|
35 | 35 | solpos = get_solarposition(
|
36 | 36 | greensboro.index, latitude=metadata['latitude'],
|
37 | 37 | longitude=metadata['longitude'], altitude=metadata['altitude'],
|
38 |
| - pressure=greensboro.Pressure*100, temperature=greensboro.DryBulb) |
| 38 | + pressure=greensboro.Pressure*100, # convert from millibar to Pa |
| 39 | + temperature=greensboro.DryBulb) |
39 | 40 |
|
40 | 41 | # %%
|
41 | 42 | # Methods for separating DHI into diffuse and direct components include:
|
|
45 | 46 | # DISC
|
46 | 47 | # ----
|
47 | 48 | #
|
48 |
| -# DISC :py:meth:`~pvlib.irradiance.disc` is an empirical correlation developed |
| 49 | +# DISC :py:func:`~pvlib.irradiance.disc` is an empirical correlation developed |
49 | 50 | # at SERI (now NREL) in 1987. The direct normal irradiance (DNI) is related to
|
50 | 51 | # clearness index (kt) by two polynomials split at kt = 0.6, then combined with
|
51 | 52 | # an exponential relation with airmass.
|
|
61 | 62 | # DIRINT
|
62 | 63 | # ------
|
63 | 64 | #
|
64 |
| -# DIRINT :py:meth:`~pvlib.irradiance.dirint` is a modification of DISC |
| 65 | +# DIRINT :py:func:`~pvlib.irradiance.dirint` is a modification of DISC |
65 | 66 | # developed by Richard Perez and Pierre Ineichen in 1992.
|
66 | 67 |
|
67 | 68 | dni_dirint = irradiance.dirint(
|
|
78 | 79 | # Erbs
|
79 | 80 | # ----
|
80 | 81 | #
|
81 |
| -# The Erbs method, :py:meth:`~pvlib.irradiance.erbs` developed by Daryl Gregory |
| 82 | +# The Erbs method, :py:func:`~pvlib.irradiance.erbs` developed by Daryl Gregory |
82 | 83 | # Erbs at the University of Wisconsin in 1982 is a piecewise correlation that
|
83 | 84 | # splits kt into 3 regions: linear for kt <= 0.22, a 4th order polynomial
|
84 | 85 | # between 0.22 < kt <= 0.8, and a horizontal line for kt > 0.8.
|
|
90 | 91 | # Boland
|
91 | 92 | # ----
|
92 | 93 | #
|
93 |
| -# The Boland method, :py:meth:`~pvlib.irradiance.boland` is a single logistic |
| 94 | +# The Boland method, :py:func:`~pvlib.irradiance.boland` is a single logistic |
94 | 95 | # exponential correlation that is continuously differentiable and bounded
|
95 | 96 | # between zero and one.
|
96 | 97 |
|
|
115 | 116 | greensboro.DHI, out_disc.dhi_disc, out_dirint.dhi_dirint,
|
116 | 117 | out_erbs.dhi_erbs, out_boland.dhi_boland]
|
117 | 118 | dhi = pd.concat(dhi, axis=1).rename(columns=dhi_renames)
|
118 |
| -ghi_kt = pd.concat([greensboro.GHI/1367.0, out_erbs.kt], axis=1) |
| 119 | +ghi_kt = pd.concat([greensboro.GHI/1366.1, out_erbs.kt], axis=1) |
119 | 120 |
|
120 | 121 | # %%
|
121 | 122 | # Finally, let's plot them for a few winter days and compare
|
|
131 | 132 | ax[1].set_ylabel('DHI $[W/m^2]$')
|
132 | 133 | ghi_kt[JAN6AM:JAN6PM].plot(ax=ax[2])
|
133 | 134 | ax[2].grid(which='both')
|
134 |
| -ax[2].set_ylabel(r'$\frac{GHI}{E0}, k_t$') |
| 135 | +ax[2].set_ylabel(r'$\frac{GHI}{G_{SC}}, k_t$') |
135 | 136 | f.tight_layout()
|
136 | 137 |
|
137 | 138 | # %%
|
|
0 commit comments