@@ -42,7 +42,7 @@ def random_polyagamma(*args, **kwargs):
42
42
43
43
import pymc as pm
44
44
45
- from pymc .aesaraf import change_rv_size , floatX , intX
45
+ from pymc .aesaraf import change_rv_size , compile_pymc , floatX , intX
46
46
from pymc .distributions .continuous import get_tau_sigma , interpolated
47
47
from pymc .distributions .discrete import _OrderedLogistic , _OrderedProbit
48
48
from pymc .distributions .dist_math import clipped_beta_rvs
@@ -84,7 +84,7 @@ def pymc_random(
84
84
85
85
model , param_vars = build_model (dist , valuedomain , paramdomains , extra_args )
86
86
model_dist = change_rv_size_fn (model .named_vars ["value" ], size , expand = True )
87
- pymc_rand = aesara . function ([], model_dist )
87
+ pymc_rand = compile_pymc ([], model_dist )
88
88
89
89
domains = paramdomains .copy ()
90
90
for pt in product (domains , n_samples = 100 ):
@@ -123,7 +123,7 @@ def pymc_random_discrete(
123
123
124
124
model , param_vars = build_model (dist , valuedomain , paramdomains )
125
125
model_dist = change_rv_size (model .named_vars ["value" ], size , expand = True )
126
- pymc_rand = aesara . function ([], model_dist )
126
+ pymc_rand = compile_pymc ([], model_dist )
127
127
128
128
domains = paramdomains .copy ()
129
129
for pt in product (domains , n_samples = 100 ):
0 commit comments