfFlat, Normal, TruncatedNormal, Uniform
|
7 | 7 | from pymc.distributions import (
|
8 | 8 | Beta,
|
| 9 | + Binomial, |
9 | 10 | Cauchy,
|
10 | 11 | Exponential,
|
11 | 12 | Gamma,
|
|
14 | 15 | Kumaraswamy,
|
15 | 16 | Laplace,
|
16 | 17 | LogNormal,
|
| 18 | + Poisson, |
17 | 19 | StudentT,
|
18 | 20 | Weibull,
|
19 | 21 | )
|
@@ -209,7 +211,13 @@ def test_laplace_moment(mu, b, size, expected):
|
209 | 211 | (0, 1, 1, None, 0),
|
210 | 212 | (0, np.ones(5), 1, None, np.zeros(5)),
|
211 | 213 | (np.arange(5), 10, np.arange(1, 6), None, np.arange(5)),
|
212 |
| - (np.arange(5), 10, np.arange(1, 6), (2, 5), np.full((2, 5), np.arange(5))), |
| 214 | + ( |
| 215 | + np.arange(5), |
| 216 | + 10, |
| 217 | + np.arange(1, 6), |
| 218 | + (2, 5), |
| 219 | + np.full((2, 5), np.arange(5)), |
| 220 | + ), |
213 | 221 | ],
|
214 | 222 | )
|
215 | 223 | def test_studentt_moment(mu, nu, sigma, size, expected):
|
@@ -318,11 +326,44 @@ def test_gamma_moment(alpha, beta, size, expected):
|
318 | 326 | np.arange(1, 6),
|
319 | 327 | np.arange(2, 7),
|
320 | 328 | (2, 5),
|
321 |
| - np.full((2, 5), np.arange(2, 7) * special.gamma(1 + 1 / np.arange(1, 6))), |
| 329 | + np.full( |
| 330 | + (2, 5), |
| 331 | + np.arange(2, 7) * special.gamma(1 + 1 / np.arange(1, 6)), |
| 332 | + ), |
322 | 333 | ),
|
323 | 334 | ],
|
324 | 335 | )
|
325 | 336 | def test_weibull_moment(alpha, beta, size, expected):
|
326 | 337 | with Model() as model:
|
327 | 338 | Weibull("x", alpha=alpha, beta=beta, size=size)
|
328 | 339 | assert_moment_is_expected(model, expected)
|
| 340 | + |
| 341 | + |
| 342 | +@pytest.mark.parametrize( |
| 343 | + "n, p, size, expected", |
| 344 | + [ |
| 345 | + (10, 0.5, None, 5), |
| 346 | + (10, 0.5, 5, np.full(5, 5)), |
| 347 | + (10, np.arange(1, 6) / 10, None, np.arange(1, 6)), |
| 348 | + (10, np.arange(1, 6) / 10, (2, 5), np.full((2, 5), np.arange(1, 6))), |
| 349 | + ], |
| 350 | +) |
| 351 | +def test_binomial_moment(n, p, size, expected): |
| 352 | + with Model() as model: |
| 353 | + Binomial("x", n=n, p=p, size=size) |
| 354 | + assert_moment_is_expected(model, expected) |
| 355 | + |
| 356 | + |
| 357 | +@pytest.mark.parametrize( |
| 358 | + "mu, size, expected", |
| 359 | + [ |
| 360 | + (2, None, 2), |
| 361 | + (2, 5, np.full(5, 2)), |
| 362 | + (np.arange(1, 5), None, np.arange(1, 5)), |
| 363 | + (np.arange(1, 5), (2, 4), np.full((2, 4), np.arange(1, 5))), |
| 364 | + ], |
| 365 | +) |
| 366 | +def test_poisson_moment(mu, size, expected): |
| 367 | + with Model() as model: |
| 368 | + Poisson("x", mu=mu, size=size) |
| 369 | + assert_moment_is_expected(model, expected) |
0 commit comments