- "When interpreting partial dependence plots we should be careful about the assumptions in this plot. First we are assuming variables are independent. For example when computing the effect of `hour` we have to marginalize the effect of `temperature` and this means that to compute the partial dependence value at `hour=0` we are including all observed values of temperature, and this may include temperatures that are actually not observed at midnight, given that lower temperatures are more likely than higher ones. We are seeing only averages, so if for a covariate half the values are positively associated with predicted variable and the other half negatively associated. The partial dependence plot will be flat as their contributions will cancel each other out. This is a problem that can be solved by using instead individual conditional expectation plots `pm.bart.plot_dependence(idata_bikes, kind=\"ice\")`. Notice that all this assumptions are assumptions of the partial dependence plot, not of our model! In fact BART can easily accommodate interaction of variables Although the prior in BART regularizes high order interactions). For more on interpreting Machine Learning model you could check this [book](https://christophm.github.io/interpretable-ml-book/).\n",
0 commit comments